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Abstract of the Dissertation

The Distribution Connected with the Dynamical
System Generated by a Semi-group of Rotations
_ by
Victor Tupitsyn
.. Doctor of Philosophy
in
Mathematics
State University of New York at Stpny Brook

1976

Marc Kéc {in his book "Probabilify and related
topics in physical sciences,™ Chapter II, §4) gave a methbd
of solution of the following problem. .Cohsider a chain of
N links in space, each link having length I. Each iink
forms a fixed angle (called "valence angle") with the pre-
céding link and no other constraints are put upon the chain.

The problem was to find the distribution of the
"size" of the chain (defined as the diétance between the
 initial and final points). The first solution of this
problem was given by Moran (4). The new solution given by
M. Kac, was based on perturbation theory. We use this
method for another problem. Our problem is following:
Consider the dynamiéal system whicﬁ can be described by
‘the following way. Let us consider in 3-dimensional Eucli-

dean space two axes not situated in one plane, forming the

i1




angle o with each other and at a dlstance R from each other,
Let A¢ be a random rotation with respect to the first axis,

B¢ a random rotation with respect to the second axis, where
the angle ¢ is distributed uniformly on [0,2%7]. We have a

problem, which we can call the random walk problem in this

context. Consider the transformation{

;eA¢1B¢2A¢3B¢4 A¢n-lB¢n

+ M

0 0 | * ®a

|

(H is a starting point) where: $yrd0r vaus b

n’ *++ are in-

dependent and distributed uniformly on [0,271]. we wish to

find out the limit distribution (as n + =) of the three-

dlmen91onal random vector:

%1 9, d’n--JLB‘I’n

f& - MO' A *+ B ces A
vn n
Theorem.
The distribution of the three-dimensional random
M |
vector — (as n + »} tends to the non-sinqular normal dis-
n

tribution. (a1} barameters of N-distribution are calculated.)
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The Distribution Connected with the Dynamical

System CGenerated by a Semi-group of Rotations

Introduction (A)r Let { be any given set {of total measure 1)

on vhich a completely additive measure u is given.
We assume that there is given a one-parameter
family of transformations Tt of {i onto itself which pre-

~serve the U-measure.

-Pefinition 1. Let Tzlfa) be the inverse image

of the set A(CR). The transformation Tt is said to be

measure preserving if

(0,1} u{(T;1 (Y} = u'{A}.

For one-to-one transformations (0,1) is clearly equivalent

to the equal definition of "measure preserving"; i.e.,

(0,2) wiT, (A)} = u{al.

Now let P0 € . Denote by g(P) the characteristic function

of the measurable set A; i.e.,

o 1, Pe A,
g(p) = _
0, P e A,

A-p:oblem is considered by Poincare and Birkhoff

is the existance of the limit:




T a
(0,3} 1lim % I g(Tt(PO))dt for PO e .
T+ 0 .

Together with this version, in which the "time"

varies continuously, it is convenient to consider a discrete

version.

Let T be a measure-preserving transformation; i.e.,

0,4y wit™ha)} = wia),

and consider its: powers (iterations) TZ,TB,,.. .

Definition II. We will say that the measurable

set {1, the semi~group of transformations Tk of the set

and an invariant measure compose a dynamical system.

- The analogue of the limit (0,3) is now

(0,5) lin & ] gt (Py)).

n-co k=1

In 1931 G. D. Birkhoff succeeded in proving that
‘the limits (0 3) and (0,5) exist for almost every P, {in

-the serise of pfmeasure) - A little earlier John von Neumann

¥roved that the limits (0,3) and (0,5) exist in the sense of

WER squsre (sea [61).

- Definition IIT. ' A transformation is called metri-

h"
52m2‘§53nu1tive if the only invariant sets are either of

&i@i*!ﬁ&ﬁ&% ﬁ‘@fﬂ Or one,

?t is well-known that if we assume that our trans-

R A B B v b s s




formation T is metrically transitive, then for almost all

Po

1B K |
(0,6) lim = ] (T (2g)) = u{al.
-0 n k=1

This can be generalized as follows: if f(PO) is p-integrable;

i.e.,

-J |£(2y) [dp < «,
Q

and if T is metrically transitive, then for almost all P0

1 B k
(0,7) 1lim = § f£(T (Pg)) = J £(P,y)du
_ e | b

A generalization of this problem to a non-commuta-

tive semi-group of transformaitons, studied by RaZdan [7],

runs as follows.

Let A and B be two rigid motions in the plane.

Applying to a point X of the plane the transformations
A, B, Ahl, Bﬁ; in different orders we obtain a sequence of

points M(X): | | o

Xe ven, B_ZX;.A3X, .e

X; Ax,Bx,A'l,B"l; Azx,ABx,AA"l

The sequence M(X) turns out to be uniformly dis-

tributed in the sense defined below,




We denote by Mn(X) the set of points of the se-

quence M(X) obtained after n transformations:

1 1

MOx) = x ; ml(x) = AX,BX,A "X,B "X ; ...

Let O be a domain in the plane. We denote by

Nn(o) the number of points of M"(X) falling within O (taking
multiplicities into account).

-The sequence M(X) is said to be uniformly dis-

tributed if

by
lim X0 _ X0
HO

n
n—+e NX(Oz)

1
2

for an arbitrary pair of Jordan measurable domains Ol and

02.

Theorem (D. Kazdan). If the rigid motions A and B do not
commute, and if oné of them is a rotation through an angle
incommensurable with 2 , then for an arbitrary point X the
sequence M(X) is uniformly distributed. {Note that in
-thié case the subgroup generated by A and B is dense in the
group of all rigid motions of the plane.) (See [7]).
Kazdan conjectures that an analegous result holds

for an arbitrary homogeneous space. The xesult has been
proved fof homogeneous spaces of compact Lie groups in [5]
and [8].

| We will consider in this.thesis the analogous

continuous problem in 3-dimensional space: consider the




dynamical system which can be described by the following

way.

