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Abstract of the Disgsertation
Normal Two Dimensional Elliptic Singularities
by
Stephen Shing~Toung Yau
Doctof of Philosophy
in
Mathematics
State University of Wew York at Stony Brook

1976

Let p be a singularity of a normal two dimensioual Stedn
space V with p as its only singularity. Let w: H + V be the
minimal resolutilon of V with nonsingular Aj's and nommal crossings,

tional

where the-Ai's are the irreducible componients of the e
set A = ﬂ-l(p}. Suppose p is a weakly elliptic singuliarvity. We
introduce the concept of an elliptic sequence. This is defined
purely topologically. Whenever the canonical divisor 117 supporied
on A exlsts, we prove that -K’ is actually equal ro the summmation

of the elliptic sequence if 7 is the minimal resolution. Moresver
dimHl(M,ﬂ) Z the length of the elliptic sequence. A wookly

elliptic singularity is called a maximally elliptic sinsularity

if K* exists and dimHl(M,a) = the length of the elliptic sequence.
Maximally elliptic singularities may have dimﬂl(M,ﬂ} arbitrary large,
In case the length of the elliptic sequence 1z equal to one, then

the singularity is minimally elliptic in the sense of Leufern. If




K’ exists and the length of the elliptic sequence is equal to two,
then p is called an almost minimally elliptic singularity. Mini-
mally elliptic singularities and almost minimally elliptic singu-
larities with‘ﬁ%) Gorenstein are maximally ellipfic siﬁgularifies
Let m be the maximal ideal'inuJapw We prove that maximally
elliptic singularities havevsp Gorengtein. ¥Yor maximaily

elliptic singularities, if ZE'ZE 5 =2 where ZF-is the fundamental

cycle on |E|, then m® = D(-z). 1If ZE'ZE'S ~3 and p is a hyper-
surface maximally elliptic simgularity, then the Hilbert functien

forvf% is given by -nZ-Z.

It is known that dimHJ(M,S) is independent of the resolu-
tion. We prove that if Hl(M;D) = g2 andvf% is Gorenstein, then

7

p is a weakly elliptic singularity. Let ZB .
: 0

BR’ZE be the
elliptic sequence, We prove that mf}éi@(—'§OZB ) .
=0 By

4
then n) = @(n.ZOZB Y. TIn particular, the multiplicity of the
i= i

. < e
If 2,07, S -2,

i _
singularity 2 miZOZB 2 and the equality holds if ZE-ZE s -2, ¥If
‘ = i

ZgtZp S =3, then the Hilbert function dim mn/mn+l for,§§ - is given

% :
by nn(_EOZB 2). Examples show that these kinds of results are
i=0 B,

i
sharp, TLaufer has an example which shows that HI(M,D) = €% and

vﬂ; Gorenstein do not imply that p is an almost minimally elliptic
singularity. However, a partial converse is shown for hypersurface
_singglarities.~ We are able to list all possible weighted dual

2

graphs for hypersuiface singularities with HI(M,S) = €%, We prove

that for hypersurface singularities, if Hl(M,@) = €2 and Hl([E[,Z) =0,




then it is an almost minimally elliptic singularity. In fact, for
hypersurface singularities, ifrﬂl(Mgﬂ) = €2 and ZE-ZE < =2, then
it is an almost miniﬁally elliptic singularity. For an almost
mini?ally elliptic singularity p with f€$ Gorenstein, p is
absolutely isolated provided that ZE-ZE £ -3, In fact, after
blowing up p at its maximal ideal, one obtains only rational
déuble points and a minimally elliptic singularity. Examples
also show that this result is sharp.

We are able to give a complete list of all weighted dual
graphs for weakly elliptic double points by using the fact that
-K’ = the summation of an elliptic sequence. Moreover, each of
these weighted dual graph, a typical defining equation is given,
Later, we get a lower estimate on the dimension of Zariski tangent |
space of general two dimensiomal normal singularity in terms of

the fundamental cycle Z,
dim /2 2 x(Z) - 77 + aimitQL,(-2)) - dimE (06,0(-22))

This kind of estimate is sharp in the sense that equality holds
for certain singularities. In case of maximally elliptic singu~
larities, we show that dimHl(M,8(~Z))= dimHl(MJ§(~ZZ». “In particular

for maximally elliptic hypersurfaces, Z-72 Z -3.
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LIST OF SYMBOLS

v = two dimensional analytic space

_VO = the sheaf of germs of holemerphic functions on ¥,
O = the stalk of the sheaf 1} over p.

v op v

r v = the set of holomorphic functions on V.

E = minimally elliptic cycle.

Z = fundamental cycle.

Q = canonical sheaf, i.,e. the sheaf of germs of holemorphic

2-forms.

m = maximal ideal of § .
: . VP

|D| = gupport of the divisor D.

let D=1 diAi, F = ZfiAi be two cycles on complex two dimensional

manifold M.

it

inf(D,F) inf (di,fi)Ai.

B o

Let T be a coherent sheaf on M.

H, (M,F) cohomology with compact support.

Convention of weighted dual graphs: vertices without specifying
genera are of genus zero. We record the multiplicity z, of Ai in
:the fundamental cycle Z2 = ZziAi by placing that integer in the

orresponding position of the vertex
A4 -4

S T L S

e. 8.

o &

-3 -1 -3

Z=1 3 1= A1+BA2+ A3+A4

et D o= EdiAi be a positive cycle. Let BE |D|. Then D/B =

1 1s a positive cycle where £, = d, if A,¢ B and £, = 0 if
i i i i
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INTRODUCTION

The c¢lassification of normal two dimensional singularities
can be studied by the resolutidn of singularities. The resoclution
problem has been studied by Zariski [40], Hirzebruch [13],
Hironaka [11],Brleskorn [5} and Abhyankar [1]. .In resolving a two
dimensional singularity p, one replaces p by a compact analytic
gpace A. Because p is 2-dimensional, A is I-dimensional. Let
A= UAi be the decomposition of A into irveducible components.
Thus, each Ai is a (possibly siuéular) Riemann surface. It is

-egsy to reduce all considerations to the case where the Ai are

- nongingular, intersect gransversely, and no three meet at a point.
There is a purely topological bul very important: criterion dﬁe
to Grauvert [7] and Mumford [26] which says that A comes from a
resolution if and only if the intersection ﬁatrix (Ai'Aj) is
negative definlte.

The classification problem of isolated singularities of
complex surfaces have been atudied from various stand points. Taut
singularities in the sense of Tyurina [35] have been studied by
Grauert {71, Brieskorn [4], Laufer [22] and Wagreich [38]. The
’élytic structures of the taul singularities are determined by
the topological information of théir welghted dual graphs. The topo~

logical classification of normal two dimensicnal gingulavities has




bean studied by Mumford [26], Wagreich t37}, [38] and Brieskorn [4].
Let p be a singularity of a normal two dimensional amalytic

space V.  In 1964 M, Artin introduced a definition for p to be

rational. Rétional singulgrities have also been studied by, for

iﬁsﬁance, Duval [6], Tyurina [34], Lipmén [25], and Laufer [20].

in 1970, Wagreich introduced a definition for p to be weakly

elliptic. | Let us recall the definition. Let w: M - V be the

resolution ¢f V and A = ﬂ—l(p) be the exceptiongl set. Let Z

be the fundamental cycle [2 p.132) of A, Let 9(~7) be the sheaf

of perms of holomorphic functions on M whose divisors . are at

least 7 Let @Z i @/6(~Z). Then x(Z) = dimHO(M,&Z) - dimﬂl(M,ﬂZ)
may be computedlfrom the weighted dual graph I' via the Riemann - Roch
Theorem. Weak  ellipticity is x(Z2) = O? The conditions for p

:‘to be weakly elliptic is in fact independent of the choice‘of the
vesolution [37 p.423]. In [24]), Laufer defines a cycle E > 0

to be minimally elliptic if x(E} = 0 and x(D) > 0 for all cycleé

-

.D such that 0 <« D < E. 1In the case of weakly elliptic singularities
e proved that there exists a unique minimally elliptic_cycle .,
Weakly elliptic singularities have occurred naturally in papers
Grauert {7], Hirzebruch {12]:?Orlik and Wagreich [27], [28],
aéfeich {381 and Laufer [22].’ Karras and Saito have studied some
.#hese particular weakly elliptic singularities. Recently, Laufer

veloped a theory for a general class of weakly elliptic singu-

ities which satisfy a minimality'condition. He proved that p




is minimally elliptic if and oaly if Hl(M,ED = @ andvﬁb is
Gorenstedin., TIf Z-Z £ -3, then the Hilbert function for the
ring‘#%i is glvem by -nZ.Z. Also, the singularity p is absolutely
isolated., After blowing up p at its maxiﬁal ideal, one obtains
only rationsl dauble poimta.as singularities. If Z.Z = -1 or -2,

then p is & double point.
l .

a weakly elliptic singularity. When w is

m

Suppose p 1
the minimal good vesolution, we introduce the concept of an
elliptic sequence. This is defined purely topolggically.
Whenever the canonical divisor K* supported on A exists, we
prove that K’ is actually equal to the summation of the elliptic
sequence if 7 is the minimal vesolution. Weékly elliptic singu-

larities can be effectively studied by elliptic sequences. We

prove that for weakly ellintic singularities, dimHl(M,S) 3 the
length of the ciliptic sequence. A weakly elliptic singularity
is called a wesimally elliptic singularity if K’ exists and
dimHl(MDS)‘x the length of the elliptic sequence. Maximally
[liptic singularities may have dimﬂl(M,S) arbitrarily large.

n case the Ilength of the elliptic sequence is equal to 6ne,

slty is minimally eliiptic in the sense of Laufer.
'egists and the length of the eliiptic seqﬁence is equal to
then p iz called an alwost minimally elliptic siﬁgularity.
ily eliiptic-singularities and almost‘minimaliy elliptic.

sritdes with @b Gorensteln are maxiwally elliptic
- v : .




singularities. We prove that maximally elliptic singularities

have ﬁgp Gorensicin. For maximally elliptic singularities, if

ZE-ZE 5 =2 where EE is the fundamental cycle on !E[, then

md = §(- ?) If Zetfp 5 =3 end p s a hypersurface
£ ¥
maximally elliptic singularity, then the Hilbert function of {)
equal to -ni-z,
Rational wingularities have H (M,0) = 0, The hypersurface

1
singularities are ually deuble points. TFor H (,0)

Laufer was able to iz

(.l

t all weighted dual graphs of hypersurface
singularities. 1t is a natural question to ask for a theory for

those sinpularitics with H](.,u) €? and Q Gorenstein. It

should be mention:d that hypersurface singularities and complete
lntersections are Ceprenstein. We can prove that if H (M,SD
and‘ﬁ%{ is Gorvensiein, then p is a weakly elliptic singularity.

Let ZB',N-«m-_,Z\}'s #. be the elliptic sequence. Let m be the
I L]

e £
" ‘ 2

maximal ideal in,vpp. We prove that m8 & O(- ZB.). If
: _ =0 B

o £ -2 then wl s (- E Zy ). In particular, the multiplicitcy

E E i—.o bi
of the singulariiy » - T YB and equality holds if ZE-ZE s -2,

: =0

. . ‘e + ,
ZE*?E ~3, then rhe Hilbert functien QlHLHP/mF 1 for V®p is

iven by mn(‘zgz11 2y, fxamples show that these kinds of results
=0 Py

harp. Laufer has an exanple which shows that Hl(MﬁCD

v€$ Goremstein do not dmply that P 18 an alwost winimally
iptic singularity, However, a partial converse is shown for
rsurfaca singularities. We are able to list all possible

ted dual graphs for hypersurface singularities with Hl(M,S)




Hi

We prove that for hypersurface singularities, if Hl(Mwﬂ)

€2 and

Hl(]El, Z) = 0, then it is an almose mdnime

In fact, for hypersurface singularities,

ZE‘ZE = -2, then it is an almost winimally ellipric singularity.

‘For an almost minimally elliptic singularity p owich O Gorenstein,
: VP

P is absolutely isolated provided rhar p/

E‘ZE 5 o~3. In fact, qfter

bloewing up p at its maximal ideal, one obtains only vational
double peints and a ninimally elliptic singularity., Examvles
also show that this result is sharp.

One of the important questions in moimal two dimensional
singularities is "the classification of all weightéd dual graphs
for hypersurface singularities™. Double points are hﬁpersurface

singularities., In 1970, Wagreich proved thar ‘or double points,

~h

Z+Z 2 ~2. Using this fact, he listed most of the pessible

ﬁeighted dual graphs of weakly ellipric doubia proints. Using

‘the fact that -KX’ = the summation of an elliptic sequence and a

combinatorial argument, we give a complete 1ist of al1 welghted
al graphs for weakly elliptic double poinisa.  Moreover, each of
ese weighted dual graphs, a typical defining squation is glven,

» We gel a lower estimate on the dimensdon of Zaviski tangent

e of general two dimensional normal gingularity in terms of

- ZeZ 4 a1, 0(-7)) - eimit® (i, 8(-22))




This kind of estimate is sharp in the sense that equality holds

for cevtain singulavities. Tn case of maximally elliptic singu-

Jarities, we show thar dimﬂl(M;8(~Z)) = dimHl(M,9(4ZZ)). In

partic for maximally elliptic singularity, Z.Z 2 -3. This

enables vs to list all the possible maximally elliptic hyper-
surface singularities. However, the list is too long to be
ineluded,

I Chapter 11, we iﬁtroduce the concept called maximal
ideal cveie Y. Whenever the canonical divisor ﬁ’ supported on

A existz, we prove that Y canpot be greater than -K*, 1In

Chapter VI, we give a necessary and sufficient coﬁditions for

a weakly elliptic singularity to be Gorenstein or maximally
elliptic. A weakly alliptic singularity is said to be quasi-simple
elliptic if the winimally elliptic cycle consists of elliptic
(:_urve~ It dis known that 4f v@% is Gorenstein? then the canonical
divisor supported on A exists. Conversely if I' is a weilghted

of an almogt minimally quasi-simple elliptic singu-

the canonical divisor K° exists, then there exists a

structure for-an associated singularity.




GUAPTER I

PE\FL r‘JINAR T

For the sske of convenience to readers, we include the
basic koowledge for reading this paper. Most.of these can be
found in [24].
Let V be a complex anglytic sbvavity of a domain in ¢
given bv V = = {2z SRETIRERES, £,(2) = Gy 4 = 1,2,3,..0,r)

Let V = Ulvl be the decomposition of ¥ into irreducible components,
"L b=

Definition 1.1 dim V = max dimVi
‘ 15125k

Def]nlrloqm;*% A point p e V is a vegular peint of V if the
af,

L is a subset of

Jacobian (EE&ﬁ(p)> 1332w, 1e1 W
(1,2,e...,7) and {fi}ial is a wdnimal cet of defining equations
for V at p, has maximal rank. If P iz not a regular point of v,
p is called a singular point of V. A sipgular point p of V is
called a two dimensional singularity of V if V is two dimensional
near p.

Definition 1.3 A germ h uf a fun‘atou defined on the regular

points of V near p is said to he weal Ty ho]omorph:c at p if h
is holomorphic on the regular points near p and locally bounded
m

near p, Let & and § be respectively the sheaf of germs of weakly

holomorphic functions and sheaf of germs of holomorphic fupctions

- i
on V. There is a natural inclusion <= O, ¥V is normal at p if




A S
SpC: QP is an isomorphism. V is normal if © v, d.e. if V is

normal at each of its points.

Definition 1.4 Tf V is an analytic space, a resolution of

the singularities of V consists of a manifold M and a proper
holomorphic map w: M -+ V such that v is biholomorphic on the
inverse image of R, the regular points of V, and such that ﬂ—l(R)

is dense in M.

Pefinition 1.5 A nowhere discrete compact analytic subset

A of an analytic space G is called exceptional (in G) if there

exists an analytic space Y and a proper holomorphic map ¢: G+ ¥
such that ¢(A) is discrete, ¢: G - A > Y - &(A) is £iholomorphic
and such that for any open set Ue Y, with V = @nl(U),
@ﬁ: u,%) » (v, is an dsomorphism.

If A is exceptional in G, we shall sonetimes say that A

can be'blown down" ox ¢ blows down A.

Definition 1.6 A resolution m: M =+ V of the singularities of

V {with nonsingularx Ajfs and normal crossings) is a minimal (good)
resolﬁtion if for any other resolution (with nonsingular Ai‘s and
normal crossings) f': M' » V, there is a unique holomorphic maf
p: M' -+ M such that n' =« . 0.

A winimal goo& resolution for lsolated two dimensional

singularities always exists and is unique [191,

?
!




Let ¢ M > V be a resolution of normal two dimensional
Stein space V. We assume that p is the only singularity of V.
Tet T Hp) = A = U Ay, Lsds ﬁ, be the-decomposition of the excep-

i

tional set A into irreducible components, Suppose % is the minimal
good resolution, The topological nature of the embedding of A in
¥ is described by the weilghted dual graph T [14], [19]. The
vertices of T correspond to the Ai. The edge of T connecting
the vertices correspondiag to A and Aj, i+# j, correspond to the
i Finally, associated to each A4 dis its genus,
11, @8 a Rismann surface, and ite weight, Aq Ayt the topological
self-intersection number. T will denote the graph;'albng with the

genera and the weights,

inition 1.7 deg Ay = XAMA4, 34 10

A eycle (or divisorial cycle) D or A is an integral com-

bination of the Ay D = EdiAi} 1 £41 2£n with d; en integer.

In this paper, "ecycle" will always mean a ecycle on A. There is

f+]

natural partial ordering, denoted by <, between cycles defined
ﬂﬁy comparing the coefficients. We shall only.ﬁe considering
veles D 2 0, We let suppD = IDI 21}Ai, di # 0, denote the
'ubpart of D.

Let & be the sheaf of germs of holeomorphic functions on
1Let &{-0) be the sheaf of geyms of holomorphic functions on
.h;;h vanish to order di on Ai‘ Let&5D denote $/8(~-D). We

dim" to denote dimension over €.




10

(1.1) X(@) = ain HOOLY) - dim Wh01,0))
Some authors work instead with the arithmetic genus Pa(D) =1 - x(y.
The Riemeann -~ Roch Theorem [31 p.75] says |
(1.2) x(D) = —%_— (DD + D-K).
In (1.2), K is the canomical divisor on M. D-X may bé defined as
follows. Let w be a meromorphic 2-form on M, i.e. a meromorphic
gection of K. Let (w) be the divisor of w. Then DK = D- (w)
and this ausber is independent of the choice of w., In fact, let
g4 be the geometric genus of Ay, 1.e. the genus cf the degingulari-
zation ofVAi, Then [31 p.75]

(1.3) AR = —AgAy + 285 — 2 + 284

where €1 1s the "nuwber" of nodes and cusps on A;. Each singular
point on A; other than a noﬁe or cusp counts as at least two
nodes.  Fortunately, such more complicated singularities will not
‘occur in this paper. |

The minimal resolution of V is characterized by there
eing no As which is a non-singular rational curve with AjrAg = -1
p°364]. The intersectién matrix (AioAj) is negative definite
61 so by (1.3) we see the following.

Provosition 1.8: m is the minimal resolution of V if

only if Ai-K 20 for all Ai,
It follows immediately from (1.2) that if B and C are

3. than

(1.4) X(B+C) = x(B) + x(C) ~ B+C.




il

Associated to 7 is a unique fundamental cycle 7 [2, pp. 131-132]
such that 7 > 0, Ai'Z £ 0 all Ai’ and such that Z is winimal with
respect to those two properties. Z may be computed from the inter-
section métrix as follows [20 p.607]via what is called a computatidn
sequence (in the sense of Laufer) for Z

zmo’ Z=A' ’z?«zz]_"}‘Ai s e s ey Z.=Z, 1+Ai

ve ol =4 '+Ai' = 7
2 J J- ? £ L1 -LQ;

b

where Ai.1 ig arbitrary and Aij'zj—l

represents the sheaf of germs of sections of a line bundle over

>0, 1<y 2 b Ozy /0C2)

1 .

- : ) O c - .. )
A. of chern class wAiJ Zj—l' So B (M, 5( Zj_l)/Q( Zj)) - 0 for

W,

1.

e

(1.5) 0>9¢2,_/0¢-2) >0, ~Q, o

J j-1

is an exact sequence. From the long exact homology sequence for

(1.5), it follows by induction that

(1.6) o0, ) = ¢ 1Sksg |
, % .
ok S - -
(1.7) dimH (M,f)zk) = & dimH* (M, 8( zj_l)/t)( 2.0
1335k

(1.8) HZ(M,F) = 0.

any coherent sheaf F on M [33].

Let Zk be part of a éomputation sequence for
= 0, Then dimHl(M,@D) £ 1 for all cycles

Also, (D) =z 0,
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Definitjon 1.10 A cycle B > 0O is minimally

X(E) = 0 and x(D) > 0 for all cycles D such that 0 < D < E.

Proposition 1.11 Let Zk > 0 be part of & computation

sequence for the fundamental cycle and such that v{Z1} = {},

~y
3
[ -
e
[

=
Y
9,
=

Let B = J brAi and C = % ciAi’ 124 %0, be any

H
-
:
=
o
(w3
o
e
i
-
=
e
=
N
o
,
-
@]
p—
T~
.

that 0 < B, C £ z, and x(B) = x(C)

154 sn, Then M > 0 and x(M) = 0. In particuis

a unique minimally elliptic cycle T with [ < 7
Wagreich [37] defined the singularity p to b elliptic

if y(D) 2 0 for all cycles D > 0 and x(F) = 0 for some cyeles

¥ >0. He proved that this definition is independsui of the

resolution. It is easy to see that under this hypothesis, v(2) = 0,

=t

The converse 1s also tvue [371, [24). Henceforth. we will adopt
the following definitdion,

Lic XF % (Z2) = 0.

-

Definition 1.12 P is said to be weakly ellip

=

The following analogue to propositicn 1.11 holds for wealily
211liptic singularity.

Proposition 1.13  Suppose that () 20 for all cyecles

.0. Let B = ¥ biA; and C = & ciAi’ 124 2n, be any cycles

(that 0 < B, C and (B) = %(C) = 6. Let M = »

sin{b, ,c ) A,
,xgil,cl)Als
=n., Then M > 0 and y(M) = 0, In partleular, there exists

Unique miniwmally elliptic cycle ¥.




Lemma 1.14 Let B be a minimally elliptic cycle. Then

¥

for AjC": Aj'E wz “1’.:‘3.:‘]"1(. Suppose additionally that 7 is the

minimsl rescliotion. Then E is the fundamental ecycle for the singu-

- supp B as its exceptional set. Also, if Ek is part

larity hawv

o sequence for B as a fundamental cycle and

of a computa

3, then the computation sequence may be continued

st E, g0 oz to terminate at E = B with A;. = Al
: % i, 3

Let n: M - V be the minimal solution of

the normal two dimensional varlety V with one singular point p.

v . ] -1
Let 7 be the tundamental cycle on the exceptional set A =1 (o).

Thew the following are couivalent:
iy Z ts a wminimally elliptic cycle

# ~A-K for all irreducible components Ay in A

]
S
Mo
1=
-
]
1

0 end any conmnected proper subvaviety of A

w2
S
—
(S
P’
Hi

is the exceptional set for a rational singularity.

Let: p be a normal two—-dimensional singularity

if the minimal resolution m: M > V of a

the conditions of theorem 1.15.




CHAPTER TI

BASTC THEQRY FOR WAARLY BLLIPTIC SINCULARTTIES AND

§1 Minimal good resolubtion of weakly elliptic singularities
In this section, we study rthe minimal good resolution

of weakly elliptic singuiarities. We want to vnderstand the

nature of the computatios sequence for the fundamental eycle Z

and what kind of curves can be in the exceptilional fibre.

Lemma 2.1 Let w: M+ V he a resolution of the normal

two dimensional space V with p as ite only singularity. Let

ﬂ_l(p)‘= A =1JAi, 124 2 u, be the decomwposition of the excep-

tional set A into irreducible companemts,. Suppose there exists

a minimally elliptic cyele B on A. Then suppE = Ay, if and only

if either Ay is a noﬁsingular eliiptic curve ot Ay is a singular

rational’curva with nods or cusp sinéularity, Lf suppE = UAi’

1245k, and &k 2 2, then XCAT)= ., = x(Ak) = 1 and

A19°“'5Ak are nouglngular rational cuzﬁes,

Let. Z be the fundamﬁﬁtal eycle on A, 1f x(4) = 0 and

n > 2, then X(Ak+l)m.tozx(An) = 1. In particular,kif suppE con-~

;ists of more than one irreducible component, then all Aiq

1 % n, are nonsingular rational curves. If suppE = Al’ then

1 Aj, 2 1'% n, are nensingular rational curves.,




Proof We claim that suppE = Al if, and only if,
x(Al) = 0, Suppose suppE = Al. Then E = nAl for some positive

integer n,

x(wA) = x(A)) + x((n—l)Al)_— (n-1)A, Ay

It

a(=b) ,

n x(4)) - =3 1%

(n-1)

Since (E) =0, x(Al) = e A -AI. By definition of miniwally

2 1
elliptic ecycle (Definition 1.10), X(Al) = jﬁ%ggLA]~-A z 0.

;2
iﬂ%ll,Al.A <0, Therefore X(Al) = 0., Con-

However, X(Al) = S

versely, if x(Al) = (0, then E = A This completes the proof

1.
of our claim. By (1.2) and (1.3)

x(A)) = - l—(A_-A, + A, +K) where K is the cancnical
1 2 171 1 ..

divisor on M

-1 . G

=-3 (Al-Al: Al-Al + 2g1—2 + 251) where 6l is

' the "number" of nodes and

cusps on Al

=1~ -4

Therefore

x(A)
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So supph = A 48 aithey A, is a nonsingular elliptic curve or Al is

ditlenal curve with node or cusp sinpgularity. If

a singular

2, thon X(A{) » 0 for J.f‘-s.i <% suppE by the

7

el

vimally elliptic cyele. On the other hand,

definition oi

x(A )

A
[
-

{1.1) and {1.8). So X(Ai> = 1 and hence 1 - &y Gi = 1

for 1 2 4 £ . This

<5 that gy 0 = Gi, i.e. Ajg,

1243k, ave ronadnguiss CUTVES .
¥ i

To prove the veslh of the lewmma, it suffdices to show that
) 5

guppl, x{2) = 0 implies

if x(Z) = 0, theo y(A = L for Aj

that (D) 2 0 iae D » O {24, Corollawy 4.3]. By (L.1) and (1.6), we
know that X(ii} <1, S0 0 S x(Ai) £—1Q HOW?Ver, X(Ai) cannot be equal
to zevo by Troposition 1.23. Therefore'x(Ai) = L for Ai‘q; suppE,i.e.,
rational cuzves.

Let n: M =+ V be the minimal resolu— n

¢ gingulacity p. Let 7': M' - V be the
smindmal resoluticn such that A, ave nonsingular and have normal

transversely and no three meet at a

point, Then v = 7% and oll the Airare rational curves except

A]_iﬂ a nougingular elliptic curve. AZ""An are

mal curves.  In this case, ™ = 1'. In fact,

AyyeeiA



(3) A, 18 a ratlonal curve with a cusp singularity. AZ""An

.

are novsingular vational curves and have normal crossings. In

fact O % Ayrhy <1 For i # 3.

4 AXL A, ars monsingular rational curves and have normal
i el

crossings except A] and AZ having first order tangential contact

at one poiat. In faect AleAz =2 gnd 0 < Ai-Aj £ 1 for i # i,

(i,§) # (1,2) and G5 # (2,1).
(5) A1l A; are vonsingular rational curves and have normal

except A 4 A, all meeting transversely at the same
= 15 25 3 g Y

oint., In fact, if n Z 4, then 0 £ A,*A, 21 for 1 £ 41 S n,
p , 185

T ] a A e e . =
J P | S W J 1nd ll [&2 1, A3 (A1+A2) 2.

In case (2), ©' has the following weighted eual graph as

’ .
1 (\“»ﬂmwff -1 with Wy > 5

In case (3) -~ (5), @' has the following weighted dual

S S —

g -1 -, : >
Wy 3 with wi 2 1

IA
e
A
(%]

roof is long but straightforward with many cases.

2.3 Let 7 be the minimal resolution with non-

ar Aﬁ‘and aormal crossings for a weakly elliptic singularity.

17




Then E may be chosen as part
Moreover, if Zi <78
Z and Am Lo supp(E—Zj)3 then
tinued past Z, so that A, =
J e
Proof:

Proposition 2.4

minimal rescolution.

following forms

(2) If A <A

tion for a minimally eliipitic sin;

= BAL b 34 4+ 2A, b A
)

Let E be the winimally elliptic eveie, E £ Z, the fundamental cycle.

of 2 computation sequence for Z and
is part of a computation sequence for
the computation sequence may be con—

A .
m

The proof is the same as Corollary 3.6 of [24].

Lett 7 he the minimal good resolu—

tarity. BSuppose T 1s not the

Then the fundamental cycle is one of the

(T) . with ¥, 25
bl B -
/’ \ 2
A ‘\\%\m e - A 7 o= O FA
1 e 2 1 ‘9
~ A
3 3
AL
'-( ) with w,i z 2
“Wé . mw4
Frmmmed e e 2 %454
AZ Al A4_
(1) if Ayrhy £ =3, Apehy S =3, AcA, 5 -3, then
Zo= 3A. A, P AL+ A

2 3 4

4

= WZB‘A3*A3 = -3, A ‘Aé < =6, then

L p2 -

&

18




(3 If AZ'AZ = =2, A3«A3 S =4, AA'AA < —4, then

7 o= 4 .
il !Al + 2A2 + A3 + A4

Proof: An easy case by case checking.

Proposition 2.5 Let w: M -~ V be the minimal good

resoalution of a normal two dimensional Stein space with p as its

only weakly elliptic singular point.

Case 1: If suppE has at least two irreducible components, then for

any computation sequence of the following form ZO = (, Zl = Ay
1

1 for § 4+ k and

vsesld, = B, ooy Z = Z. We have Ai‘eZ

L
3
= 2. If suppZ — suppE # ¢, then for any Ay S suppZ-suppE
1

k 4~1

Ac 7
1
k
we can choose a computation sequence of the following form

k-1

Z =0, 7, = A, z

o 1 11

suppZr < suppZ-suppE and Zr+1 - ér""’zr+k - Zr = B, 1s part

=F 4+ Z ,...4, = Z such that
r L

r+k

seansZinZygsees

cof a computation sequence for Z. Moreover, any computation sequence
.of the above form has the following properties: A.i_-Zj__1 = 1 for
= 2,

i#r+kand Air+kbzr+k—l

computation sequence of the following form Z0 = 0, Z1 = Ai]‘= E,
Z, = Z, we have Ay *Z, = 1 for all j. If suppZ-suppE # ¢,

i i1

i _ . T - AL 7 -
uvence of the following from 50 0, Zl All""zr’ 2 41

A yeeel, = 7 where A = E. Moreover, any computation

% i
_ +1 o :
tence of the above form has Ai Dijl = 1 for all j.

19
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Proof: Case 1 0 <A 2, ,=A; (B~A_ )
i k-1 1 :
Tk k ik
= ~A K - Ai -Ai by Tenmma 1,14
k k Tk
= —2g, +2
T

So g, = 0 and Ay tZ 2. Since x(Z) = 0, Hl(M,C%) = € by

(1.1) and (1.6). As all Ai are nonsingular rational curve, there-

fore (1.7) and Riemann — Roch Theorem will show, that Ai;nzj“l = 1
for j # k.- !

From the above proof, we know that for any_Ai ¢ suppE
such that there exists Aj é% suppl and'AinAi > 0, then e, = 1 and
Ai'Aj = 1, where e, is the coefficien; of A; in E. It is easy
to see that the computation sequence in case 1 of the proposition

can be chosen. WYow we are going to prove the last statement of

z.) =2

case 1. By the above argument, we know Air+k(zr+k“1 ~ 7.

and hence Aj «Z Z 2 because A; < suppE and
Frik FRel Trtk _
Zr = suppZ~suﬁ§E. Since Hl(PLEE) = ¢, by (1.7) and Riemann -

Roch Theorem, there is at most one Aij.zjfl = 2, 8o Aif+k.zr+k~l = 2

‘and Aij-zj_l =1 for j # 1+ k.
ase 2: Since x(E) = x(Z) = 0, (1.1) and (1.6) imply thét Hl(M,@Z)
¢ = Hl(M5®E). So by (1.7) and Riemann - Roch Theorem, it

_zows immediately that Aijizjul = 1, for all j.

Now let us prove the last statement of case 2. DBy

ma 2.1 we know that A4 is a nonsingular elliptic curve,
1




Moreover, for any Aj # Ay " A4 is a nonsingular rational curve.
k1

e N -1 - . _ - A
By (1.7) and H (M,OZ) €, we have d:LmHl M, 9O Zr)/f)( Zr A'lr-i-l))

< 1. The chern class of the line bundle associated to

5 (7 (=7 ~A on A . is -As  e7 = wl; By Serre
w( r}/ O( r 1‘1?!_1) ir+l et “r Y.

w2y -~ 2%+ Ay cZ=A5; . +Z. So A +Z = 1=
8 lr—}-l g 1- L ir’i'l

41 1 r
dimrt i, O (-2.)/ ®(~zr-Air+l)). By (1.7), Serre duality theorem
arid Riemann - Roch Theorem, we know that Adw'zj—l = 1 for all j.
J

Moreover, A; ave nonsingular rational curves for j # v + 1.

Lorcllary 2.6 Let w: M = V be the minimal good resolution

of a normal two dimensional Stein space V with p as its only
weakly elliptic singular point. Suppose suppE = Al. Let
Z == ZziAit Then Zl = 1.

Proof: This is contained in the proof of case 2 of

the above Proposgition.