Let us consider in 3-dimensional Fuclidean space

two axes not situated in oﬁe Plane, forming the angle g with
each other and at a distnnce R from each other. TLet A% be a
random rotation with respect to the first axis, B¢ a random
rotation with respect to the second axis, where the angle ¢
lis distributed'uniformly on [0,27]. We have a problem, which
we can call the random walk problem in this context. Con-

'sider the transformation:

L I ]

— — by 95 457 & $n.q ¢
My »Hy+a ' A B ¢ «oop tlpm
(ﬁb is a starting point) where: $1¢0prevesb s oo are in-
dependent and distributed uniformly on [0,27].

~-=We wish to find out the limit distribution (as

n + «) of the 3-dimensional random vector:

by ¢ b b
M A 1B 2 ...p Dlg'D

Mo
/a /a

We will prove the following result, ' 1

Theorem. The distribution of the 3-dimensional random vector

(as n + =} tends to the non-singular normal distribution.

1 =t

(A1l parameters of N-distribution are calculated.) (Note

that if ¢,,¢,,6,, etc. = 0 or 1, and ¢1r05:8c, etc. = 0 or w,




this gives the positive half of sequence of points studied ,
by Kazdan.) h |
This problem is related to our studied by Mark .E
--Kac. In [1] he gave a method of solution of the following - !
Problem. Consider a chain of N links in space, each 1link _'§
having length 1. Each link forms a Fixed angle (called N
"valence angle“) w1th the precedlng link and no other con-
straints are put upon the chain. .
The problem was to find the distribution of the

"size" of the chain (defined as the distance between the

initial and final points).

The first solution of this probleﬁ was given by
Moran [4]. The new solution given by M. Xac, was based on
perturbation theory,

We use this method for our problem. _ ih

Let us notice that the most general case (related to our problem)

studed by V. Tutubalin. But (in comparison with the solutlon

51ven by Tutubalin) Kac's method glves us possibllity to

calculate all parameters of N-distribution, - ?y




:Introduction (B) M. Kac considared the problem of finding

et rem et < P PR

the limiting distribution of a sequence of random variables
related to the one we consider here. He introduced a new

' 'method which we will uge for our problem.

" The Kac method for studying the sequence of vector - valueﬁ

' random variablea ﬁ{h, consists in forming

l‘ n. R LI S IR A
: ' STk n R T

ot ol s e R

and deriving first a single term recursion relation o T‘*_ngi EL

| Q (xn *"'yn“”zn =y

= €X/>(?n 4)(2?‘) g (m - yn zcmﬁ -2 Xf? co8§+;//v "’&ﬁﬂ)ﬁ,ﬁf

oyt
o /
Mgt

Kac 8 main 1dea-ia to replace this 1ast relation by another

one wtich enables results frbm'the theory of'iineaf operaters

on Hilbert space to be used to find the 1imit1ng behaviour of

o g%ﬂ, (X. |  ; hq - 80

'lIf 9m<(4 22)’% 2 ,0, 2R ) f (?)

_-ﬁhen the recorsion relation becomes

7C /2)“ eXp(Z-h )f/‘{(a) 2)][ (cc))cla)

for a certain symmetric kernel f</(103 ;})




T R ii:fFTf‘. -I7P '
Therefore '-;{-M—'I:T; 7—"} f

“ for a certaln lineasn operator 7770. |
xXm ' '
rrj ig also a symmetrio 1ntegral operator whose kernel turns out

to be definea for non~integer values of /M ana to be analytic

':_Jin n?in some neighborhood of jnfiniﬁy.._A

Uslng the R&llich perturbation theory,‘ Kac shows Lhat
the limiting distribution which he seeka dcpends only on the'
.first eigenfunction of the operator {Yj

'. In the courae of thia work hac derives gome results for

”’,_f a particular kernal

Km(;a) f k/z ﬁ)/(ﬁfé Z)féu
-.:wlth K{CU Z) { 117 (%ew)] ;’w+; !

",'otherwise

A

Namely, he sbows that

/{(2) /; w) 2 2A+7 @[2)9) (w)
| S Za'?
/\K: o.%?j“ f 54/2 {7”3[&”

'.fewe will uge these specifio results ag well as the general

,__method in treauing our problem.'




Introduction (C) Now let us return to the eigenvalue

. problem., Let us formula't.e' somé' results which are we'lla-known.-

o Theorem :(0,A) (see[ﬁ] L10])

Let l?o,B,,,... be bounded Harmitian Operators in an infinite

" dimensional Hilbert space H « Suppose that ((,{ JC? Lé)},
for all U in /L}/ and /Q is completely cont inuous.
Suppose that there exists a constant )é > Q such that
/ ﬁ( a.)/ 15. ( “, /‘? cz)
" Then the following statements hold.' B
RE)=R,+sR+s2Ry+ - |
2 18 a Hermitian, bounded operator 1n H ’ regular in
o £ _ _
=—%<5 3

s In ‘M P $< é S ’ th@ functions

A (5) A (E) N ' and the elements IZ/I(E) ?%(5)

e~

o :

are a11 convergent power series 1n neighborhoods of each
. of.-‘thilﬂ ?Lnteﬁal such.that- for: - .Zé <& < :Z—/Z-
the fonbwing is true: . . E
(o) R (2): Wa YOUO , .
{o,b) %{L) wff) .. | 15 an orthonormal complete system.
(o,¢) ﬁﬂ’n [5‘) =0
J""PCSG

Rémafks. Obviosly the infinitely many conditiona

/(% / /f(ce )




IO

"'bf'jTheor‘em (OVA) can be replaced by the cond:xtions
(0,d) (¢) = F‘E +€R + &2, e

is bounded regular operator for oomplex & with !u,<9

|
Hermit.ian':'for regl 6 ‘ B . _ B : - !