§2 Laufer-type vanishing Theorem

Proposition 2.7: Let p be a weakly elliptic singularity. Let
1 M+ V be the minimal good tesolution of a Steiﬁ neilghborhood
;ﬁ of p having p as its only singular point. Let Y > G be a cycle
@:the exceptional set A such that AiaY 2 0 for all irreducible
?onents Ai of A. Let Z be the fundamental cycle and E the

inimally elliptic cycle. Let O = Zo,...,Z = 7 be a computation

&

QQuénce for Z with E = and Ai such that Ai *Y < 0, Then

7
k K K

duaiity Theorem and Riemann Roch Theorem dimHl(M,ED(an)/f)(-ZrQAi ))
1



Hl(Ma‘S(“Y-Zj)) =0 for 0 2§ £ 4,
Proof: The proof is similar to the proof of Lemma 3.11 in [24]7.

Proposition 2.8: Let p, my, My, V, ¥, Z and E be as in Propisition

t
2.8, Let E= 3 e,A,. Suppose E-Y <0, Let A, be an arbitrary
i=1 i'i L

AiEE suppE. Then p: HO(M,(S(—Y)) > 120, @(—Y)/f)(—YwAlb is sur~
jective if Al ig an elliptic curve or if there exists Aj £ suppE,

Aj # A; with Aj-Y <0 or if e, > 1. If A, is a rational curve,
0 for Aj # Al’ Ajgg suppE, and ey = 1, thenm the image of
p is a subspace S of codimension 1 in HO(M, ®(=YD/€U(—Y~A1)}.

>
e
1

If dim § 2 2, then the eléments of § have ne common zerces as

gsections of line bundle 1. on Al agssociated to Q}("Y)/<9(—YmAl)‘

If dim 8 = 1, then there is one common zero at a point q e A

with q ¢ Aj where Aj'Y = 0 and _A.j <. suppE. . ﬁ

“Proof: The proof is similar to the proof of lemma 3.12 in [24]

Structure Theorem for weighted dual graphs of weakly
elliptic singularities

For weighted dual graphs of weakly elliptic singularities,
‘can obtaln some information from the following two propositions.
ch more complete information is given in Chapter III,

Position 2.9: Let w: M+ V be a resolution of a normal 2

nsional Stein space V with p as its only weakly elliptic

larity. Let E be the minimally clli@tic cycle on A = ﬁ“l(p).

B is a connected subvariety of A such that B 42 supph,
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Then B dis the cuceptional set of a rationagl singularity..

that B is exceptiomal in M follows from [19-p. 89

Lewra 5.11). - Lat ZB denote the fundamental cycle on B, It
folilows by [7, p.132 Theorem 3] that x(ZB) 5 1. On thé other
harsd. since p is & wealkly elliptic singular point, X(ZB) 2 0,
l'sl-to zefrﬂ Otherwige it will contradict the
the minimally elliptic cycle by Proposition 1.13 since

efore yw{7Z.

b) = 1. Apply Theorem 3 of [2], our

¢ Let umy M+ V be a resolution of normal two

1 Stein space with p as its only weakly elliptic singvlar

poiot.  Let B be the minimally elliptic cycle on the exceptional

=1 . .
seb A = “{p}. Suppose B is a connected subvariety of A con- a
taining [ul. Then B is the exceptional set for weakly elliptic

if B = suppE, then B is a minimally

f21. Sivece p is a weakly elliptic singularity, so x(ZB) z 0.
, 002 xw(Z)) 5 L. x(ZB} cannot equal to one. Otherwise it
1:imply thet 8 is an excepticnal set of rational gingularity

Thieorem 3 of [2]. Since B EszJ Theorem 1 of [2], says that

—
s
F3
o
‘r...
o
.
[£2]
&

contradiction so x{ZB) = 0 and B is the




exceptional set for a weakly elliptic singularity.

84 Maximzl Ideal Cycle

Let w: M = V be the resolution of norwsl two d

e the mas

space V with p as its only singularity., Let

ideal in vf%. One dmportant question in norwal two dimensi

singularity is the "identification of m .

define the maximal ideal cycle which serves paviially

[

the maximal ideal. : : .

Definition 2.11l: - Let A be the exceptional st in the

tion wi M + V of a Z-dimensional space V with p wnd dits only

are the irrveduoible

singularity. Suppose thaﬁ'{Ai}

1524 5
components of A. Let m be the maximal fdeal im . IF £ g m, 4
-. N i"
‘then the divisor of £, (£) = [£] + D where [£] = ¥ nin and D

- involwve any of Aiﬁ Let Y be the positive

= inf [f]. Then Y is called the
fem

‘oposition 2.172: Use the notation of Dafinition 2,12, The

ximal ideal cycle is a positive cycle s.t. LA

A, < A, Tn particular Y 2 Z. In fact if

1

that fl""fr generate m, then Y = inf

- Easy.
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Proposition 2,13: Wse the notation of Defipition 2.12. Let

¥ be the maximal ideal cycle, then m O < f)(~Y). Moreover, if
mi  is locally principal,i.e. mO = {)(-D) for some positive

divigsor D, then D = Y and n{) = O (=),

el
jax]
o}

Ve

1
;..',
;:
r'i“
’—l-
;:i
™
,._|
.r_--

Let ¢t M' =+ M be a monodial transformation

with center ¢ ¢ M. We associate with the curve C « M,g¢C
" .
he curve C  the proper transform of C in M', If q is a point

of multiplicity n of the curve C, we associate with this curve
% -1 , -
the curve ¢ + n L = M' vhere L = ¢ (q). With the divisor 7 = Zk.Cys

. *®
we assoclate the divisor o (Z) = Ekici + kiniL, where n, is

the multiplicity of the point q on the curve C..

.Lme:\? 15: Let nt M > V be a resolution of normal two

dimensional analytic space with p as its only 51ngu]ar1ty. Let

. T 1(p) =LJA5_be the decomposition of A into irreducible cot-
Yonents. Suppose‘w is a positive cycle on A such that W—Aj =0
. all AjEZ A.  For any positive cycle X on A such that X % W,

S W Also, X% = W® 4if and only if X

! Let ¥ = W + Ln A where D, z 0. Then Xz = W2 + 2 Zni(Ai-W)
n, nj (AifAﬁ)' Now Ai-W'ﬁ 0 by the hypothesis. The last
ression is nonpositive since (AifAj) ig negative definite.

ver, thig expression is zero if and only if n, = 0 for all

e definiteness.
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Lemma 2.16: Let w1t M + V be a normal fwo dimensional

analytic space with p as its only singularity. Let A = ﬂ“l(p) =
L :
U Ay be the decomposition of A into irreducible components.
i
La

[

s

o: M’ > M be a monoidal transformation with point q as center.

w

'~

let D = ﬁml(q) and A} be the proper transform of Ai by o. Then
t

(W'G)Hl(p) =D (4( A%); Suppose X is a positive cycle on A
i=1 o .
such that Age R 20 for al] Ai <. A. Then De¢" (X ) = 0 and

Ay +o™(X) 20 for all 1 < 1

A

[

rreof:  Sidnce A; is linearly equivalent to some divisor not
paseing through g, hence X is also linearly equivalent to some
divisor not passing through.q. It follows that w*(X).D = 0. By

n. 421 of {37] HeAy = U*(}{)-U*(Aj). So 0 Z X<Aj implies that

i

20f(x) 0% Ay = 0% () (A} + mD) = o¥(x)-al. |

. corem 2,17: Let m: M + V be a normal twe dimensional

1(p)

t
L Ai'be the decomposition of A into irreducible compenents.,

analytic space with p as its only singularity. Let A = ¢

¥ be the maximal ideal cycle asscciated to n. Then the
ltiplicity of vf)p 2 ~Y.Y. If mY) is locally principle, then the
FipTdcd b - Y.Y.

iplicity of VE)p Y.Y | |

If mw is locally principal, then n®) = Q}(~Y) by

sition 2.14. 1In this case Theorem 2.7 of [37] says that

is equal to ~Y.Y




In the gsnerai case, let n': M' > M be the monoidal
transformation with center w') . The map ™ is a composition of

tiong o with points as center [see 42, lemma,

monoidal transfo:

— S '
p.5381. TLet Al w (et 1(p) = leg. Then the lemma 2,16
=7

=

says thet AL -w'"(¥) 20 for a1l 1 £ L £85. Let ) be the

structure sheaf on M'. Let ¥' be the maxmimal ideal cycle relative
to wen'.  Then m(Y = ﬂ’(wY'}n But m & < LSJ(—W'*(Y)). S0
YU R YY), Theovem 2.7 of [371 and lewma 2.15 will show that

the multiplicity {V{}p) SRR AR G —[ﬂ'*(Y)}Z. However, for any
. T % 2 2
proper modificaiion v and divisor L, we know that [o®™(L)]” = L%,

) IS
£

So (ﬂ‘*(L)>z = L7, In particular ('ﬁ‘*(Y))2 w3 YZ, Therefore

i~ Y 2

o

-
v

i
=4
b

mueltiplicity

Defini

two dimensional svpace V., Leb w: M -+ V be the resolution of V.

' . 1o s o« ; I -1

Let A :lJAi) 1 54 5% n be the decomposition of A = 1 “(p)

inte irreducible components. Let K be the canonical divisor on

M. We define the negative cycle XK' = Eiji_on A where ki e %,

5, o be 2 cycle such that Aij' = Aj;K for all
<o Ao (K? does not always exdst).
The following Theorem gives a "non-lower" estimate of the

imal ddeal cvele in terws of the cyele K2,
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ideal cycle Y relative to v cenuct be greaster than or equal to
~x?
Proof: By Theorem 3.7, ».603 of [20], we know that Hl(M,f)(K?))=O.

The following cohomology exaci zoguence

Hl(M, GEYY » nh@, ) oo (3, -i‘_}m,%{,)

shows that HY(M, . Y optaLilY, Sinee x(-K?) = - -';;{'(-"K’)"K +

S
(~=K* )+ (~K2 )] %{(WK})"K” R C-RT)Y = 0 by (1.2), hence (1.1)

says that dimHO(M, S dimHl(Mg&) z 2,

4

¥ 2 =% Since 7 ig the

Suppose on the conts

minimal resolution A.-K' 2 O fow all AL, 8D ~E’ z 7 by the

j definition of the fundsment cyole 2. It follows that there
is a natural injective map I {ri, O + 19, &§¢-2)). We

claim thaot this map in zertually 5ufjectiv¢a Given any g ¢ i (M O=2)y,
we know that g is actually & fusction ou V which vanishes at p.

By Proposition 2,13, g e U (M, J{~¥)). l,fevér Y 2 -k’ implies

that HO(M,G}(JY))EE HO(Mgf}(R"}}, So g can also be considered

as an element in HO(Pgiﬁ{Ké))m This proves our clalm. Look

t the following commuwtative disgram with exact rows,

0 B0, g ) > 1 U) > B0, O p0) » i, ™) © 0

0 = HOM, O-2)) » u° (H.v; > 1%, 9.) vog - nt e, O -2)).
£
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Since HO(M,{DZ) Y € by (L.6), so HO(M?E)) -+ HO(M,ﬁjz) is surjective.

We have HO(M, & ,) is isomorphic to 1O, OZ) .

-

) = 1 < dim% @, ©

o mK?}' This leads to a

Q'EQDQ

VHowever, dimHé(M,f)
contradiction,

It vf)p is a Gorenstein ring, i.e. there is some neighbor-
hood Q of p in V and a holomorphic 2~form & on Q-p such that o has

no zeros on Q-p, then K’ exists,

Theorem 2.20: If we assume VC}p is Gorenstelin in Theorem
2,19, theq the same result holds even if 7 is not necessarlly
the minimal resolution. .

Proof: As vé)p is Gorenstein, there exists o ¢ HO(MwA,ﬂ) having
no zZeros near A. Serre duality gives Hl(M,C)) as dual to
HiCM,Q), where 2 is the canonical sheaf, i.e. the sheaf of germs
of holomorphic 2-forms. By Theorem 3.4, p.604 of {20], for

suitable M, which can be chosen to be arbitrarily small neighbor-

hoods of A = W-l(p), Hi(M,Q) may be identified with

1% (-a,5) /8° (M,9)

dimH® (M4-A,2) /HO(M,0) = n > 2.

ere exists Wgaess sl in HO(M-A,Q) such that the lmage of

-s...,mn in HO(M_A,Q)/HO(M,Q) forme a basis. Since w is non—zZero

e
iA

a neighborhood of A, we may assume that wy ﬁ_fiw 23




where fi € Ho(M,f)). Moreover we can assume that fi are wvan-

ishing at p, i.e., fi £ HO(M,mf)). Otherwise we simply replace
<

- <
fi by fi fi(p), 2 iZzn.

Suppose our theorem is false. Then the maximal ideal
cycle Y 2 [w]. Since n) Gé@(wY) by Proposition 2.13, we have

W, ='fim » 2521 %X n all in HO(M,R). This contradicts the fact

that the image of w, Wy ses el forms a basis for

5 (M-A,9) /1% (4,9) .



CHAPTER TII

ELLIPTIC SEQUENCES AND MAXIMALLY EILIPTIC SINGULARITTES

One might classify hypersurface singularities by
h = dimHl(M,f)). If h = 0, then the singularity is rétional [20].
Tf h = 1, then the singularity is minimally elliptic [24]. Let
us consider the condition h = 2. All hypersurface singularities
as well as complete intersection are Gorenstein, so the following
theorem applies.
Theorem 3.1: Let m: M = V bé a resolution of the normal

-

two dimensional Stein space V with p as its only singularity.

it

Suppose v{)p is Gorenstein aﬁd Hl(M,E)) Gz. Then p is a weakly
elliptic singularity.

Proof: iet wml(p) =,A‘=lJAi, 1 £1i2n, be the decomposition of
he exceptional set A into irréducible cémponents and Z e the
fundamental éycle on A. Since Hl(M,f>) is independent of the
cﬁoice of the resolution [20, Lemma 3.1, p.599] and {2,p.124],

7e may assume that T is the minimal good resolution. By (1.6),

0,) = €. So we have the following ezact cohomology sequence;

0 »utar, O¢-2)) » 870,0) » 1G9, + 0.



However, as Hl(M,O) = tﬂz, the first direct image Rlﬁ"* Ov is not
zero by Lemma 3,1 of [20]. This leads to a contradiction. If
Hl(M,OZ) = Cz, then Hl(M, @(-—2)) = 0. As VGP is Gorenstein,
there exists w ¢ Ho(bi-;A,SZ) having no zeros near A, where @ is the
canonical sheaf, i.e. the sheaf of germs of holomorphic 2-forms.
By Theorem 3.4, p.604 of [20], for suitable M, which can be
chosen to be artibrarily small neighborhoods of A = ﬂ_l(p) R
Hi(M,ﬂ) may be identified with HO(M—A,Q) /HO(M,Q) . 8o
dimHo(M-A,ﬂ)/HO(M,{z) = 2 and there exists w' € HO(M*A,Q) surch

that the image of w, w' in HO(M-“A,Q)/HO(M,Q) form a basis. Since

w is non-zero in a neighborhood of A, we may assume that w' = fu
where f ¢ HO(M,B)., Furthermore, replacing £ by £ -~ £(p) if
necessary, we can assume that f ¢ HO(M,mL‘)). Let Wy be the order
of the pole of w on Aj. Consider a cover as in Lemma 3.8 of [24].
On Py
Wy (%4,74)
R A A
W = ———--Wi dxl A dyl
y
1
- : . . . Nm
there Lul(xl,yl) is a holomqrphlc function, ml(xl.,O) X 0. There

is a holomorphic function f(xl) , ¥ = % < R such that
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1 1

177
Lemma 3.8 of [24] c4s[)X]# 0 in Hl(M;§)). Let Z = % z,Ay

' = < 3 <
Let lo f(xl) and,Aoj 0 for2 23 2 t. Then by

q*

121 <n, be the fundamental cycle. If Vi"l Z then A

Zy
may be thought of as also a cocycle in Hl(NCUJ,Qﬂ(nz))O So
chsfA]= 0 in Hl(M’,{ﬁ(~Z)) and necessarily in Hl(M’gﬁ)), Thus

7 -1 > 2. is 1 i i W, < NI -

wl 1=z 24 1s impossible, i.e. 1 = g As m&) < E)( Z)

p-133 of [2], we have w® = fu ¢ HO(M,Q), i.e., w, @' cannot form

a basis for HO(M—A,Q)/HO(M,S})e This is a contradiction. So

the only possible case is Hl(M,QL

;) = €. Hence x(z) = aimH° (M, 9,)

- dimﬂl(M,{)Z) =0, i.e. p is a weakly elliptic singulavity. Q.E.D.
However, that dimﬂl(M,f)) = 3 and VG)P is Gorenstein db

not imply p is a weakly elldiptic singularity.

Example: Let V be the locus in 63 of z7 = x" 4+ vy,

Then the dual weighted graph is

N

Ao

%
o

_ t can be calculated by [23] that diﬂﬁl(Mgé)) = 3,

'Ihggzggmng: Let V be a normal two dimensional Stein space
ith p as its only singularity. Suppose Vﬁ}p is Gorenstein, i.e.
_hére is some neighborhood Q of p in V and a holomorphic 2 form

 n Q-p such that w has no zeros on Q-p. If there exists

_@v

2 n-1 . .
such that w, fo, fTw,...,f “w is a basis for
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Hi(M,Q), then p is a weakly elliptic singular point,
Proof: Replacing f by £ - £(p) if necessary, we may assume that
fer’M,und). By (1.6), HO(M,f)Z) = €, S0 we have the

following exact cohomology sequence.
i a 1 C 1 o
0 > 8 (M, O(-2)) + 1, 0) »u (M, O, + 0.

By Theorem 3.1, we need only consider the case n 2 3, Tt is easy
to gee that dimHl(M,iSZ) > 0., Otherwise, as observed in the proof
of Theorem 3.1, p will be a rational singular point. To prove
that p is a weakly elliptic singular point, it suffices to show
that Hl(M,{ﬁz) = €. Suppose on the contrary that dimHl(M,Q)Z) z 2,
Then dimHl(M,{)(wz)) 2 n-2. Let the notation be as the proof of

Theorem 3.1, We know that there existg Al = A such that on Pl

. (JJ(X,Y) ’
(3.1 e = AL dxl A dyl, w -1 44>0, 0=1isn-l

“iag 4y 1

Y1

(w) = - 2 wiAi and (f) = & ajAy + D = [f] + D. D does not
involve any Ai' There are holomorphic functions gi(xl),
r < x £ R such that

Witia-l wy (x1557)

s =0 71 B ) Tyga, Ay 40

v, [=R 1



Wi a1 :
’ = < 4 <
, gi(xl) and_loj 0 for 2 £ 3 £ &, Then by

i

R
Let lol Yy

Lemng 3.8 of {24],C28[11] £ 0 din Hl(M’,{)). In fact,'ikl} forms a
basis for Hl(M,iﬁ) because ‘<Al,f3m> = 0 for 4 # j. Since

dimHl(Mgf}) - dimHl(M,{S(—Z)) = dimHl(M,Q) Y 2 2, there are at

Z
least two_kll,.klz which are not in Hl(M,G)(-Z)). tlence,

w -1 < 2z, and w, - -1 <z

17 12y 1 1~ 1y

Wl Z zl + 4

< 4o
1° i.e., Wl 524 + 124

: F < < e
987 Since iy # i, and 1 = 151, = 1, we may
assune that Wl S Zl
by p.133 of [2]. So [f]l 2 Z, by the definition of fundamental

+ (n—Z)al. But [f]°Ai < 0 for all Aj_gi A

cycle 2. Ton particular zy = al; So, v, S(nwl)al., This contra~
diets (3.1). Q.E.D.

| A_partial converse of Theorem 3.2 will be proved later,
Weakly elliptic singularities can be effectively studied by the

folléwing method of elliptic sequences.

Definition 3.3: Let A be the exceﬁtional set of the minimal

s good resolution i M > V where V is a normal two dimensional Stein
_space with p as its only weakly elliptic singularity. If
:E-Z < 0, we say that the elliptic sequence is {Z} and the length

of elliptic sequence is equal to one. Suppose E<Z = 0. Let Bl

be the maximal connected subvariety of A such that Bl = suppk and

=0 ¥ A

i o Bl' Since A is an exceptional set, Z-Z < 0.
is propetrly contained dn A. Suppose ZB *‘E = 0. Let B2 be
: ‘ 1

he maximal connected subvariety of B, such that B, o |E' and

1 2




. = Coen
A'i ZB]_ 0 v A.i - B

properly contained in Bl°

nulng

obtain Bm with Z_ «E < 0. We call {7 the

B
m

elliptlc sequence and the lengih of e

Example 1: Let p be a weakly e

weight dual graph is of the following
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The elliptic sequence ds {4 = Z_ .7 Z. , Z. } and the length of
EU B} BZ Bq

elliptic sequence is 4.

Remark 3.4: - The elliptic sequsnce 1s defined purely
topologically.
Example 2: Let elliptic singularity whose

weight dual graph is of the

S S S R S A . B Y

1
2, =¢ 1 1 1 1 1 1 1 0
B
1
1
Z, =0 0 1 L 1 1 1 O 0
B
2
1
Z =0 0 0 1 1 1 0 & @
B3 .

he elliptie sequence ig {2 = 2_ , 74, 2. s % = 7Z_} and the
Bg™ Py By By B

mal two dimensional Stein space with p as its only weakly

| &

) Ai are nonsingular

i)
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rational curves with self intersection number less than or equal
to -2,

Proof: The fact that AiéglE[ are nonsingular rational curves
follows from Lemma 2.1. Suppose there exists Aj é% ]E[ such that

Ai'Ai = -1. It follows easily from Proposition 2.2 that A, Is a

"star" in the dual weighted graph T of exceptional set ﬂ“l(p\ = A,

P

i.e., there exist Al, AZ’ A3 <= A such that T has the following

graph as its subgraph

A g Ag

fThen X(A1 + A2 + A3 +2A;) = 0. This is impossible by Proposition
3 <% suppE.
: " Let I be a weighted dual graph including

genera for the vertices associated to the minimal good resolution

f the normal two dimensional weakly elliptric singﬁlarity pP. Suppose

p-is not a minimally elliptic singularity, then =K’ 2 Z + E

Wh:hever K* exists. If E+Z < 0 and |E| $¢ A, then K’ doés not exist,
roof: If 7 is the minimal resolution, then Ai*K’ Z 0 for all A; <A
P%oposition 1.8. S0 -K* 2 Z > E by the definition of fundamental
Suppose v is not the minimal resolution. Then the corres-

Ing dual weighted graph T consists of
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elther (a)

-~ 1 / e v 5 s

ar (b)

[EN
e
HAY
[}

w, 22, 1
L

gs 1tn proper subgraph. In case (a), B = A1+A We clalim that

2‘

ki 9 ) where K = £ k] As. Tor if k2 = 0, then A, «K® £ 0 since
L ES i 1 1
K*' is = negative cycle. On the other hand, Al-K’ o= Al'K =

Z
=

by A1~2gih2 23 > 0. This is a contradiction. Hence ki + 0.

im that ké cannot be zero also. TFor if ké = (, then

A, B £ -2 gince A sA, = 2, On the other hand, A2°K’ = AZ'K =

—hgtt, 2g2'~ 2 =1~2=~1, This is a contradictlon Hence,

k; # G. It follows that —=K® > E. In case (b), E = A+ A,

A, A A We claim that one of ki, 1 21 % 3 cannot equal to

zere. Tor if ki = k; = k? = (0, then Aﬁ'K’ Z 0. This is because

¥
3
thers exists no Ai5¥;|El, Ai'*A4 > 0 by the proof of Proposition

3.5, However, A,*K’ = A, *K = uAé-A4 + 2g4-2 =1=-2=-1, This

4 4

a contradiction. So we may assume ki £ 0., If k;

|
o
T
5
=

CETO o, e P KDY o Koz A A -~ 2 >0,
K* 2 0. On the other hand, A2 K A2 X A2 A2 220

e, A2~{’ = (J and AZ-AZ = -2, If k; also equals to 0, then

: argument will show A3°A3 = =2, The intersection matrix

annot be negative definite. So we may assume that k§ 7 0.
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e elaim that kz #£ 0, For if kz = 0, then Aé-(K’) -2, On

K? = AA~K = AA.AA + 2g4 —- 2 = "1.‘ This is a

—t

ya other hand, A

b

congradiction So k; # 0. We claim that ké # 0. Tor if ké =0,
tepny A C(E? < . - an K = N = - - - > .
then AZ (K73 = 1 On the other hand A2 K AZ K Az A2 | 2g2 220

Tnis is a comtradiction We claim that ké X -2, For if ka = ol

+ k) 4+ 15 -2, On the other hand, AaoK’ =

A, 0E = «AanA, + 2g, =2 = =1, This dis a contradiction. So

kY % w20 We have proved in both case (a) and’ (b) ~K’ 2 E,

We claim that actually -X° ; E. Since‘p is not a minimally elliptic

singulerity, there exists Ai@$ |E|, Ay N E # ¢. Tt suffices to

= 0, then A4-K*® < 0. On the other hand,

00 = Apiom o -AgAg b g =2 = ~Agchy - 2 2 0. This is a

contradiction. Therefore ~K* = E + D where D is a non-zero positive

c.yclé. We claim that AgrD 50 for all A & A, If A& ]E| s then

Ai(mK’) = Ai(wK = £4+F by Lemma 1.14. 8o AyD = 0. If

i

A{ R IEI, then AﬁfAi £ -2 and hence Aiﬁ-K’) = Adﬁ'K) = AsAy+ 2 0.

Hewever, Ai & !E|9 so A B Z 0. It follows that ApD = Ai(—K’) -

] ¢

AJE 2 0. This proves our claim. By definition of the fundamental

cycie, D 2 7. So in particular -K’ 2 7 + E.

Suppose B2 < 0, we want to prove K’ does not exist.
on the contrary that K* ewists. By the above proof
= Z 4+ D whiere D iz a positivé cycle. By (1.2), y(-K") =

TR K A (SK) - (K%)= - %{(HK’)'{K’}+K"K’] =0, s0o 0=




Xx(Z+D) = x(2) + (D) - Z*D. Since p i a weakly elliptic singu-
larity, x(Z) 2 0 and (D) > 0. Also 2°D 2 0 because 7 is the
fundamental cyecle and 1} is a positive cycle. Tt follows easily
that x(D) -0 and Z+D = 0. S8ince 7-E < 0, |#] 22 [el. By
Proposition 1.13, we conclude that D = 0. But then Z = -k’ 2 2 + E
which is absurd.

good resolution of

Theorem 3.7: Let w: M+ V ba
normal two dimensionsl Stein spzce with p as i s only weakly
elliptic singularity. SBuppose p is not 2 winimally ellipiic
gingularity and X exists. - Then the elliptic sequence is of

the following form

Moreover, ~K' = I 7+ E.
1=0 Ui

ce 1s

Proof: TLemma 3.6 says that length of the e
greater than or equal to 2. and ~KT T %4 B, Go R o= 4o By

where Dl is a non-zero pesitive cyoie om A, By (1.2), y{-X*) = 0.

S0 0 = v (Z 4 Dl) = y(Z) + x(Dl) = 27Dy Since p dg a weakly

1liptic singularivy, {2} = G, g(DE} 2 0, Feczuse Z is the
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contains |E], we have ‘D1| §5B1¢ Suppose ]Dl! # B, Then

. = . . T R
there exists Aﬁigg IDl‘, Ai ﬂ_Bl and Ai{l lDlK# ¢, Hence, Ai( K)

= . + = L > . o ] AT . i SIULY ‘5\-.:; 3]
Ai(Z Dl) Ai Dl 0 On the other hand., since Ii ; lTI,

Aié(-K’) = A, Ai 4+ 2 £ 0 by Proposition 3.5. This 1s a contra-

. Let U1 be 2 helomorphically convex

i : -+ V_ represents I 3
neighborhood of B1 such that @l. Ul \] represents 51 as

diction. Hence, lBl‘ = lDl

exceptional set where Vl is a normal two-dimensional Steln space
with @l(Bl) as its only singularity. We claim that the K*
cycle on Ul which is denoted by K’U exists and K’U = mBln In

1 1
fact for any A, & B

it

Ai-wal) Ai~(°Z - Dl)

Aij where K is the canonical divisor on M

nAi-Ai + Zgi -2

]

Ai'KU where KU is the canonical divisor
1 1 o Ul'

So le = K’U . By induction on the length of elliptic sequence,
1

‘the proof reduces to the following Proposition.

roposition 3.8: Let m: M + V be the minimal good resolution

‘of normal two dimensional Stein space with p as its only weakly
elliptic singularity. Suppose p is not a minimally elliptic
gularity and K’ exists. If the length of elliptic seduence

s equal to two. Then the elliptic sequence is {7z, ZF} .

oreover -K* = Z + E.



Proof: ZLemma 3.6 says that -K’ > Z. BSo -K* = Z + D where D is

a non-zero positive cycle on A. By (1.2), x(-X’) = 0. So

G = (2 + D) = x(Z) + x(®) - Z'D. Since p is a weakly elliptic
siagularity, x(2) = 0 and x(D) 2 0. As Z is the fundamental
cyele and D 1s a positive cycle, we have Z*D £ 0. Consequently,
v{) = 0 and Z+D = 0. Arguing as above, we know that IBlI = IDl.

fOTeOVeT K’U exists and K’U = -D where Ul is a holomorphic
1 1

copvex nelghborhood of Bl' By Lemma 3.6, B1 # 1E] cannot occur

since the length of the elliptic sequence is equal to two. 8o

E. Since x(M) = 0, we

i

lo] = B, = |&l. We claim that D

have D 2 B, i.e., D=1 4 D’ where D’ is a positive cycle with

. Since AyD = Ay-(-K’ ) = A4°E for all A; € |E],

Uy

¥|. It follows that D*-D° = 0.

=
L]
.
p:
e
v
=
9
|5

0 for all A, &
, i

Therefore D* = 0 and D = E. We have proved the elliptic

sequence is {7, ZE} and ~K* = 2 + E. Q.E.D.
Let p be the only singularity of the two dimensional

wypersurface Stein space V. Let 7t M » V be a resolution of V.
: _ -1
Leat A = uAi, 1 £ 4 2 n, be the decompesition of A = 7 ~(p)

1

into irreducible components. Let y be the Milnor number of p.

43




singulardties. 'This ceoleulation dis very difficult if not dmpossible

in general., He . pdven a welghted dual graph corresponding

to a singularvivy, we have to solve a system of linear equations
in ovder to find B, Por veakly elliptic singularities,

Theorem 3.7 provides ve 2 quick method to find K7,

§2 Mawimally Blidiptic Singularvities

The length of ihe
O T
about h = diwll M, 8 ).

Theovem 3.9: Tt w: M- V be the mindmal good resolution

of a normal two ionni Steln space with p as its only

- Ty . N - ,
weakly elliptic singelarity. Then dimd (M,0) is less than

£ a-

or equal to the length of the elliptic sequence if K’ exists.

Proof: Tf the length of the elliptic sequence is equal to 1, :

i.e. the elld sequence conglsts of the fundamental cyele

7 only, thenm Z2-E < C. Ly Theorem 4.1 of [24], W (M,0) = ¢.
‘So from now on, we may ossuee that the elliptic sequence is of

the following {omm: 2 A A # = Z
: ) ! o) B]‘ By, B,fo*l

Z 0, and ¥ = ~( ZP + BE) by Theorem 3.7. Choose a
i=0 i

computation sequence ot the fundamenial cycle Z cof the

E,

<

folliowing foum: ZO = Zl"""zk = B, ..., Zr = ZB seves
i £
Z A = 7 = Z. Consider the following
By ..4¢ Ty,
B ot L1 0
af exact scuucnce



0> O (-2)/9(-z-2)) ~

Y g4,
47,

.

O (e
0> Q(zzkm]

0 > E)(nzmzr

]
0+ O3 7
=0

B

)/ O¢-2-8) > O

IRYAVIC SN I
L

.

1 Ty

/O %
- =

L

AR
AN

W

i\

by 4 Z, .

£~

La
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g
-7 (- -L
iy ARPIAY I zy o)
i i=0 71
- 9 5 - 0
& g
AL 57 AL .
'l’_'—ﬂ iy 0 ‘i:‘ O }:.'r - k."‘.!_

Let Z, = 1 A, He vemark that £f E = A, is an elliptic
B, 3B, 373 1
curve, then B, 7y I for all 4 by corollary 2.6. The usual

i
long cohomology exict sequence for (3.3), (1.6) and Riemann

Roch Theorew will al

oy, L4
Length of the elliyviic sequence because HO(MglJ(m % ZB mZh I)/
; . 5 I =071 T
-] N K N} ' .
O 3 ZB wZ})}and HL{Mﬁkj(m . WZI 1)/&)("2 Z_ 7))
.2 P ! s B el ..y B h
1=0 "4 =0 74 i=0 71

‘ ) 1 C %
are non-zero only if b = k., Sipce H (M,K](“ I ZB ~E}) =
i .

071

ii

Hl(M,\D(K’}) = 0 by Corollary 3.3 of [20], the exact sequence

[ 5 ;
Bhs, O- 3 7 ~m)) > 10 0) » i, O )+ 0
1=0 71 ‘ L 7 +E
. oo B
i=0 71
‘shows that diml (if, O) = dimi* (i, Uy ) S e+ 2. -QED.

5 72 D
320 By

The Ffollowing exampie which is due to Laufer shows that

i1 ) -~ ¢
A~ (M, ) can be strictly less than the length of the elliptic
quence even for hvpersurface sinpularities. As far as the

ithor's krnowledge 1o concerned, this is the first known example
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for doubla-point ¢

sguiarity with maximal ideal cyele strictly

n the [urndamental cycle.

greater th

e , 2 4, 6
Example 3 (Lau; Tet V be the locus in 63 of z7 = y(x +y ).

1.
)

Then ¢

e dual welshiad graph is

(=

-2 -2

PR S

This iz a weaklvy 21liptic singularity and the length of the

gqual to three. It can be calculated that

Milnor number. By Theorem 3.7,

7
R (A ST 5 L G 22 iz +E2 = =3. By (3.2), we know
i - B B
o i 0 1

o
i,_-'l
=
(=N
v
=
‘r-:..
s
w
5
[
m
o
=
it
o
i

. e i —
The following two examples show that dimi (M,f)) can

actually equal length of the eliiptic sequence.