(o,e) For all complex“f:& " with / /< § there exists a

eonstant M Such that . //R(E)Cd///é /\7///? &;‘//

/(zz /?(e)ac)/</‘7(zc/?a) | L i

R(E) is an inbegral Opf-‘r"ator, %P@)a/ — o | o 1
f Hnyse)ug)dy R

%(Xy g) 18 a power serieg in s converginsr :
S unifomly for a11 X 0/ of the intervczl _7- £ X C/

"_l'.and %/X)(/ E) = %{? X, .I - =
for real é .then our two condltiong become

f// %/ﬁy;g)ﬁfy)ﬁf//oéx <M///%@,0)25// afy/dx;.

il

F

 Theorem (0, B) (Dini 8 Theerem S [9] )

B If the sum of an, infinite serlieg of non-negative continuous _

~ '_", runctions is a continuous function in g closed interval -

~ then the serlea converges uniformly there, _ ’




. Theorem (0,0) (Mercer's Theorem, see E.B:] ).
If the aymmetric,zzz-kernel (k3éf) la continuons ]

and has only positive elgenvalues (or at most a finite

i
nunber of negative eigenvalues), then the geries ‘!

5 YY)

converges absolutely and uniformly, and the bilinegp formulg

;Z((x,y) = %/@ YY)

. holds,
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Chapter I

Let us cpnsider in 3-dimensional Euclidean space
axes not situated in'one plane, forming the ahgle o with
each other and at a distance R frdm each other.

Let A¢ be a random rotation with respect to the
dirst axis, B¢ a random rotation with respect to the second
akis, where the‘angle ¢ is distributed uniformly on [0,27].
Note that in thié case A¢ and B? do not commute. We have a
problem, which-we can call the random walk problem in this

context. Consider the transformation:

M > +A "B “ar °B RY A

I T T S S
. . 1. Y2 _73_74 n 3B n 2An lB n

(ﬁb is a starting point) where: $1705+ <esr ¢, are indepen-
dent and distributed uniformly on [0,27%].
We wish to find out the limit distribution {(as

n + «) of the three-dimensional random vector:

. b b, 0, 0 P PO N
MOA 1B 2A 3B n . a nIBB.n 2A n 1B n

"
/n %)

For the simplicity of calculations, let us assune:
@ =3 R=1. . - ‘
For the same reason we will assume that the start-

ing point ﬁb is situated on the straight line crossing the

second axis perpendicularly to the first axis. . o

Let us select Cartesian oordinates such that the




random rotation A¢ has the matrix notation:

cos ¢ sin ¢ O
(X,Y,2) ll-sin ¢ cos ¢ Of = (X,Y,Z)A¢
0 0 1

and the random rotation B¢ has the matrix notation:
1 o 0 l

‘I(X.Y,Z) _7k0’_1,0)] 0 cos ¢ sin ¢|f{ + (0,-1,0) = I(X,Y,Z)—e}B¢ + él

0 -sin ¢ cos ¢
where the starting point is:

(XO’YOFZG) = (0:"‘1;0) = g

In is easy to see that in our system of coordinates the

pression

— 91 6, ¢, 4 ¢
M,A 1872273574 L.

1 ¢
n lB n

i

5 [

vn

" becomes

€A, B, A oA B, -eB, A, ssvep
I A N T e T

/n

+eA¢ ceep B¢ —sesd@A, B, -eB. +al
3 n-1

B
(1) n—-1 ¢n n ¢n,—l ¢n ¢n

‘where I is a unit matrix.

Before we begin to study the limit distribution (1)

let us formulate the theorem which will be basic for us.
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Theorem I. 1If for any real p:

2

4+ +o |
lim J exp(pa)don(a) = g(p) = J exp(pal)do(a)
N

: and if g(p) is an entire function fi.e., there is an entire
function g{p) on the real axisi, then cn(a) + g(a) at any
point of continuity of o (See [1]1).

| ‘Let us formulate and let us prove some lemmas which

we will need later on.

Lemma 1. TLet Xn;¥Yn;Zn be sequences of one—dimensionél random
variables and suppose that for any real numbers x,y,z not all
Zero, the linear combination xxn + yYn + zzn has the normal
distribution as limit as n + ». Then the joint distribution
of these magnitudes (as n + =) tends to the threefdimensional
(non-singular) normal distribution. (See [3]).

The last lemma is given without proof. We remark -
that this statement remains in force under the weaker hypo-
thesis that x-X, + y-Yn'+ z+2, + normal distribution if
x2 + y2 + z2 = 1
Lerma 2. Suppose the random vector.f has a three-dimensional
normal distribution. In addition suppose its covariance
matrix is diagonal.

Then the random vector EE¢ (where £ and ¢ are in-

dependent and the magnitude ¢ is distributed uniformly on

i



[0,27]) has the three-dimensional normal distribution as

at

well._-

The proof is that the rotation of the vector T P
‘ ' axis cf

takes place (on the random angle ¢) around one of the ellip-
soid of equal probabilities (for 7} .and Jacoblan dces not de-
pend on ¢ .

Lemma 3. Let Eb,Ei,...,fén..., be a sequence of three-

2 .3

dimensional random vectors Ei = (Xi,xi,xi) and let for i # s,

0'1'2’00-'21-1;--0

, I 2 oexdyx® - ™y =
}, E[(X; - EXj)(X, BX ) =

= 1,2,30

If we know that as n + « the distributions of the random

variables

+ ...

v2n

tribution of the sum 0

as well.

Proof: Let us compose (j,u = 1,2,3):




n . . 21'1 M
. A g H
,—~EX5) X -EX
Er}Tg_ETg) (&E-Ewﬁ} - R '£0(X1 Xl) s=£+l( S S) -
Y2n Y2n vZ2n ' ¥Z2n

2n . .

) (xg—Exi)(xngxg)
i=0, 8=n+1

o EamA

I R N T T
T = 5= Szi B (x; EX3) (Xg - EX)) = 0.
— - [4

We have to show that:

n . ; 2n
! (xi-mx{) ] (x}-Ex*)
i=0 s=n+1

limE =0 =
n-te Y2n ¥2n
2n
Z (xjmﬁxj) ) (xz-Exz)
E lim 220 1im 82011

n->ow Y2n N ¥Y2n

Since coordinates of a vector, which is normally distributed,
are normally distributed too, we can interchange the operation
of limit and Stieltjes integration using the corresponding
theroems of Hélly. Then from the non-correlatedness of normally
distributed terms follows the normality of the distribution of
the sum .( gee (II] ).

Let us deduce some useful relations, concerning the

characteristics of (1). It is known that:

-1 -1 \
A=A " =2 ; B'"=8 =B + (AB)Y'=RBR A
¢ 7 B¢ T 0-f Pp T By m B (BT =B A,
where prime denotes transposition: {A')ij = (A) Let us

deflne 'A to be the result of transposing A w1th reqpect to

the non~standard diagonal: ('A)l:l = (A)

n-j+1,n-i+y if A is
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n Xn,

It is easy to see that:

1. ‘(A¢Be) = 'Be'Aq) = AgB,, since 'A¢ = By 'By = By

2. '‘[(a B

|

"[BjALl = "[B_A_,) = 'A_'B_, =B

¥
BB

¢e”

It

3. '(e') = '[(0,-1,0)'] = (0,-1,0) = e.

-— - - Y .
Let us write (in the expression (1)) n %Tn = {n %xi,n %Ti,n-zri} =
eA, B, ... B +eA, B, ...A, B, +eA. B, ... . tel B, +el

%y 9, ¢n—1 Oy 030 TR By e 0 ¢n-1 % el S
A

~fv ~3vl -1,2 -%,3
n an = {n %qn'n Eqn;n %&n) =
eB +eB J

A, ...B, +4eB «+«:B, +eB A «s B
¢2 ¢3 ¢n ¢4 ¢ ¢n ¢6 ¢’3 ¢n ¢n-2 ti’n—l ¢ ¢n l

/m

: Y 3y o (31 -3 2 -3 3

Let us write O = Q- B_Qh, then n oy = (0 9,0 g .n qn) =
eeBy  +eBy B, LA, 4€B, A, ...A  +eB, A 4el
So,0037 Moy T T S S R e
N

vn i

'i

|

Then using characteristics (1.,2.,3) we get: '(nféQé) = g

A B eesB 4+ B «e B +eh B ensB B 4af H
BT S e N e P N TR ot .

vn _ g

(%)

Let us take an arbitrary linear combination of the components

of the vector n_%Tn:




n" 3y 'J

4 ' L

-$ 1, -32 ~33 1 2 3 e T Jq

¥n *T +yn “tT +zn T, = (Tn, Tn,rn) n fy| =T, 'E , where :
n_%z x2+y2+z2 =1 ¥

-3 -2
tE = (n *x,n “*y,n %z):

We now state the next basic lemma. _ |
|
Lemma 4. The limit distribution of the random variable }
1
|

-3 1 - ) ~3 3 ’ + . .
xn 2Tn+yn 2Tn-i-zn zTn (as n + «) will be a one-dimensional

normal distribution.
Proof:; Let us consider

Y -1 -3 - '
E{explp(xn zti+yn 2T§+zn 2Ti)]} = E{EXP[an - g71).

Let us write S : _ ”t

: i - - ~1 - -
g, (&) = g, {xn *,yn %,zn é) = E{explp(xn 2Ti+yn %T;+zn %T;)]}.

Then we can write down: gm(u) =

T ™

m
(=) ...

Ot N
O ey B

exp{leA, B, ...B +eA B ...B +...+ A B, +ell- gh H
CIRF R I L AL VR U ey o o e P

x, d¢1l.-d¢m. E‘:j

In just the same way we get:_dmtg) =-E{exp[me- g']} = 4 il

n-2 21 2%
(1) J J {[eB A +eB, A A +...+eB A +ei'l
oy LI Y eXP - » e LI I ) - as e e l
Zm 5 ¢2 3 Pn-1 0g4 ¥ T ny b2 Om-1 |

E'+pldg,...dé_.




TFron k), i Erddovach A .
% - PV b g 4 & e 2
From (*) it Fforlows Ehated E%)(E-ﬁ d—mgﬁnbm yn.“e2n )

PG Here we concludes::

G5 dgl8

—

F *ﬂ'

R

e}{g (? . ;‘FH:Q_
| %mp{aa% smgs +ehy By -..B +... B
(?24) 0! gi fl 673 i § Ot -H§%%r3 ¢
E&p)gd(ﬁl..‘d‘b

gy 2By

m%.Bz?l S A8 b 1;3;1) m’

L i_(__Z'H 2{r2ﬂ%ﬁ
W2 7 f o I ;
(53 ]..:f SPIEAS B B o Bp . tehgr B g oooB +...+eA B teT) |
AT gop A Sy Par s e P2 el B
‘ SR GIORL R PR P
dc?f 'grw‘the 0}9\7“10\&9 cltf&nge cofwaziahless
2 .2
=(§£§”‘K52Tj ?jeﬁp{f B; redy ]
= ) ‘e can eae +.es B tell
" 00 oY e% ¢ m;r& gkj;dl‘rg-z ¢4 o ¢m—2 ‘m-3 ¢m-2
tgg pé‘%«nl...d(b

+e1l
-2
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-

n “x
Using the fact that e<£' = (0,-1,0) n_%y = "n-%Y: we re-= ;
-1 2

n "z

write the above in the following way:

27 27

@) g (€) = fexp(-pn” y),—z;)—-fj | 9 (8, 2,E 000
: 0

Wenmymmlte the expression A, Bea' in the following way

' cos ¢ sin ¢ of] (n %k cos ¢ sin ¢.cos 9 'sin ¢-.-sin 6 n—%xi
sin ¢ cos ¢ O n"%y = ll-sin ¢ cos ¢.cos @ cos ¢.sin © n-%yg
. -l % |
0 0 1| {n"%z 0 ~sin cos 0 ")
[ n"ix cos ¢_+Ln_%y sin ¢.-cos 8 + n %z sin ¢:sin 0 ﬁm
- - |
= ~n-%x sin ¢ + n %y Cos ¢.cos 6 + n %z ¢os ¢-sin 6 :
| ~n"% sin 6 + 0%z cos 8 r
n %x cos ¢ + n %#y +z§ 51n(e+60)51n ¢
= Je=n %x sin ¢ + n %/yz+zz sin{6+6 )cos ) . }
. _% v 2,2 .cos(e+80) 4ﬂ
n";i cos(¢-¢0)/§2+(y2+z2)sin2(8+60)
= nf% sin(¢~¢o)/§2+(y2+22)sin2(6+80)
| n";":/y§+z32 cos(ﬁfeo) N J |
. . H




(BO = arcsine——d

§2+22'
where - _
by = arccos X
.