2 3, 9462
¥ 4x .

i
i
[th

o

. . 3
Example 4 Let ¥V be the locus in € of =z

fhen the dual weighted graph is

KR %20
o N

F SO, Grt-rsre ottt

-2 =2 -3 -2 ~2

-2t

is & weakly elliptic singularity and the length of the

seguence is equal to & 4+ 1. It can be calculated
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that the Milner number f1 = 16 4+ 12%. By Theorsww 3.7
-1 2 L1 9

~E* = 3 ZB +E, KT o= % Z0 4T = {R41). Ty (3.2}, we know
i=01 i 1=0 i

that dimH (3, ) = & + 1 = Iength of the ellipiic sequence.

3 -2 3, 11H6E
-

L

Example 5 et V be the locus in €7 of 27 = v’

Then the dual wedghted graph 1

&

This is a weakly elliptic singulaviiy fength of the

elliptic sequence is equal to &+ 1. It cen bz calculated that
£-1

the Milnor number p = 20 < 128. By Theoren 3.7, =K’ = ¥

9 £l 2 5 1=0

KT = 3 Zﬁ dET = (LY. By (3.2), we kpow {hat

_ 1 i=0 74

dimH” (M, O) = £+ 1

Z, T,
i

1}

he ellipric eeqﬁenca.

e .3 3 3, 301
Tet ¥ be the locus in O of 2 = x -y .

length of «

b

[L‘-'i
A
5}
=
=
fult
0]
Ch
C i
=
o]
]
0]
[
n
=
N’

=
o
fod
o+
e
()
-
=
2
'r—l
a9
[s
jui}
e
gl
@
i
~o
e cr @

. -3
-1 —9 1 g - 1
e L __,.,._‘.u.r’r\u_.__-

;
PR S

-2

ey

-3
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This is a weakly elliptic singularity and the length of the

elliptic sequence is equal to £. It can be calculated that the

M4 inor number p o= 128. By Theorem 3.7, -K’ = %EIZB.+E,
K’Z wow (3841) . By (3.2) we know that dimﬂl(M,Ejg =12 =
lengih of the elliptic seqﬁence.
1eh)s Ler V bé the locus in GB of z3 = x3+y3£+2.
Theu the dual weighted graph is
-2 8
NEE! ‘
M2:
-3
o - 1 -2 L -1 ;
T N e e TN
o -2 ~3 =2 =2 =2 =3 =2 -2

Thic is a weakly elliptic singularity and the length of the

81
ilvor number p = 128+4. By Theorem 3.7, K’ = L ZB +E.
: i=0 i -
= =38, Ry (3.2) we know that dimHl(M,t)} = § = length of

elliptic seguence.
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Definition 3.10: Let V be a normal 2-dimensional Stein space

with p as its only weakly elliptic singularity. Let m: M=+ V
be the minimal good resolution. Suppose K’ exists. If
dimﬂl(M,E)) = Jength of the elliptic sequence, then p is called

a maximally elldptic singularity.

Theorem 3.11: Let w: M >+ V be the minimal good resolution

of normal two dimensional Stein gpace with p as its only maxi-

mally elliptic gingulay point. Then vf)p is Gorenstein.

Proof: If length of the elliptic sequence is equal to one, then

Lemma 3.6 says that p is a minimally elliptic singularity. By

Theorem 3.10 of {24], vf)p is Gorenstein. Therefdre we may

suppose that the length of the elliptic sequence is greater

than or equal to two. By Theorem 3.7, we know that the elliptic

sequence is of the following form ZB A A A

’ [ o] , 1 2
s 220 and -K* = I Z_+ E,
E _n B
iTO 1 1

Serre duality gives H (M, €)) as dual to H*(M,Q) whetre

2 is the canonical sheaf, i.e. the sheaf of germs of holomor-

phic 2-forms. By Theorem 3.4 p.604 of [20], for suitable M,
-1

‘which can be arbitrarily small neighborhoods of A = w "(p),

THi(M,Q) may be identified with HO(MmA,Q)/HO(M,Q). Let Ul be a

olomorphically comvex neighborhood of B1 such that @1:

as an exceptional set where Vl is a normal

1

-+
1 Vqum%mmsB
two dimensional Stein space with él(Bl) ag its only weakly

lliptic gingularity. We claim that K’U » the K’ cycle on Ul’
1



Let WysewesWy n

Gorenstein. We cl:

contained in Bi‘ Foi

following foom

where t 2 1, .

exigts 1 5 4 = ¢ suoh

for H®QM-A, 00 /8 (i, 05

which is not containad

X & o,

jeedl

Supposa 0n

in 4 then the divisor

1

h, = O,
A A Y

8 o
hmw. ) -~ ik
b, )

!

5 b4, -

R

ig not a

P

because for all

A (KP) = X

7 ...-E) S
- T i 1

2g,~2 ~A A’

fuence relative to @, ds £ + 1.

1

images form a basis

is not

the contrary that ﬁ}
3 v p

gets of w_,

12454+ 2, are

say ., has a pole set

i 1

of w, has the

. 1

jui
iv
o)

Vv 1% v %£+n.,, and there

.L’

For any A'L < A,

1

Then Aﬁ(lwl} -~ K*) £ 0 for

Gorenstedn ring, elither there

et < 3 <
exists dk >0, 0%k = ny

Foyrmer case occurs, then {wl] - K #0

51



because K’ is a negative cycle. If the latter case occurs, we
claim that [wl] - K # 0 also, Yor let 0 £ 1 2 ny gsuch that

dr > 0. There exists Ar': A such that A - Xr > 0. Then

i
S
=

A, + (lu] - &)

Therefore [wl] - K’ is not zero in any cases. Notice that some

coefficient of Ai QZBl in [wl} - K’ is strictly less than the

corresponding coefficient of that component in the fundamental

%

cycle Z because -K° = I ZB +E, IXIf [wl] ~ X* is a positive

i=0 "4 .
cycle, we let Zl = inf ({wl]—K’gz). It follows fiom M. Artin's

cargument, p.131-p.132 of [2] that Zl is also a positive cycle

énd Zi‘

Ak S 0 for all A, < A. However, Zl< Z. This contra-
dicts the definition of the fundamental ecycle Z. So [w
a positive cycle. Let

8
Z = [w,]-K> = I h,Ai -
a 1 1=1 i - j=s'+'1 J ]

hout lose of generality, we may assume that Copq © max(cj),
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n
1
$t1 2 3 S n. i y = : = 3 ,
&1 2 3 nn Consider Z-L ot Z + Z o ZO izozi Ay,
where Z = Iz, A., Since Z *A, £ 0 fo¥ all A, & A, we have
B A | o1 i

A,+Z. S 0 for all A, = A. Also z% Z0for 1212 g and
i1 i i
zi+l = 0. By changing the index if necessary, we may assume
1 ; , s
oo = min(zi), g+2 £ i S n. If z;+2 Z 0, then Zl is a positive
. : 1o, e gt cons -
eycle with supleS% A because ZS+1WO°"If B o < 0, consider 22
1 noz <
w o = * [
zs+2z+48+221 iElziAi, then Ai 22 = 0 for all Aijﬂ A,
z? Z0for12i2s+1and z2 = 0, Continuing this
i 42

ﬁrocess, we finally get a positive cycle D on A with suppD & A

and Aj-D S0 for all Ai « A, But this ig impossible by previous

argument. We conclude that the pole set of wi, 12545 2+2,

are contained in Bl' Tt follows that wi/Ul, the restriction

of mi—to U1 are in Ho(Ui"Bl,Q) for all 1 =4 =2 &+2. Since

the length of thé elliptic sequence on U, is %+1, by Theorem

1
3.10 dimﬂl(ul,CD) S %+1l. Hence dimHo(Ui-Bl,ﬂ)/Ho(Ul,Q) i ES |

nd there exists A1’°"’A2+2 e €, not all Ai = 0 such that

o .
- e 9 ] i
w U, 4 /U1 e H (Ul’ } where wi/Ul is the

197U oo Copo

- : . + 00+ A
triction of w, on Ul It follows that Alml + + 42 P4 10
H?(M,Q) which contradicts to our asgsumption that images of

9 form a basis for Ho(MmA,Q)/H(M,Q}.

: Let w: M + V be the minimal good reseolution
rmal two dimensional Stein space with p as its only maximally

”ﬁic singularity. 1If Z -ZE < -2, thén m = O (-2).

E




Proof: The proof is long and is essentially an

Laufer~type vanishling Theorems.

0}

In fact, the wvanishing ovder of f on Aj ig
Z =T . % and A, 5= B
Bi K Bj_ itA'k i h+1.

Proof: By the definition of maximally elli

dimHl(M,G)) = the length of the elliptic ssgusnce. Dy

|

“proof of Theorem 3.9, we know that maximal ellipticiiy
[ I B

ML e a1l 0 2 1 2 4.

HMovaover.

Hl(M,Oh ) = ¢

I 2
3=0 B3
HO(M; Q)THJ. ) o HO(M,fj h ) are suriective. B
. Lz L Z
=0 P1 1=0 B3

following commutative diagram wiih ewact rows.

of a normal two-dimensional Stein space wich p asz its oaly

maximally elliptic singularity. Let ZB = Z? e Do
o ¥ _L R 33 :{‘
Z_ =2 be the elliptic sequence. Then for any O - 0 5 &,
Iy B, .- '
241 o h . bl
there exists £ e B (M, U(~ T ZB 1) such that £ % NI
i=0 "4 i=0

“ravion of

Proposition 3.13: Let w: M + ¥ be the winimal good vevolution

atdar the
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h+l
o »ul0, ¢ 2 zy M > 1°0L0)
i=0 V'

W = E7,0) -, O )

1, o, M 1, ¢ 1,
P, OC 2z Y 2 L) v HaL ), ) >0
i=0 T1 '

1

1 A
0o, ) - b, () b ) 0



1 2
Since H (M, U(~ I Zy
=0 i
HO(M,{)) > HO(M, {)2 } is surjective. Tt follows that
i

~ZF)) = 0 by Proposition 2.8,

)

i=0 71
HO(M,E)) - H° (M, i]h } are surjective for all O “h s
L Z
i=0 P1

An easy diagram chase will show that there exdists

o h o htl
fef (0 (-2, )) but £ g, O ¢ Z, ). lLet
i=0 7i i=0 "1
A, B . Choose a computation sequence for Z of the
j = Thtl L
following form: Z =0, Z,6 = Ayl Z = Z . Look at
o I “ooh  Phd
the following sheaf exact sequence
q h f) h () h h
0+ O-22, ~2) > J(=82, )+ U=1IZ YO-L2Z, ~2)
\J/
i=0 By 1 1=0 P31 i=0 B3 7 gm0 1t
I
. -
h h
0+ 0 22y 2 > O 1 7 -2 ;)
i=G T4 i=0
. h h
: A o v S -
: - 2 2g =5 /0 C EZp ) > 0
: i=0 71 i=0 "i

h h
0+ OCz22, -2, 3>QO¢52, -2, )

i=0 By Bpaa 1=0 1 Ta-n
A h h
- - N T 7 - .
AN T 7y <2 __l)/\)( A AR

i=0 74 2-h i=0 74 Thil
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' 2
If the vanishing order of £ of A.j is larger than I 2N
i=074

then the usual cohomology exact sequence argument will show
h1 ‘

that f ¢ HO(M,{>(~ b ZB 3}, which is a contradiction. Q.E.D.
i=0 "1

The following corollary is a partial converse of Theorem 3.2,

Corollary 3,14: Let V be a normal two dimensional Stein

space with p as its only maximally elliptic singular point.

Let Z_ =24, Z. ,...,2_ 5 & = Z_ be the-elliptic sequence.
B By By Beyp O F
If there exists Al £ [E[ such that the coefficients of A1 in
ZB , 0 £ 4 2 8 are equal, then there exists f e HO(M,C)),
i 241

W € HO(MwA,Q) such that w, £ w,..., f w formes a basis of
1 _
H*(Ms @) @
Proof: An easy consequence of Theorem 3.7, Theorem 3.11 and

Proposition 3,13, ' : : .

The following Theorem will be useful in calculating

' Hi1bert function dim mn/mn+1.

Theorem 3.15: Let m: M =+ V be the minimal good resolution

of a normal 2-dimensional Stein space with p as its only maxi-

mally eliiptic singularity. If ZE-ZE £ -3, then

14, O(-2)) @ 1O, O (=n2)) + 5 (M, O (~(a+1)7))
¢

8 surjective for all n > 1., If we assume further that the

éngth of the elliptic sequence is equal fto two, then the

above map is éurjective for all n Z 1. In thils case, me
A,fj(wnZ)) for all n Z 0 where A = wul(p).

roof: The proof dg long and tedious.



CHAPTER IV

ALMOST MINIMALLY ELLIPTIC SINGULARITIES

Although the title of this chapter is "Almost Mindmally

Elliptic Singularities', our main interest is to build up a theoyy
P g 5 ]

2

for those singularities which has Hl(M,ﬁ)) ¢” and vﬁ}p Goren-

stein, We will prove that 1f p 1s an almost minimally elliptic

singularity and vf)p is Gorenstein then HL(M,E)) = Ez. But it

2

is not true that Hl(M,E)) = €7 and vﬁ)p Gorenstein will imply

that p is" an almost minimally elliptic singularitcy.

g1, General Theory for Almost Minimally Eiliptic Singularities

Definition 4.1: Let n: M+ V be the minimal good resolu-

tion of a normal two dimensional Stein space with p as its only

weakly elliptic singular point. Suppose p is not a minimally

E

elliptic singularity, i.e., IE[‘ﬁ Wnl(p). If for all Ai é@

and AifW |EI # ¢, then Ai-z < 0. We call p an almost minimally

elliptic singularity.

Theorem 4.2: Let m: M » V be the minimal good‘resolution
'éf a normal two dimensional Stein space with p as its only almost
minimally elliptic singularity. Suppose v{)p is Gcransﬁein,
M, )

hen H ce.

i

Yoof: 1If dimHl(M,E)) = 0, then p is a rational singularity, which

m?iies x(Z) = 1, This is a contradictidn. If dimHl(M,{}) =1,



then p is a minimally elliptic singularity by Theorem 3.10¢ of [24],
This contradicts our definition of almost minimal elliptiec singu-
larity. Therefore dimHl(M,f)) 2 2. On the other hand
dimﬂl(M,{)) £ 2 by Theorem 3.9. We conclude thaf dimﬁl(M,{)) = 2,
Q.E.D.

Example 3 in Chapter III shows that Hl(M,f)) — and
V{)P Gorenstein do not imply that p is an almost minimal elliptic
singularity. However, a partial converses of Theovem 4.2 will
be shown later.
Lemma 4, 3: ‘ Let m: M -+ V be the minimal good resolu-
tion of a normal two dimensional Stein space with p.és ité only
weakly elliptic singularity. If dimHl(M,f)) # 1, then éne of
the following cases hold: o
®  E0LOCL)/O¢-ZB) vey H1<M,®(»z.)/@(—_z'-'aii’
@ B0 0D/ 9Czm) 2 0 % K 0,0 (-1)/ 9 (-2-5)
Proof: Since Hl(M,{)) # 1, we have E+Z = 0 by Tﬁééfém 4.1 of [24].
Choose a computation sequence for Z as follows;: z6_= O,eusns,

Zk = E,.... Consider the following sheaf exact'séquences,

0(—2—22)/0(~2—E) > O(nz—zl)/Q(—Z~E) S O(—z—zl/O(—z~zz) > 0

R ——Y

02z, _ 3/ O2-8) » Ot-2-2, )7 0 (-z-E) +'O(—z—-zk_2)/0(—2~zk__ ) >0

1
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[

By Riemann Roch' Theorem, the usual long colicmology sequence arg
will show that either (1) oxr (2) holds.
Theorem 4.4: Let w: M+ V be the minilmal good resoluriocn
of normal two dimensional Stein space with p as its only weakly
elliptic singularity. Suppose H (,()) = €¢° and VOP ig Corenstoin,
Then p is an almost minimally elliptic singularity if and only

0
if H (M, O(-2)/ O (-2-E)) = €.
Proof: " ==3" By (1.1) and (1.6), 1—10(14,{)2)' Yvg 1{"‘(1-—1502) .
The long exact cohomology sequence
0+ B0, 9(-2)) » 1°01,0) » 800, 0,) » uhar, 0 - o)

> HI(M, Q) >0

Z

will show that Hl(M, S("Z))

€. Since p ig an almost minimally
elliptic singularity, -K’ = Z + E, By (1.2), Hl(M, O(-2-8)) = 0,

Now the following exact sequence
1 1 ( 1 0 y
e, O-2-5)) » 1o, O2)) » 0, 3¢-2)/ O(-2-E)) + ¢

will show that Hl(M, -2y Q(~z2-E)) ‘}_' c.

"e==" C(Conversely, suppose Hl(M, O (=2y/ O (-z-1)) = €.