Vet (y2422) sin? (0+8,)

- ’ - 3 _!.‘ - .
Let us substitute the above in (2): gm(n %x,n ‘v.n %z) =

0)!

“n"%sin (6=) a2+ (y2422) gin2 (0+0,) ,

- Because of Periodicity (after the corresponding change of

';-varlables) we get 9, (n J5}{, n-%y, n“!5

2} =
AR -y %n 2 T -
exp(-pn2 V) j gm_2[§“%cos ¢/§2+(y2+22)sin2 8, o e T
n-%sin ¢Jx2+(y2+zz)sin2 g,

_ | n" cos e/y§+z%]d¢d6 _
. R o2
- Now Let: g (nxn %y %) exp (W %oy - BEXY o -
o =k oy , . | o
(1 ?X ey }é and X ‘*"72"'23 =1, b

“Thls yields:

' . : .

(3) gmz( Cos@>/!--(1~x)mse n s.n@/'mn 2 /- %2 ?cosé’)-
- ~261 COS¢V ~(1-X%JcesY ”-\Smﬂ/ (?X‘*)cos“e e cas8) i!

. _exp( 4 cngﬁ[f -(1-X )CUS Q]"' n 93‘“’579‘/1' (/~X2)60329)




e

We have: Z (n“/"x n lf) ¢/2 ) Qi—) ex P( ,[ RCGS?ﬁ/'E;)—uJ‘ _‘

/ZSmﬂ -(-xJcose, :/4 x* cos.@) ex 3(—?6«»;3 1~(1- )ws%j—n fmp/f_. ~x}L;j
d¢d9

Set Y Vi=x3 5B 5 Z = Vi x> Sinf .

Then '7— (ﬁ/LX V 1- Xz CcsB V 1=X émﬁ) =
2 4 Iga}ﬂ 22 Y, /“""“—\ ‘/"—7
(ZT) e’*P( ) [f’z (n Zos BV ii-xJeos e n Sm¢ 7-(1-X"jce3 @

n \/1- cos(> Q;(p (*S’ cos ﬂﬁ«-(f -X COS%}'] n _pfm;ﬂt/fﬂr’fﬁx koS‘b)CJﬁ’d

It thus appears thatz’ is :Laciependent of ﬁ arnd hence we
can takeﬁ) O -This gives

T (7 “?’»h'éz,)" m(ﬂéx,ﬂ/ =, 0)
But }Cmu.aéxmg f-(-x3cos'G | 1t és,an,wf—ﬂ-x ) S, r ‘/ X c;;sz?)“

m 36‘1 cgsﬁi//_ﬁ_xzjwieﬂ n / ~(0S gz;f«(i- “;Icosgg/ O)

and setting Tm (I‘Z- A?X /” 7= X O) m (/X)
we hawe : Fm (X) |

oy ZJL

(Qﬁ_) o ( 'ii’;:-zi{-j j ]‘ };—r @1‘5 4 W ej{/j(/ﬁ @60551’[ @-X)CO.S@J nus,n,ﬁl/i ikast)
E) d;ﬁd
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Using the above, we will provide some particular

results.For example 28T 57
| R0 trfepet) Vi foprezmlos it i

=T h7s -f"'!

/;5— (55/@&/ (/-x) o/exP( Pﬂ'(f X)uo’zcjdﬁa

i

where Z; is independent of .

We will use this formula to prove the following integral

| /[f“‘ﬂ A(ﬁ)ﬁwg/<4f>n /4()7[*-2 o
where /%160 /D/ﬁ‘” ) f (X’)) 2
A(n) n- 2("‘) - [ﬂ(h (’:’){f "5’4/9( ’LP-—)// @X @fﬂ( ‘fi V.DK(PWQXP ! )Jujo

Inequality :

: | 7! ’/~-()<‘Z+'«u/"")]“‘-a o 2 2 y
and K(W,X) - Z;) ,f WiexTaq,

Oﬂa erwise

Further we will stmdy the first cigenvalue of the integral ?W

A (ﬂ)

operator




2y

-wa

using the expression eXP( hPSmsém) ks
. [ /2 /1~(M Hews e 5,,7 g] 2K [ N 9,/1_(1_,(2)(5{)3 4 s, ;257

=z s — R
obtainr ﬁ—m {X) 25 5 “
e exp(- Jl) / f (cOs;aW (1~ I’uﬁ 0)8)(,0( —~—~£co:s 5[1-0-x)ces c?])

TN g i 2
Z[z°gf>f"" 0 508"ty exp(”x °

2k~1
25 277

f_/ﬁ (("osgﬂyi(/-x)mg )@\P/ 05¢ﬁﬁxj€o§€7) Z/’:‘ ‘ ﬁggliszfm¢7 L“fgﬁf[i

The second 1ntegral,equals zero since
n o~
(CoS;h I-(i- >gCo$ é’) QX,D( ‘PCOS{J[{f x)cusﬂ)

. function of ¢ and

Z [f‘s:'s/i’-ﬁ e

“K '/)i is odd,

is even

|
| |
This yields: _ . b ‘

e () = ca.,zr | | ]) :
@ exp(”fwffﬁ;z(apmex Tesidedd) |

Z[ N ?ﬁ(i—x%o& & " &n ESJ O( ¢ i ' . f.“

(2«)!