B ZB ,...,ZB R ZE be the elliptic sequence. Then
o 1 A
L
py ZB + E. Choose a computation sequence for Z as folloua:
i=0 T4
0, 2, 00,2, =F, 0032 =2 siie,d =2 s¢e.n =7, =4,
i k ry B‘Q” r, Bl Yo bo
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Suppose p is not an almost minimal elliptic singularity, then

£ 2 1. Took at the following exact cohomology sequence

Q
0 + 1o, O~ z)/o( Z-—E)) > 1°(u, ®Z+E > H (MBSZ)

¢ c
> utor, O =2y 7 O (-z-1)) + Bh, Ozw: —>1:11(M,OZ) + 0
1s s
C C

It is easy to see that H® (M O
2 .

o . . s
Z+E ~ 8,0 Z) is surjective.

Therefore H (M, OZ{-L v ogf o gO (M, V) Since the following

Z+E

two sequences

1 1 .
o0 ) ren0,p o

a0y »utw, O )+ o0
g

L Z
i=0 B1
' ] 1 . . .
are exact, H (M,O) -+~ H (M, O ) is an isomoxphism by dimension
: L
A
i=0 i
%
con51derat10ns. It follows that H M, O (- = ZB)) -~ H(M, O) 1s a
i=0 i

0 map. As VDP is Gorénstein, there exists w ¢ HO(M—A,S})
i_ng no zeros near A. Let (w) be the divisor of w. Then

I :
~ % Z, ~E. Let 2 be the order of the pole of w on Al‘f"_ IE] .

der a cover as in Lemma 3.8 of [24}. On Pl-
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B .wl(xl,yl)
1
71

w dxJL A dyl

where wl(x ) is a holomorphic function, ml(xl,O) 3_-§ 0. There is a

1*71

holomorphic funetion f(xl), r = X, % R such that
w, -1 w, (%, ,¥,)
1Vl
e A
'r|xl|=R Y1 f(xl) vy Xm dyl 70
[y =R 71
W .
Let )\01 =¥ f(xl) and Aoj =0 f.or j # 1. Then by Lemma 3.8

z Hence

2
of [24]1,clslal # 0 in Hl(M,O). However, Wl-l > B %1
=0 1

s

A ‘ 1 2
A may be thought of as also a cocycle in H ®VEW) ,O(- Zg 1)

i
Consequently,cls [A] = 0 in Hl(M',O) because HI(M,D (- % B »
i=0 71

-+ Hl(M,S) is a zero map. This leads to a contradiction. Q.E.D.

-Theorem 4,5: Let 7¢ M > V be the minimal good resolution

dle L over (]E] . OE) . Let U be an holomorphically convex

gl’i_borhood of |E| such that ¢: ¥ » V. represents |E| as an

1
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exceptional set where V., is a normal 2-dimensional Stein space

1
with @(!E]) as its only minimally elliptic singularity. The
group of sections of B is isomorphic to HO(M, 9 (~2) /0 (~2-E)).
However, L 1s a trivial bundle over (lE| ,OE) . So the group
of sections of L is isomorphic to HO(U,DE) Y @. Therefore
HOO1, O (-2)/ & (-2-E)) = ¢.
1 2 . .
Conversely, suppose H (M, D) = ¢ and vop is Gorenstein.
Then HO(M, O(—Z)/O(-—Z—E)) Y ¢ implies that p is an almost mini-
mally elliptic singularity by Theorem 4.4. There exists
Qo O . . Q ‘ . 8} _ 3
f e B°(M, U(-2)) such that the image of f in H (M, ()(~2)/ U (~Z-E))
viewed as section of the line bundle L is nowhere zero by

Proposition 3.13. Hence L is a trivial bundle over (|Ei ’OE)"

Q.E.D.
With notation as above, let ¢: )+ OE = (9/ LQ_(-*E) he

the quotient map. Define OE = cb(@*) = Let o Z » OE

B

‘be ¢*1 where i: Z +» O is the obvious inclusion map. B: OF > Lr);:

V]

1s defined as follows. Tor a gernt £ in a stalk of OE’ let
¥ be a germ in ) such that ¢(¥) = £f. Then we set B(f) = ¢

_(éxp 2mi F). We claim that 8 is well defined. Let F1 be another

germ in ) such that ¢(Fl) = f, Then Fl = ¥ +g where g can be

onsidered as germ in (0 (~E). Hence
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L 2niP2Tig
rga{m!}:!iif’il'i"ﬁ‘l)) =  $lexp(@rilt2mig)) = ¢ (L + T
, . 2 . Y i}
{2rifr2rig) C (2wiTF2uig)
ey 4.t — + ...
2mF  (2niF)2 C(mnt . ) + ghl
= (L + 4 N e &

1 23 n.
= ¢ {exp 2wl¥F).

B ) '
> 0% + 0 is an exact sheaf

0~+2z90 .

it

Let m: M » V be the minimal good resolution

wensiconal Steln space V with p as its only weakly

ellipric singularvity. Let O(~2)/ O(-Z-E) correspend to a line

bundis L over ({E ,()E). Suppose Hl(M,\D) v Gz and VE)p is

Qovenstein. Let 7 Tligeae gy 4 & =7 be the elliptic sequence.
: B B B E .

o 5% L+1
‘Let D be the subvarity of B(Q consisting of those irreducible

componants Ai = B, such that Aif\ IE] # ¢é. Suppose Z/D, the

L
restriction of Z to D, is equal to Zg /D, the restrietion of Zo

: ; L . L
Then L£¥l_is a trivial line bundle over (]E],()E).

n

A . TIf 2= 1
1 Z

e+

t

A, then Z/D = T z A, .

, i7i , ivi
i=1 i=1

1

.

n
et A= A, 2D
=1t 1

1

Let Zo = Qyuany Z{=E,,.. be a computative sequence for Z.

!

at the following sheaf exact sequences:
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L & L %
VRSV G —z)/o(-—zz “E) >0 (- % 2, }/O(- £ z, -E)
1“0 i=0 i i=0 74 i=0 ~1

+O(zozB)/o( ):z z>+o

g 2 2 3
0+0(-zz—z)/®(z —E)+o(zz-—z>/o Lz ~E)
i=0 B4 0 Of 1=0 1=0 “i
{
| Ve 8o ¥
\ 02y 21O (- EgZy =25) > 0
, i i
i
¥
2 { £ 3 o 3
0> 0C 12, -2 /0 (-7 2 -E) 0¢12z /03 Zy ~E)
i=0 "4 i=0 7di i=0 "4 i=0 i
2052~z )/ (-3 % =% ) >0
A B, "k-2 0 \ B, “k-l
i=0 4 i=0 i

By Riemann Roch Theorem, the usual long exact cohomology sequence

) 2
will show that either H (M, O(~ T Zg )/O( Z Z —-E)) vg o
i= 0 0
: Q,
e O z ABVINIC ; zB -E)) or B, O(~ % NRYANIE ; Z, ~E))
- i=0 1 3=0 1-0 1 _ i=0 i

0% H (M, O )/ L'J(“ Z Z —E)) We claim that the latter

iO 1=0 B

e

==

N
‘case camnot occur. Otherwise HO(M, - = ZB -E}) - HO(M, {~L ZB )
i=0 71 : i=0 i

111 be an isomorphism. However, by Theorem 4.9, which will be

%
roved later, we have m\) € \9 (- = ZB ). It follows that the

This is absurd and our
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wlaim is proved. Hence we have the following exact sequence

[ . %
0 > 1M, U= Xz,

'3
~£)) » 8, O(~ & Zy D)
i=0 i i=

0 7i

' 3
2 )10 (- &

Z_=E)) X ¢ -0
B,
8 74

f,
> 10, O (- %
i= 071

2
Let £ e‘HO ¥, O( % ZB )) be such that the image of f in
1=0 71 '
ZB ~-E)) is not zero. Then

i £

C
o, ) - Ly NASICER
i=0 T4

i B O

£ 4 u’0, O(-,

DZB ~E)). We are going to prove that actually
i

ZB mAi)} for any Al‘% IEI. Choose a computation
i

b
e htrs e

£ b ou%on O
i=0Q
sequance of the following form: ZORO, Z

TR ERRRELS

Conslder the following sheaf exact sequences

=E,o—re

k

: 9 I3 2 2
0w -3z, <Z)» O(=-5%2 ~2) > O(% 2, -2)¥/ (-5 2, -2.)~>0
R T 5B 7L OB, 71 o OB, Y2
i=0 "1, i=0 "4 i=0 71 i=0 "4
0 v 7 ) % Z y () s Z. =210 %z +
Oy ~2g) > O (= 2 2y <Zy) > U= 2 2y <2,)[Q (= % Zg ~Zg) + 0
1=0 "1 =0 71 i=0 i i=0 T4

_——————

i }
| |
i 1
: i

e B

B

' '3
ty /0 5 2y B >0
i i=0 "1

=0

=

Riemann Roch Theorem, the usual long cohomology exact sequence

. 3 %
1 show that H°(M4, O(~ ¥ Zy ~Z) > oM, 1) (- F Zy <Z: 1))
i=0 °i 1=0 “3 J

£ k are isomorphism. By composing the maps, we get
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o
1M, O 5 7
i=0 "4

Hence f nlf I—IG(}\:{: SIC A The image of f in

7

’Q’ .
o R . . . . .
H M, O¢- & Lo af0{= T 2 ~T}) viewed as section of the line

i=0 Vi =0 4
bundle N over ([&],i) T(‘) covvespending to the sheaf

9
18
5
?

%
Q)(n z ZR )/G)(‘.
i=0 i -

e —E) iz nowhere zero. Hence N is

rafy Tt

1 ki [

a triviasl bundls avai
Let us p that for any Ai & B&:’ Aiﬂ IE[ = ¢, First
observe that 7/p = Lo /D dmplies ZB /D = Z".B /B for all 0 24 £ 4,
. i g
a Pivst that A, & a = B ] C | E
Suppose first ti i Bk;“]_ nrd Ai@.\, PE‘ If Aiﬂ IE] # ¢, then
there exists A, 7 51; such that A, N\ A, #£ ¢. Since Z /D=1%_ /D
J o Byt )
and A, 2 = 0, & % ZA 7, /DA AY = A (Z /D+ A
| B£ i B£m1 i bﬁ“l i i BQ i |
= Aj (ZB 'H‘.\i) = L+ 0. This ig a contradiction. Suppose that if ‘
R’ - .
& B.h and Ai v B, then A N ]E[ = ¢, We want to prove that

is also true Fov Bh T Then the decreasing induction argument

will complete the preoof. Let Ai - mal and Ai & Boe £ Aiﬂ |E| F ¢,

hen there exists z"-\._i e }L‘i such that Ai n Aj # ¢. By induction
ypothesis, 0 = A, -Z, = A % /D. Hence A +2 A (2 /D + A
7 Bh 15 I By I B +

, /D+ &3 = 1> 0, This is absurd. Our claim is proved,
L

-1 . - n
Hence L7~ = O (-2 /) (~2-) @30 - ®.0 O(—Z) [I(=Z2-E)
F E
M e
. L+ 1 3 g
YOG O - Z-R) Y O § Zg MO (= % Z, -E)
. i=0 74 i=0 71

SEF )
L7 %W is a trivial bundle over (IE| R (.DE) .
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Theorem 4,8: Let m: M > V be the minimal goed resolution

of normal 2-dimensional Stein space V with p as its only weakly elliptic
. . 1 r 2 1 - ( ,

singularity. Suppose H (M, 0) = €7, H ([E],Z) = 0, and v{)p is

Gorenstein, Let Z_, ,Z

B y 2, =2 be the elliptic sequence.
o

N
1 B,m B By

Let D be the subvariety of B2 consisting of those irrveducible

such that A, 0 [E| # ¢. If z2/D = Z, /D, then
. 4
2 =10, l.e.,, p is an almost minimally elliptic singularity,

B

t =
components Ai BR

Proof: Let L be a line bundle over ( IE[,\DE) corregpouding to

O (-2) /) O(~2-E). Consider the following commutative diagram

1

c

3] 1 * 2 -
H (Ai,oAi) > B°(|E], » w

)
A S |2 A g Ay @)

i

&
=)

E
Since A .2 = 0, c(, * ¢; (L)) = 0. Therefore ¢ (L) = 0,
Look at the following exact sequence:

o v ul(|el,m ~ (|, 0 > w e, 0D § wPdele.

Since Hl(|E[,\DE) = @, c*(L) = 0 and the Ffact that L2+1 is a trivial
‘hundle by Proposition 4.7, it follows that L is a trivial bundle

itself. By Theorem 4.4 and Theorem 4.5, p is an almost winimally

liiptic singularity, i.e., £ = 0.



§2 Caleulation of Multipliclties

2 '. , . .
and VOP is Gorenstein. In this section

Suppose Hl(M,O) ?i £
we identify the maximal ideal and in particular, we get a formula
for the multiplicity of a singularity.

Theorem 4,9: Let m: M + V be the minimal good resolution
of normal 2-dimensional Stein space with p as its only weakly
elliptié gingularity. Suppose Hl(M,O) =ﬂ?2 and VOP is Gorenstein.
Let ZB Fhye vy ZB so sy ZB s Z13 = ?JE be the elliptic sequence.

o7 S -2, thenmd =0¢ % 2

Then mO) € O¢- ¥ 2 ). If 7 Y Y.
. B, E "E \ B,
i=0 74 i=0 74
L . (
Proof: Simce x( ¥ 2z, ) = 0 by (1.4), dimn®(y, () ) = dimit(u, ) ).
i=0 71 L %
2 ZB = éB
=0 Ti i=0 i
The following two exact sequences
Hl(M,() . ) > Hl(M,()Z) NG
PA
i=0 Bi
1 1
B (,0) + 8 (M’Oz ) > 0
' L4
i=0 B3
ay that dimHl(M, O ) is edither two or one. If
')
L2
1=0 By
: 2 1 1 , . .
(M, O ) = €%, then T (M, ) »~ 1 (M, O ) is an isomorphism
2 L
Z _ | ¥z
i=0 B1 =0 B4

L
imensional consideration. It follows that Hl(M, O(— X

z,)) > B, 0)
i i

Q s



70

'

is a zero map. As VQ)P is Gorenstein, by the proof of Theorem 4.4,

we will get a contradiction. We conclude that Hl(M, E) ) = @,
' )
z

Consider the following commutative diagram with exact rows

2 ' '
0> 8%, OC- £ 2, ) »8°0,0) »n°0s, O ) Xe-o
i=0 i %
[ X ZB
{ ST i=0 “i
0801, 0¢-2)) - 1°m,0) » 5, 0, v E >0
L
the Five Lemma, HO(M, (- % Zy )y =+ O, O(-2)) is an isomorphism.
i=0 i ,
Since n O« ()(~Z), it follows easily that n® NI ZB Y.
<=2 ) y 7
Suppose ZE Zy £ =2, we want to prove my = L’(miEO Bi). |
&
It suffices to prove {)(miEOZB ) ;Aﬁug. Let us first show that:
i
o 3 . o £ 2
(4.1 p: 10, OC- 5 2. ) ~1°01, UC- 2 2, )/ (- T 2, ~A))
B, . B, . B, 1
i=0 i=0 i i=0 "i

is surjective for all Al SéiE . If E-= Al is a nonsingular elliptic
éurve then -K* = % Z_ 4 A Since Hl(M {)(w %-Z -A Y)Y = 0b
: ’ 120%p, " "1° SR C 1 Y

Theorem 3.2 of [20], p is surjective by the usual long cohomology
act sequence argument. if IEI has at least two irreducible

: £ s
components, then Hl(M,f)(uigozB AN O ZB uAl)) = 0 by Riemann
i i=0 74 ] .
: )
och Theorem. ' We are going to show Hl(M,{D(mié Z —Al)) R

0B,
i

: b
(M"D(“iEOZB }). The exact sequence
: i
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’-\"G‘z
1 & L o] 1 N
0 = BO(M, $(- 2 2y )) o HTQG0) B0, ) yrxe>0
=0 1 ¥
1=0 P4
. 1, %
shows that we indeed s UM, e ZB M= €. Choose a compu-
1= T4
tation sequence for 2 of the followiang form, Z =0, Z. =A, =A_ ,...,
0 1 ij 1 :
Zkél’ Zk=E,n.,. Tha lonpg exact coliomology segquence
o o, E e ‘ o ‘
0 W Q, O % 2, 3/ OG-8 2, =40 ¥ e » 870, O )
N aTB 2
1=0 i i=0 T4 AT
. A B, L
. i=0 74
. ' 1. L %
+ 17, ) Y g W, U6 g M/ Q(- % 2y ~A) =0
L, i=0 71 i=0 i
1. o~ i |
M, O Yy - B, O . Yy + 0.
noA, tA A
B s 3
=0 gt i=0 i
. GO0 O ol 4 ok 0
will show that H (M, o= €7 gnd (M, U Y = €.
' g, 2
o4 kA vz
=g By 4  i=0 By
Consider the following lomg exact cchomology sequence
_ o % . D v gl
01 (M, (- 7, ~A) (00 - 5, O . )y Mg
ien By *
=0 L7 +A
. B, "1 .
i=0 741
B .E[]. O L - P 1. ™y i {
(M, U(- % .4B A0 o BT, u) - B, ) Yy = ¢~ 0.

i=0 74
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We claim that HO(H;ﬁj} w>'HO(Mﬁ C)% ) is surjective. Other-
AV AREY
im0 B
wise the iwage R of HD(Mi{}) +'HO(M3(D ) will be
&
PN ZP +A1

i=0 "1

together with the following

isomorphic to €. Tha five ler

commutative diagran with exact wows

. _
01704, 0(~ 1 2, A0 > 7, 0) > RY €+ 0

i=0 71
% b
. o - o N 4] '
0~ (M, O¢-2)) - E(M, ) » B (M;C)Z) vE >0

. 2 ;
will show that HG{EEfJ(“ b ZP wAl}) +'HO(M9‘9(“Z)) is an isomor-
i=0 i

phism. The followingz cheaf exact sequences

' g 9 L 2
0+ O3z, -2y M-tz -2y~ 08z, -2MWI (=T 2, -2) >0
. B, 2 . - B, 1 s B. i .. B, 2
i=0 "4 i=0 4 - 4=0 T4 i=0 71
0+ (-2 2, ~2) > (=52, ~2)> -5z, ~2)Y/ (52, -2)+0
P T AT 2 TRT2 OB, T2 R T
i=0 T4 i=0 74 i=0 "1 i=0 T4
! E E
: O [} i 4
0+ O 2z, B) » N2z, -z, 0622 ~z, )01z, -2) >0
2B P e | B T ke1 P T
i=0 T4 i=0 74 i=0 "4 i=0 73

: i 2 ' £
will show that HO(Mﬂ\ﬁ - I ZB wZi)) *-HO(M,\Q(M b} Zn wZi«l)) are

i=0 T4 - i=0 i

Isomorphism for 2 2 1 3% k. By composing the maps, we get

. &
(M,\D(m b ZB -E)) +‘H0(M,k3(m2)) is an isomorphism. Since

1=0 74 _
4
(}(mz), the waximal ideal cycle Y Z L ZB + E = ~K’. This

i=0 ~i
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contradicts Theorem 2,21. We conclude that HO(M,O y o+ HD(M, O )

: A
is surjective. It follows that Hl(M,O(— X ZB

~-A)) = €.
i=0 i 1

Look at the following exact cohomology sequence

2 2
0 > HO00, O (- T 2 -A)) > O, U(- % 7, )
1=0 1 1=0 i

L
~AD) » HCL O - Xz -A)

a 3
Zy VOG- % 7,
i= i i=0 71

i=0 i

Zg MO & Zp "84 > 0.