Setting ZEI @V/—(f;() fas 3:!?!5] = oxp (___ &Q¢Zf.(1 xz)t"os Q])—;L

[/‘/z‘ r-(1-x Yeos'p Sin @7 . 5,' [7-G-x3cos 6'] :
D3 =in el ) q
we have: F (X) 257 25,,,

@) €><f>( s 2X) f j fo(cosgir ﬁa;&)cos e)é'Xp “9cnsﬁ[ {lkost) %snp[{fme

dﬁdﬁ
+(7) exp( ”ﬁfs)x}fbfﬁ— (Cosg‘l/f—(f—x)cm )€Xp(—~w5¢[/fx)ws @7)
Z[H@{ﬂ (- a:SE’ Srmdj QXP(I’? 5054/) ﬁ[{ (,r_x)wg 6-‘10) C/ﬁ CL/G o

K=o (ZK 25
/” (@mt/ (X 3eos6 )@)(/D(ﬂ 5’[,, (f—x)cose]) [g‘a’e;_

__(;yv) exp(ixz
e pl 5[ [ g el 5]
. g@%icff—x)a«s e Sind/ k@)(/) n fgﬂ p[.ﬁ-x)wghj))d’/@,dfé
Let us n.otice that: F (X) O, é)ﬁp(n f6’05525[ (1- x%s@](é;;p[”fﬁ/m
i, /i"&z iz:i))r?&»f awﬁ]s«mo/n Sm@[?-ﬂ X)%@/<AS’

ko

whereL ig independent of fL

Hence . PATIRAT)

C‘ZJ:QXP( 'Lﬁzf j }; a(cos;z}[//-(/‘x Jees 9 )L?X/ﬁ/-—-—sj [ (i»‘x)fod)d ,c{+;

& 287
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\ ) .
Let ug substltutc @ )() Cosf =W @ Wz) COS¢ P

-Then

) )- expl-" *?X) f (P)[fk(wx) /{(pw)e;(p(hfﬁ Wj)c[wd/aj
S lep(E) / 5l [fmwwo st S el

7 [ 6)]

| _ 2 2 |
K(u/’x): O )J ! ? ::her::ij . N .
g A~(wip)] % 2 2
~ » 1r WHPT<
K (\N) x) O otherwise.

Let us show that the unperturbed kernei

K(z)c" P) ~_f/<(wx /<(/3,., w) dw

is sguare'intevrable, i.e.,

S Kiknag <o

~1 -1

ordér te prova this, let us start from the known relation

or Legendre polyaomials :

-




. 9 . : '
(1) 2 1:@ [(1- 2y% - P
G o5 " b4 sin 0]de = i lk-k(x)
0 .

where.J;(x) is the k~th Legendre polynomial and

2T
- 1 ik
;Ak = 5 I sin = 0 def
' 0

Let us rewritehfhis relation in the ‘equivalent form:
| 1 S

7 (4a) I K (w, x) (w)dw i A%S%)uq
-1 |

* This ylelds at once K(Z)(x,p) 4 20 lﬁ ;(2P+1L93(X)§E%p),
' o k“ o : ,

-therefore:

K%z)(x,p)dxdp < o,

- Now let:

Then (4) will becone

1 1 - ICEATNENN
(5) | £, (x) = j:ﬁm 5 (P) f@xr( —51" ) K(wx pr(f‘_ J)K@W)E(P(ng)du}

<L % [ (p)/ (o ﬂ;f-v«mx)exp(%fﬁ—wfﬂkm&%@ bl

12,2 L
where 3(0 (x) = €xp (‘ r—L-;-P—}f '




' So we have an integral Fredholm operatorA(ﬁ)wﬁich is. "'éyiziﬁ:ei}a:"ic’ positi

and completely con;:iriuous. The last remark follows from : |

' -the square-integrability of the perturbed kernel and from 7
continuity on [~1,1] of the functions exp(- 7n l]?, ‘j @xpnff,, W‘%])
'exAp' (—- gn"?'pg..). - By Hilbert's theorem such an operator has

in L2, a complete orthonormal system of eigenfunctions,

, whith real eigenvalues:
e ™ n)(x) wkn)(x), oo
_Al'(n); )\z(n); esel Ak(n); cas w

' 'I‘he functlon :FO (x) has the ser.Les expansion in eigenfunctlons

i N
. ;;Of our operator: o (X} = exp (—- En X J

) .
3| | e € w‘n’ () dix v‘“’ (x)

3=1i_

P Sy, i

“and in particular /for evem L/

n .
A2 o I 2
" A o) = I 25m) J exp (- En ™) w(n) LA =) .
| (n)  g=1 D 4 4

(n)

The eigenvalues of the perturbed kernel K(z) (x,p-) as n » e

' tend to the eigenvalues of the non-perturbed kernel K(2) {x,p},
and since in the formula (6) all eigenvalues are raised to

~ the -x},t}ah power it is sufficient to consider only the eigen-

4

value close to 1; i.e., as n +

Aajg(x) )L?(n Jexp( ") me J,f'ﬂ('x‘),




In order to motivate it,we will prove a speclal Lemma '(_sée' DE . 39)

Now let us study the integral erequality (§5) in”t"ie'. followimg

form :

(8) lj[ A(a){m2/< Lg'n EA()f’“

|
- where MM ard /1 are even. '

s $abe =LA oA LA AL )
- AT (- A(n,fo> - | "

oS A%+ <Lt [ A Am&)
I.-et us show that

10> A(n)jcm 25" (Lf —“‘Pj) “/(n) | for any OSS < ‘3 .

Usn:g (8) / ~5’ -times/, we'get :

A(”') ~2$" A(n (m -2¢ A(n -Jcm-‘gu) A ﬁq~45-2< [Pﬂ 2A(th m-252 /4{*:))[-25 2
”"(AF ) S;t’/)ﬁhdsz<(fq E f)/é}(h) ]Lm 284 < v

(st AR 4

- Now usieg the above ,we obtain ; :

(8‘1’) ’ DCm#A(nﬂCm_z { QA( )jcm -2 Z (Lf & "‘7) "E'n“;q k :{ro

m
5

9) |§,-AZ £ <L5>n[ > A ]L“f(zfm
=~ len /?Aj’f’l‘*f) f] (,q)

Aﬁﬂ—/‘/j

[/AJ"” ’Aj) f]#@f




In particular we have .
-‘__1_ et

<H>I§ AJLJ<LﬂfﬁW+ﬂ'Ah£;
(12) [fn"A(i')J(o} [(Ayn = _1] A(h jﬁ

hence :