' 2
-+ Hl(M, ICHE
i= 0 7i 4=0 T4

L
2, )) 1, OC- 3
071 i=

Since Hl(M, O (- % Zy Y/ O (- % Zy —Al)) =0, Hl(M,\S‘(— pﬁ

Z., =AY
1=0 B3 1=0 B4 =0 By T

0

2
-+ Hl(M, @(" L Z.)) is an isomorphism by dimension considerations. ﬁ

B,
_ i=0 71
Therefore p in (4.1) is surjective. Given a point alf;Al, let
s L
T e HO(M,O(—— L2 3/9 (- % 2, -A.)) be nonzero near a, as a
.. B, B, UL 1
- i=0 i i=0 7i

A L
gsection of the line bundle associated to I(- = ZB )/O(-— T ZB ==Al) .
i=0 71 i=0 i
A

=

e 1%, (- Zg )) projecting onto F will generate O ¢ ZB )
i=0 71 i=0 7i
since it must wvanish to the prescribed orders on the Al

i

ear a

ar ay and will have no other zeros near al.
& . .
z ZB Yo mi), it remains to prove

.

1=0 71
ZB Y& m) near A-suppE. There are two subcases.
i .

In order to prove (-

There exists Ai &= [E[ guch that ErZp + 1



by Corollary 2.3,

>

for n 0.

-2
0%z, -2
: . B,

i=0 7i

>0 (- Zg

L
b
= i

i=0

-7

%

+ (-1 z
2 OB
i=0

Z. ~Z
Bi B

L
> O 2
~i=0

ecall that (
i

b
L Z

A wnZw
1=0 B, "E

1

2
7y ) »~ O = Zp

E—nZ—zj)-+xD (-_%

->

74

Al<§-IE|, choose a computation sequence for Z of the following

form, Zo=0’ leAi =Al""’ Zr, Zr+l’°°"zr+k = Zr-E-E,....Lr = Z
1 CRRL
C — i) - [— =k
where supp Zrk. A E{ and Zr+l Zr""’zr+k Z}j B 1Is part
of a computation sequence for Z. Our hypothesis guarantees
that the computation sequence can be so chosen such that Ai -ZE<0
r+k

Consider the following exact sheaf sequence

EgmnZ)

i=0 "i

Z
0 B,

2
i= i

“y

i=0 T4

~Z
i

E“anZj ]

2’..
BLEAVICI
= 1

=()

—nZ—-Zr ) > OG-

iz
B+1 =0 B

i=0 "1

D

g
O (-,2 2 -z -nz-z
i=0 B E Yoiq

1

.“ZEuanZ

’—ZE—nZ~Z

L
kD(-igozBi—zE—nz-z)

Z
0

3
. . <

¥z, #2.)+A, <0 for all A
= T

¥y
1=0 B4

—ZE~nZ~Zl) + 0

j“l)

—ZE—nZij) > 0

)
Toy1 L

'+ 0 -

CA e

HZE"HZ—Zj) is the sheaf of germs
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of sections of a line bundle over Ai of chevn charn class
9 i
—Ai (x ZB +7 l)l if IEI has at least iwo lrreducible
J i=0 74 _
components, from Proposition 2.5, A

R "wg‘.
E!n,:'. ij

2oand A, 2. . =1
i 3

for } # r+k. So Ai o ( R 72, +l.n? & Zi V.51 for all ] aad

l £ #,
all n, .Thus HI(MGLD(n ) ZB ~lm N, DAY
0 7y 0 4T 1= 3
T oo % s
(4,000~ L Z, ~2, -nZ~Z 1)

gm0 By B 3

E“I‘iZ“/Sj)) = g

F el

B,

2‘ .
and the maps Hl(M,i}(— L7z ~Zanzmz4})+ It
=0 4 o o

o

in (4.2) are surjective. Composing the maps, w¢ see that

; ) ,

b HEQU, O % 7, ~ZnB 2 DB, e ¥ 7 ot 7)) ‘
. B, E 3 PP | T A
i=0 T4 i=0 T

ri

is surjective for all n 2 0. Tor sufficiently iave

0 map by [7, §4 Satz 1, p.355]. Henca Hl{ﬁsiﬁ(u

If !E] = A ds a wonsingular elliptic curve, th
1, E

By Corollary 2.6, we know that @ =z, = 1. Sdnee

g
for all j by Proposition 2.5, A, *( % Z_ & _4udiZ,
i o~ BB ;
l:n:r) 3.
4ﬁ12"¥z1q}

[SEN

2
all j # v+ 1 and A, > Zy +
Trdl im0

i~
T A
i
ot
]
5
o

i

2N ( 2 v g . !
M, O~z 2, -2 -nz2-Z, /(% 7, “EeNZ-4 3y = 0 for all
: . B, "E g1 , B.TR 3
i=0 i - i=0 74 -

and n. A similar argument as above will show fhat

: %
=Z=4.)) = 0. In particulny Hl{hﬁlg(w LZ, =Z_~A Y)Y = 0,
. . B 73 .~ B E 1
i=0 71 _ 1=0 71

8] L ' O,.. n 2’ Q’
refore, H (M, 0 (~ T 2, -2)) » 1 0L O~ 2 2, -2/ O(= £ 2 ~Z_~A))
. B, & o B, B . B, E 1
i=g T4 i=0 74 i=0 i

surjective. We remark that the above arguwent is also applicable




76

to the following situation. With notation as above, there exists

A, o supp? such that A, # A, and A.'ZE < 0.
J J 1r+l N
Cage (2): [E| has af least two irreducible components

anid there « B

A chp =0 for all A, & |BE| where Ai ¥ Ay The proof of case (1)

A, 5w |2| such that e,=1, A;*Z, < 0 and

fails only hacause A, AL, doe.;, A, *Z.. < 0. Suppose first
i .. i i E
i Tkl

that A](x Aj = Alf\ Ai # ¢, Aléﬁ IE!° Choose a computation

sequence for Z with E = Zk’ Aik_m Ai’ and Aik+1 = Al- By
&
Proposition %.7, Hl(Nqﬂjim L ZB «ZEij)) = 0 for all j. Therefore,

i=0 T4

& ' f g -
) v )
WO~ 38 2, ~2.)) > H MO 2, =23/ 2, -Z2_~2Z2  .))
A T P M oo B TR e
L
is surjective. It follows that n® M, O (- ¥ ZB wZF)) and

=0 T4

i 4

HO(M,()Q- i ~2 )G~ ¢ 2, ~Z.~Z. , .)) have the same image R N ﬂ

L, B S B, "E "1

' i=0 “1

. O 0 ’2‘ " . ¢ & \
in B, 00~ 2 2 =20/ (- L 2 ~Z ~A5)).

. B E : . B, E L

=0 T4 1=0 P3

g 4
a P =
0+ H (M, 3{~ I Zp ~zszk}/(j(~ % Zy ‘ZE‘ZR+1))
i=0 i : i=0 i
L - ¥ T 7 s 7 gz )
A 115\\\‘) . MB' E k) L JB_, E k+1
i=0 74 i=0 74
- FO(F‘LD(~ % AR/ )/(}(—'% Z. -=Z. =Z.}) >0
L U YBLTUR L OBTOET Yk
i=0 "4 i=0 i

2
s an exact sequence., Thus the ilmage of HO(M,RD(— Z ZB MZF—Zk)/
' ‘ | i=0 i

% o L
~ Y S i i ind ini ) -
( 'EOZBj 2y Zk+1)) which is dinjected into H (M!xj( iiozBi ZE)/

wZFmAl)) via the natural map is contained in R.



3 ‘ 9,
1f 1%, O (- & Ly Tyl ) (o B 2 o7, o)) # 05 then the
1—0 1 i joe _;r: U B l i i{ T'}.

elements of R have no common zeros on A, ~ A A_ ag section

1 1
' £
of the line bundle L. on Al zzsociated to()(~ 2 Z vZ )/O (~ Z Ly =2 ~A1) .
' i=0 i=0 i
£ BOM, O (- ¥ 2 >/ 5z Ae(§ 7
: (M, O (= 2 2y LTy ) Ty <Ry gd) = 0, then Ay (A Zp AZy)
i=0 "4 =0 T4 i=0 i
& N 3 :
Herrce H (M,k)(— LI, -2 ) L4, <7 ~hy) = € Tt suffices to
B, E S 2, E 1
i=0 "4 s} T
£ 2
prove that HO(M,tD(" 5 2y uzp}; . Gi, G- ¢ Zy 1y )/{}( E Zp ~Z ~A1))
i=0 T 7 =0 O 1=0 B3

is nmot a zevo map. Since Ay EEE? Ayt Zp=l and Ay O Ag # ¢, the

coefficient of Ai i 2y, te egeal to 1. Hence AihZE Zg" ZE =2
2 2
It follows that A.( ¥ ZB +ZU} L o=2 and dimHD(M,iD(w 7. ZB ~ZE)/
togs0 T 1=0 i
’ &
Oz ZB _ZEMAi)) » 3. The image of pr 5" (M, \?(“ by Z “ZE)) -+
=0 3 ’ =(} i
o ¢ 53; . . . .
B M, O » B -Z )/\}(m L T MZFmAi)) iz a subspace of codimension
i=0 i = O L

3 9

1in HO(M}Q)(W )3 ZR A )/\\(m b ZP mZF»A{}) and the elements of
i=0 i =0 77 07 T

5 have no common zercs as sectimns of the line bundle Li on Ai

g g
associated to CD(“ L4, =2 Y/ (-~ F Z wZ,mAi} by Proposition 2.8,

q={) B Bro JmO 7 B
% 3
It follows that HO (i, )(~ ¥ T mZg)) B, O(=~ ¥ Zy -7 )/0 Ly =Zg=Ai))
i=0 "4 =0 ° i i= O i

is not a zero map.
In order to findsh the proof of case (2), it remains to

consider those Alﬂ$ |E| such ihat A11\ Ai = & and the computation

sequence for 7 staviing frow Al aust first reach'Ai in order to

Choose & computation sequence for Z of the following
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form B = Z_, Ai = A, A N\ A # b, A, = A, and

19

Ai . kt+1 Ef k + t, are distinch Lo each ofther and not contained

&
Since H (O (= 2 Z, ~&.-Z.)) = Q0 for all j by
i=0 "1

2 2
Prop031t10n 2.7, ke (M VICE A hdd T B (m L/(m L 7., ~% }/
, BB B,
i=0 i i=0 74
r % . . .
(=% 2, ~Z.~2Z,,.)) is surjeciive. It follows that .

B K k+t

i=0 71
g,
o % 3 50 NP = 2 N
B (M, O(m'z Zyy ~Zg)) wnd HOQ4 O~ I 2y 20/ O D % 2 ~Lpty )
1=0 "1 dm i i=0 1

A
have the same image R in u° i, -0 7 “,)fk)(_ E A -7 ~A2))
. B, "k L
i=0 71 i=0 1
0 - 59(M ¥z Z,, WIL R R )
= OB, Peppg) AT B Ly Ry
i=0 i=0 "4
S EOOL (- B 2, 2O (- E B -2 ) f
B, CE/TMAT Nty TR TR
i=0 i i i

) 7
s MUAVICHR NS VIVICE R S A AP IL
{=0 Pg i*U LT T

. &
4 . N m o S o 3 .'r. Ky -— -
is an exact sequence. Thus the ge of U (M, .E ZB. Zg 4k+t—1)/
i=0 T4
3 2
(- Z, -7 }) which is ipjected inte H° (M (- NZ )/
.~ B, B .
i=0 i LﬁO 1
2
L7z Z.-Ay)) via natural iz contained in R. If
oo B, TR :

I3 ¢
M, O~ % 2, -7~z /0~ 1L Z, ~Z ~Z . Y) # 0, then the
: ixo Bi E.- T{‘Tt‘“L . 1‘{“ .bi }-a kl L
elements of R have no compon zeros on A - (A, N A ) as sections

}—'~

1 1
g Tlebt-1 .
'th 1 le T v A, asscociate S (- AR M (- A .
the line bundle Il o 11 3 ed to ) ( JE ?B. ZE)/k)( b ZB. ZE Al))
1=0 71 i=0 ~1i
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L L

IF HOOM, O (- L 2. =7 =7 )/OC— PA Z -
e Bl B kebke—1 i
i=0 T4 O‘

ZE k+L)) 0, then

) &

Y = 0. Hence B0, O (- T 72, -2.)/ (= L Z, ~Z_~A,))

b Ty iy B, “E 1
i=0 T4 i=0 "1

But by induction, we know that the elements of image of
1704, 0 (-~ 3 7y ~2)) > 10, O (- 5 Zy »z g0 G 5 7y 2 A )
=0 o1 i= O O i ktt-1

have no comwon zeros om A, — (A, N A, ) as sections of
ktt-l kel Tkt

: %
the line brndle Lj on A, associated to C)(- b ZB —ZE)/
Tert-1 edt-1 i=0 1
o g ' o %
OG-8 2, ~2,-A, ). It follows that H (M, O (- ¥ Zy =Zp))
i=0 "1 7 Tktt-1 i=0 "1

3 %
> T, O 3 Zp ~2p) /O (= L 25 ~Z.-A,)) is surjective. Q.E.D.
i=0 U1 =0 °1

Covellary 4,10 Let m: M » V be the minimal good resclution
of normal two dimensional Steln space with p as 1lts only weakly

elliiptic singularity. Suppose Hl(M,C)) = Cz and ) is

v p
Gorenstein, Let Z_ =Z, Z, ,ceesZ, , 2 =Z_ be the elliptic
BO Bl- BE B£+1 E
sequence.  Suppose ZE'ZE = «}, Let Ai§; IE[ be such that
o L
* Z. = -1, Let 8 be the image of p: H (M,Q)(H 2. -Z.))
i . 7R i=OBiE

g 2
+ 101, O ¥ 7, 2.3/ O(= ¥ 2, -Z,-A)). Then w0 = O 5 zg )
- i=0 °1 §=0 °j =0 ®

rovided that the following condition holds. Let Al(k IEI and

n A

: g
1 # ¢, then either Al'( A +ZE) < 0 or the elements of

B,
=0 i
1ave no comnon zeros at Alf\ Ai as sections of the line bundle

. - R’ . 2 |
son Ai associated to U (“‘-'-E ZB .'“ZE)/O("_Z ZB,_ZE“Ai)'
i=0 i =0 13



Proof: By the proof of fhaorem 4.9,

Corollary 4.11: Leit T M+ V be the minimal good resolution

of normal two dimensicnsl Stein space with p as its only weakly
s . 0 on ﬂ Lo s 2 ' .
elliptic singularity. Suppose B (M,)) = € and VC)p is
Gorenstein. Let ZT =, ZB ""*ZH s ZE be the elliptic sequence,
2 X

Then the multiplicity (j ) o . If Zptly S -2, then

multiplicity (O )
v P

.. .
Proof: Theorem 4.9 gays that w ) Q;[D(_ pX ZB Y. Hence the

i=0
maximal ideal cvele ¥ colative to w is greater than or equal to
2 .
¥ Z. . By Theorem 7.37 multiplicity (\9) ) 2 - Y+¥. But
. B, v op
i=0 71
A 2 2 2
=YY 2 (T EZ.Y e (B Y, )=~ L Z by Lemma 2.15., Hence
. B, s B , B
i=0 i i=0 71 1=0 "~ 4
v . g .
multiplicity ( ) Y I -5z 2. The rest of the corollary is
vopt o . Bl _
- =0 T4
easy.
£3 Calculation of Hilbert Functions

Suppose Hl(Mgfﬁ} = @2 and VC)p is Gorenstein. In this

section we calculate the Hilbert function of vijp' In particular,
the dimension of the Zariski tangent space Is computed. Hence we

know the lowest possibic embedding dimension of the singularity.
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Theorem 4.12: Let V be a normal 2-dimensional Stein space
with p as its only weakly elliptic singularity. TLet w3 M > V be
the minimal good resolution. Suppose vi)p ie Gorenstein and

Hl(M,Q)) = Cz. Let Z, =Z, Z, ,...,Z, , Z_ be the elliptic
BO Bl BE I ‘

. 4
sequence., If ZE-Z % -3, then m HO(A,LD(“n( b
. i=

-
. Z; )0 0 2 0.
4

0

Proof: The proof is 1ong'and tedious.