AT o

(M) J‘n. A(n) h-2 < 7{'2: )

. : ]ﬁ is bounded uni -
(h) ’© formly because of

,j:._-,._ A%' < _.__D_ Lemma ( Pg. 39 )
Ray |5~ At - | _

where all comstants are independent of I’L(ﬂ-—>°°)

Now consider the integral equation

(13 A&”"A(ﬂf =0

Using the ugual methods of pcrturbatlon theory (see [2])

we can calculate

Ay (n) and I;L,( )(x)
Let us write‘.‘ )((n,)._ 1—{-1“1/’2 +/£2/'l +j££3/’L 7+

Yy =2 )+ 075 g

ard substitute them inm the integral equation (13)

Af-Af = /\7(60—
- f@{ Jorot £

”’J)K b W)&PK s P)dw 4




_ . -1 : .
Comparirg the coefficiemts of .rLj © Om the right and

the left sides ylejds u51ng the expr6581on

@‘P(Lf" vl = S = LI - S () + oo
(14) ‘ﬂ(x)+2, ju, j{% %[Zf(’iu/?)“fx 9PJ+%(P§HKWXK(PWJWC{

/S:mee the fumctlor (P(x) is ﬁormal.t_zed then 1}7 (X)

must satlsfy the relation:
' j1 §09dx =0/

Also er;& will use the relation: \//K(WX)/{/(O W)p{W&(X =
= [ KK pddwdp = ry2/ " dpde =1

Integratlng both 31des of the equatlou(ﬂo 1n‘X we get

J Rldx +2 3 fu‘ jfﬂ [f(f-w)f" 9P]fMWXK(PWc{W0[de‘J
+ f%v) {ij(wx Kp,w)dwel }af/o j (ﬁ(p)C{P +
+ j “/{[ KK Pad Ak

=1-=1

-5/2 2 { f f Ky /(/pwdw@}dx 2 02 M f/( ) kﬂ?wa/w{f
xﬁ[@(p}cfp +2ﬁ/2 i[f@j@jéf /[f:(fwx’)cwqﬁfﬁfafé}faﬁx -




-33-

This yields :

Let us notice that the integral inequalities (11@) and (/261,)

“become equivalent to the correspondent integral equations (73)

and’ (?) as ﬂ >(30)

Iﬁ:‘:'pa'rticular, the difference between (f//a) and (73)

is at mogt. 3 °

n?. '
‘This estimate gives us possibility to motivate calculation

. : - . -1
of /'(i (p&32'),, since we compared the coefficients of fL .

| | =2
and we did not need to compare the coefficients_ of n—

*

(ESuppos'e,the right side of (Ma,) involves /l » then it is

fnpossible to compute [u1 k.
Now let us substitute the values fpr

ahd let us examine the limit. as n—)OO we see that

5 % 2
% 0= Lo, Fi60 =01l )< oxplis’s’ e 6=
Tn addition, the convergence ls uniform on every finlte interval.

We recall the ddentities




400

2
exp(%ﬂzpz) = cI_'-l(Z'ir)“;5 I exp(pa)exp|- 2‘5 da
_ ' — ' 2¢
or
2 : +e 5 |
exp %-;é -p2 = v@ﬁZﬂ)'% [ exp{pa)exp|- 35{ da. 1
| 5 = - : e |

-0

Since: exp(%ozpz) is an entire function, then applying

theorem 1,

we finally obtain . : : ' i

: \ ' a -~
P(X'ti' + yri + z'rr:’;L < avn) +J§(z~n—)‘1 J exp “3&2' dt

-]

- T - (uniformly
with respect to a).

So Lemma 4 is pfoved.

From the relation (**pg.20) it follows that at the same

time we have proved the following result:

P(XC_{;f- quzla» zqﬁ < ayn) » Jg (I'-’w)“1 j exp -302‘ at

x2 + yz + z2 = 1; : e

From Lemma 1 it follows that the limit distribution of the

vector




and also the limit distribution of‘the vector
4 -%ql n-% 2 %

n_'Qn = (n n' n’ n qg) are non-singular normal dis-
tributions. The axes of therellipsoid of equal probabilities
will be the first ang second axes of rotation. Then Lemma 2

allows us to write @5 n » » the distribution of the vector:

-4V =%vl  <kv2 k3 =% 1 -%2 -x 3
n Q= (n Jéén,n%&n,n;s&n)=(n ;iqn,n;iqn,n%qn%B

o
is also . a non-singttlar normal distribution. Let us show
that the sum (in fact, any linear combination) of the

- Y
~vectors n %Tn and n %Qn’ that is:

-k s ¢
B=n Tn + yen Qn

has a non-singular normal distribution as n + w, For this,
it is enough to check the realization of the conditions of

Lemma 3; that is, we have to check for the vectors:

_mn"’(ea B ...A, B, +4eA B ...A

. -8B, +eA B ...B +...4hed,. B, tel)
o B R N N T 5 96 " Ty U )
= n-,g.‘i (.;n + En P aaa 2-2 =+ El 4 Z‘-o) where -EO = @T:
LT 5” .
.Ei = A B, ¢ ... and so on and




the ¥ealizstion of condition: (for i # 8).,

_ 2
(ily ¢ = EE(xg ~ Ex%}(xg - Exg)] where L, = (g?,x.,xg)

ire4
.(i:sao,l,z,...,n
-jiﬂ§112r3-)

If we introduce the notations:

{@j} = 32 =1 (0,1,0) = e,
j'ﬁl,?,.? ) . .
63 = (_ororl)‘

then writing the coordinates of vectors as scalar products
of those veotors with €17 €3/ €3 we may write the condition

(11) of the Lemma (3) in the following way:
Bileye (Ty ~ BE) 1o (3, - Egg)-ell} = 0 (1 # s)

Binee products of independent random matrices correspond to

veotors ?i we may write




Elj = —e)"E(ABA B....B) = "€y 'EAyEB A L. .EB_

ooof flLooffllooo] oo -
= ~(©,2,0/10 0 0ji+llo 0 ofi+0 0 oll-+ lo 0 off = (0,0,0).
001 flooof ooz 000

The mathematical expectation will be a non-zero vector only

for —EO : -

.

Let us take two arbitxary vectors Ei, Eg of the

E =_é *A B A +»+B ; T ="e.B .'..A B vs B
i 2 ¢ii¢i2 ¢i3 *n 2

then we may write:

}
" ...A¢ B¢ ...B¢n)~e']}

. 2 . ‘ ' .
E{,[ej (e2 A¢i B¢. a..B¢ } e,°B A . .
1 s s+l 1 i

i, n ¢i
_ 2
(using the independence of the matrices)

B¢'

= E{[e.*{e.2, B
327 T i

+-.B, )'lie.*EB se A
. by %2R, ERy ¢

2 s  igy1 i

[

...B¢n)-eﬁ]}1

|
= E Je, (e2A¢. B¢ |
1

5 -.sB¢n}'][((0;0,0)A¢ B
1

«weB, ) e'l} =0
i1 ¢n

¢

e

2 i,

which is what we wanted td Prove. So, as a result, we have
‘that the limit distribution of the random vector

an—%Tn + 7n_%5¥ is a non~singular normal distribution,
Assuming g = 1, Y = =1, we get the solution of our original

, ;
Problem: the distribution of vector ' f




¢¢¢ ¢ _4 ¢
M0A1B2A3 A Blg'n

vn

»

aesh B, -eB, A, ...A B, +eA, [,.A
¢n-1 ¢n ¢2 ¢3 d)n---l ¢n ¢3

/n

...-eé +e

eA, B A B -
by 05 b by ¢

as n » o tends to the non-singular normal distribution.

" Now let us ecalculate the varilance.
‘The variance for ,f/z 7 — "'/ Q

is equal to the sum of variances (because of statistlcal
1ndependency) 2 4 . 4 I

2 =g te T3
Since any one-dimentional N—-distribution 1s independent

on X,)’, Z | we can notice that N -distribution ot M,

R

2 f
19 symmetric and > ls equal '3"" '

- Uslng another not;ation, we get 3
i 0 0f

=51 = o % o
0 0 %




Chapter TI

We wish to give a rigorous proof of equation (7),

For this purpose we will prove the following rasult:
Iemma,

.1:. (x) = Z /\%(h J@fp(% @W(w{x 2! (x)
converges uniformly for Tl.)‘ﬂ/ s& constant ind@p«no#nt
._lIOf X ]
This lemma enables us to assert that

&m gc (x) ““'Z &m )\ /f@x/o(% k)gff(x}c{ ?//g:))

J=1m

| (r) | | .
but; 1¥f- (3<) are bounded uniformly in X, and

J23

Now remember that in our cage

[{hn(xjpio) = % /\K

{9) @J
K(X) K(/))

_ 21/.. aé
A= 5 o Snuds
We can Bee that our iteratea kernel ls continuous sng

positive.

We note that for our perturbed kernel all conditions of
~Theorem (0,A) are satisfied,

Further we have to rememberp

that eigenfunctions of a continuous kernel aye also continuous.

( see Lg] Yo
Let it = &
Théorem

(0,A) ylelds that all elgenfunetions and elgenvalues

of our perturbed kernel are continuous functions of éﬁ in

a closed interval (1n neighborhood of zZoro),




holds,

| Let us coﬁsider the diégoﬂal kernel
’j(( (x,x,'e) Z /\ () W(Xf)
The functions | ‘3

are positive and continuous 1n closed domain -7 XL 7 )‘

e/ <9< 37

-_Theor.em (0,A) yields that
.'=_GC(M) (X)’é,/,'é) -

is continuous function of 8 in neighborhood of zero (/S/ 5_53)

131nce the convergence of the geries 2 A (g) 3[ (X, E)
o J=

1s uniform in & by virtue of Dini's Theorem, we see that

Z /{ KS)Z/I(X €) ?f[gfa 5’)

../"°_




converges uniformly (in éi ) A
Therefore we can gee, that for any integer ‘f ? the

Schwars innquality for sums gilves:

- | e+9-
;;'“‘”' //\ (e) W d?f@,ﬁ/] Z A @)g//x £). ) A (s);f/y,f)! ;
= €r7 . -é'-,tf 7 A=C+v | |

S0 Lemma 18 proved. - o 'j |




*[1]
(2]
*13]

[4]

[5]

[6]

[71

(8]

*[9]
#[10]

#m_~wi[§1]

BIBLIOGRAPHY

(* denotes books)
KAC, MARK, Probability and related topics in physical
sciences, Chapter 1T, 54,

RELLICH. Storungstheorie der Spektralzerlegung I, II,
Math. Ann., 113 (1937), 600-619, 677-685.

ANDERSON, 'T. An introduction to multivariate statisti-
cal analysis, Chapter 2 {1957). '

MORAW. The statistical distribution of the length of a

rubber molecule, Proc. Cambridge Phil Soc. 44 (1942),
PP. 342-344, .

ARNOL'D, V. and KRYLOV, A. Uniform distributions of
points on a sphere and Some ergodic properties of

- solutions of ordinaty linear differential equations

in a complex domain. Dokl, Acad. Nauk SSSR 148 (1963),
9-12 = Soviet Math. Dokl. 4 {1963), 1-5, MR27 $375.

HAIMOS, P. Lectures on ergodic theory, Chelsea, New
York, 1856, Russian transl., Moscow 1959. MR22 #2677.

KAZDAN, D. Uniform'distribution in the plane. Trans-

actions of the Moscow Math. Society for the year- 1965

(14) published by the American Math. Society (1967).
e, :

HELMBERG, G. A theorem on equidistribution on compact

groups. Pacific J. Math. 8 (1958), 227-241.

TRICOMI, Integral equations , =12 I24-127
RELLICH, F. Perturbation theory of eigenvalues problen
published by N.Y.U., {1953}, 154~155.

FELLER, W. An introduction tO'probability theory and

1t§;§pplication8, Volume I, I966,