Theorem 4.13: Let V be a2 normal 2-dimensionagl Stein
space with p as its only weakly elliptic singularity. Let m:

M + V be the minimal good resolution. Suppose vﬁjp is Gorenstein

1 2 . Gt s
and H (M,()) = €7, Let ZBO?Z, ZB."°"ZB£’ Zg be the elliptic

a2 2
% -3, then dim mn/mnll w -nf % 7 2), nz 1,

sequence. If ZE-ZE

Proof: The following long cohomology exact sequence

‘ %
0+ 80,0 (=n £ (1) ¥

25 /0 -G+ 3
i=0 i i=

z. ¥ +u°m0 ) > 1000 )
0 Bi ZB % ( niéozB

i=0 i i

2
(1) % 7. )

L 3
+ Hl(M, On T2 )/0 (~(+1) 5 7)) + HEM.D
i=0 Bi 1=0 Bi ' OZB
o .
R

- wta, O &, ) o

o

: A
ays that dimHO(M,O(-n EOZB ) 1O (= (o) )/
i ~0 By

: R N
Zp )Y ~ dimHT (MG (0 2 B
i a . '._:: $

i=0 71 i=0 "1
(~(+1) T Z_ )
i=0 Bi
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. O. ' 7
= A, Oy § g ) ~ anit’ (1, Oy 52

i=0 74 0 B

. .0 R
-dlmH(M,O %, )+ dinH (MOnJl

e By i=0 B

= y((n+1) Z Z ) - x(n E ZB )
i=0 1 i“O i

M

4 £ 2
= y( L ZB ¥+ wén ZB ) -~ n( & ZB Y{ 3 ZB Y - X(n T %
i=0 71 j=0 "1 i=0 74 i=0 74 i=0 i

Consider the following cohomology exact sequence

) A
0 HD(M,KD(—(H+1) by ZB ) +‘HO(M,\D(~n % ZB )
i=0 71 i=0 "1

-+ 1%, O (-n ; Zy )/0( (n+1) ¥ Loy )) > 1, O (—atl) ¥ Zg )
1=0 © i=0 i=0 °1

- 4
S B, O (on ¥ zy ) + 1 at, O (=n % 2, )/ (=(ntD) T 2 )) » 0
i=0 "1 i=0 71 i=0 "1

n+l

By theorem 4.12, dim m / m 1° (M, O (-n % Zg ) /u° (M, C)( {(n+1) Z Z j))

i=0 i i=0 i

i

dima® (11, ) (-n % Zy )/O( (nt+1) z Zy )) - ddmi™ M, O (-nt+1) ¥ Zy ))
1=0 By 1=0 B3 i=0 B

+ dLmH (M, ﬂ)( -n % Z )) - dlmH (M LD(—n Z Z )/\9( (nt+1) Z Z )
1~0 1~0 i=0 1

2o

-n( ) + aimHT (M, U -n : Zy )) ~ dingtt M, D (- (n+D) ¥ Zy ))

in 1 i= O i= 0




" " 2!
i {-n L7
i=0

. L
He claim that H™ (i,

B

%
DNV LGNNI AN ~Z,)> 0
=0 "1 i=0 "4

)
N 7 R
B EAVAC R

5
= (-0 ¥ Z ~Zy 1
i':so i S i:—:o

% L -
> \OCa T By o2 3O 2 2 ) >0

-7
g Ty T g By ER

4.9

wWe

Theoran

By the proof of

&
£eu’0,0(n T 1,
1=0 *
g
g U 7y
i=0 i

1) is nouzero.

o1, V(-

ui:O i

Hzl

ochomology exzact @

W, J(¢n L Zy YA (
i=0 1 i=0 i

Yy Y€ for alln 2 1.

k T =
0

sequence Lor 7 of follow1ug form Zoﬁﬂjn‘.,z
2wl e AN =Z, =ZL. Consider
17 Torr o
sheaf exact
1 L £
0> O(w £ 2, «2 Y/ n(~ % Z, ~E) + O n 2z
_ .~ B, LT . B, , B
i=0 T4 i=0 T4 =0
, 9
-+ Q)(wn Z_ AN T oA, 2 0
. - B, 71
() i=0 T4
g ¢, £
OCn 2 2, ~23/ 0 L Z, ~8) » O (-n L L,
7B 277 . .
=} i=0 i =0

83

Choose a computation

SLTTERRY I SO

the following

~7 )/O (-n_ ; Zy
1 0

—E)

=2,) U(—n 7 Zy =Zy.p) /0 (n ; Zp ~E)
B, .

i=0 i 1=0 i

know that there exists

1)} such that the image of £ in
The usual long
gquence argunment will show that

' 2
-E}) ¥ €. Since Hl(M, Un & Zy ~E))

i=0 i



the following exact sequence

1 g 1 %
B4, O (-n & Z, ~B)) > H (1, 0 (= T

Zn M)
i=0 O3 i=0 >4

g g
SR, O (-n 1 2y /0 (=0 I 2, ~E)) + 0
. L2y
i=0 4 i=0 ~i

£
will show that Hl(M, O(-n X ZB Y)Y €, Hence dim mn/mn+1 =
i=0 71
%
-n X 232.
i=0 74
§4 Absolutely Isolatedness of Almost Minimally Elliptic

Singularities. 7 -
The name absolutely isolated singularity is given in
[5} and [16],[17] to a two-dimensional normal singularity,
realized in @3, which can be resolved by means of a sequence of 4

0 processes with centers at points. It is proved in [5] and

[36] that double rational points are always absolutely isolatéd

:and, conversely, an arbitrary double absolutely isolated singularity
in E3 is ratienal. In this paper we shall say that a two-dimensional
isolated singularity is absolutely dsolated if it can be resolved

by means of a sequence of © processes with centers at points,

ithout requiring, in what follows, that it should be reélized

. lf is in this sense that Laufer proved that minimally

elliptic singularities which are not double points are absolutely
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Theorem 4.14: Let T: k * ¥V be the minimal good rezolution of

2 with p as its only alwost minimally

-

g . . : e . . f . . s
eliiptic gingularity. 1§ Z_+% - -3 and vL)j is Gorenstein, then p
¥

is absolutely isolated. Horecover, blow-up p ot its maximal dideal

ylelds exactly those curves Ai such that Ai-Z > 0. The singu-

larities remaining aftdr the bl are the rational double points
& P

and a minimally ellip:

ic ity corresponding to delecting the

Ai with Ai'z > 0 frow the excepticonal set. The self intersection

number of the fundamentzl cyele of the minimally elliptic singularity

is less than or equali to -3

The proof is long and fe



CHARTER V

TPED DUAL GRAPHS

HYPERSURFACE ¥

One of the important questions in wormal two dimensional

€2

~ation of all weighted dual graphs

singularities is "the classi;
for hypersurface singularitiez”. It is known that in the weighted
dual graphs for hypersurface singularities, the K° cycle must
exist, In this chapter, we zeb a lower estimate of the dimension
of Zariski tangent space in terwms of the fundamental cycle, which
will give us a necessary condibion on hypersurface weighted dual

graphs. In section 2, we give a complate topological classification

of elliptic double points. Morsover, sowme of the defining equations

are found. In secticn 3, we ldist all poszible weighted dual graphs

of hypersurface singuvlarities with h = dimHl(M,{)) = 2,

§1 Lower Estimate of the Dimension of Zariski Tangent Space
and Upper Estlmate of Multdiplicities of Hypersurface

Singularities,
Theorem 5.1: Let w: ¥ -+ V be a vesolution of normal two
- dimensional Stein space V with p as ite only singular point. Let
‘Z be the fundamental cycle. Then

dim m/me 2 x(2) 7% + im0, O (<)) = dimi Qo O(-22)) .

- . ? :
If p is weakly elliptic, then dim m/m 2 ~Z-Z + dimﬂl(M5Q)(_Z)) -

dimHl(M,{)(*ZZ)). Suppose @ is the wminimsl good resolution and p
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igs a maximally elliptic singularity. Then dim m/m2 Z =07,

nt+l
m =

Moreovey, if Z_,+Z, £ =3, then dim,mn/ -nZ+Z for all n % 1.

E."E
A .y 4 . - o] > » o]
Proof: It is true that H (A, §(-2)) =dir lim 0" (G, J-2)), U
a neighbarhood of A. Since 2 is minimal, m ¥ %A, OG-2)).

)
Since m % HO(A, O(-22)), we have dim m/m? 7 dim HO(A,{](—Z»/HO(A,(D(mZZ)).

The feollowing cohomology exact sequence

o » 1, O-22)) + 57¢a, O ¢-2)) » B4, $-=2)7 (-22))

+ b, O22) 1, OG> B G, OG0/ 0=22)) > 0

says that

ait®(a, OC-ZNMC A, O(=22)) = aink® (A, O (-2 /1 (=22))

dimﬂl(A, O(~22)) + dimﬁl(A, O(-2)) - ‘d:’LmHl(A, D (-2) /O (-22))

]

i 0, O (<2) ] O(=22)) - dimi- (1, O(-22)) + dimit’ 01, O (-2))

dimi™ (M, §(-2) /O (~22))

by Lewwa 3.1 of {20].

Look at the following cohomology exact sequence:

0+ 1701, 0 (-2)/ O (=22)) + 108, O,,) » 10an, 0, » 1 06,0 -2/ O¢-22)

ruta 0, » utan ) +o.

ince HO(M,\DZ) Y € by (1L.6) and HO(M,\Dzz) > HO(M,(SZ) is not a
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zero map, we have two short exact sequences

0 > B, OC-2)/0 (-22)) + B4, 0, > 8701, 0,) + 0

ZZ)

0 1, 02/ 022 + s 0, 10 0,) » o

Hence,
dim m/m” > aieH®QM, O(-2)/ O (=22)) - dimit @, O (=22))

4 ', O(-2)) ~ dimi 1, O (-2)/ O(-22))

= dimHO(M,OZZ) - i’ 01, 0,) - dinlt (1, O (~27))

+ dir;ﬂl(M, O(-2)) - dimt o1, S(-2)7 O (-22))

= x(22) - x(2) + dimgl(M, Q,,) - dimﬁl(m,()z)

- dimﬁl(M, O(-2) [ O(=22)) + dim;zl(m, O (~2))

- dimHl(M, O(=22))

= x(22) - x(2) + diﬁﬁl(M,Q(Wz)) - dimnt 1, \) (-22))

1

= x(Z) ~ 27 + A, O (-2)) ~ awmr’ G, ((-22)).

If p is weakly elliptic, then X(Z) = 0. So dim m/m2 z —-Z-7

atort e, O (-2)) - dintt (0 (-22))
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Suppose m is the minimal good resolution and p is a maximally

L1

¢lliptic singnlar point. We claim that H1CM,{)(=nZ)) v e where

242 is the length of elliptic sequence Z, .Z. ,...,Z, 5, 4,7
BO Bl Bg B B2+1

Choose a computation sequence for Z of the following form

A= Oyaa0ey, 4y % Eyece, & = Z eyl TZ yeeceyh TL seeny
o k Y, E ry B 7 r2 Bl

Z :ZB =7, Consider the following sheaf exact sequences

=

o - 0 (-«-nZ“Zl)/O (—nz-i% zBi-zE) -+ O(ng)/O(ng-- L7 '-z )

1

» U¢nz)/ §(-n2-2,) + 0 .

o g ' - 2
0 - @(-—nZ—Zk)/@(—nZ—-.Z Zp ~Zg) O (nZ-Zy )/ (nZ- 3 Ly ~Zy)
i=1 "1 N i=1 i

+ OCnz-z,_ )/ O(=nz-2,) >0

. ' o ha
0+0 ("nZ"ZBl)/O (—nz--iilz ) -_-‘ZE) -+ O (-—nz—_zrfl)/o(—nzu _-2 B."ZE)

Pi i=1 1

+~ 0 (“HZ_ngul)/O(nnZ—'ZBl) >0
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h I 2
0+ O~ L 2 ~2)/ O (02~ % Z, ~Z) * 0 (~nz~ E Zp, YO (~nz- T Zp )

OB, CL e : il "ty

i=1 i i=1 74 i-1 1 i=1 1

h h
+ () (-nZ~ z. )/ Oz I Zy ~23) > 0
i=1 1 i=1 i

h h 3
0~ \(mz- ¥ zB_-zk)/O(-nz-» EI Zyy ~Zy) O(-—nZ—- A -~Zk P/ \O(mz= E 2y =2p)
i=] Ti l 1 i=1 1
> Unz- 3 2y -2, )/ 0 (- X 2y ~2y) + 0
i=1 71 i=1 7di

ht1 ) h [3
0+ O(-nz~ 3 Zy )/O(—nz—- % Zg -7 ) > O(-—nz- b ZB‘--zr )/O(-nz- % zB —zE)
i=1 1 i=1 i i=1 i 4~h i=1 7d

h . h+1

-
+ ) (-nz- ¥ Z W& ez T 25 ) >0
i=1 Bi 1 O i=1 i

L %
0> Oz~ X 7, ~Z )/O(mnz— : zB ~Z g > Oz~ 2 2, )/ () (-nZ- z Zo ~Zpg) ﬂ
i=1. J. =1 _ i=1 i =} "1

% 4
- O("EZ”ZZ )/‘O(HZ-"EZ —Z)—r()
i=1 i=1 i

&
7, D O(nz- T 2 <2

7.y >\ % yA
Zy ~Zp) > \U(mde L 2y -2 . .
i i=1 71

%
0 > J{-nz- 3 2y 2> [ O(-nZ- .
i=1 i Cd=1

i=1 i

N o=

9 g
- O(“HZ".E ZB,'Zk-l)/O(”“Z‘.E ZB.—Zk) >0
i=1 71 i=1 "d _

B,

: 9 g g
0+ O(nz~ 31 2 -2 )/@(-nznzz -z)+\](—n7—-z 7 -7 )/
. B r r -2
' i=1 4 o =1 i=l "1 o

LQ (—nZ-« % ZB —ZE) - Lf)(—nZ— % ZB.qu _2)/@ (-nZ- % ZBi-Z Y+ 0

1=1 °i i=1 "1 Fo i=1 Tt
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h 2
Ve claim that HO(M,{)(~uZ—3 2, =Z, 3/ QCni- L Z, =-Z))
B, “4~1 e T
i=1 i i=1 7d
h h
> HO(MS(}(—nzw % ZB ij_l)/(D(rnZ— by ZB ij)) is surjective for all

i=1l i i=1 i

-1 Shsg-land 0 24<2x The chern class of the line bundle

b1
O ooz ;
o 1 a1 it \ 7 e - N Z-
associated to (-nZ- % Zy ijl)/()( nZ iE

Z, —4.) is
i=1 %4 By 3

171
h
-~A_.L c(nZ 4+ L 7. + Z | = =A, *Z -which is < 0 for j > 1 and

L) = -A, Z,
" i=1 By 371 iy 3L

G for j = 1. For j > 1, the claim is trivially true because

H
ZBi—Zj)) =0, For j=1,

[s]
" (1, O(-nz- leB."ijl)/O'(‘nz"._Z_
- 1 l""‘

i 1

by Proposition 3.13, we know that there exists
I
fe HO(M,\D(wnZ~ by ZB )) such that the image of f in
i=1"4i )
o h h
H (M, OC-nZ=% 72, )/ O(-nz2- 7 Z
: . B, . B,
i=1 71 i=] Ti
o h h S h
H (M, O(-nz~ £ 2, )/ (02~ % Z_ ~Z.)) ~ € and H (M,(J (-n%~ £ Z_ ))
. B. s B, 1 . B,
‘ i=1 71 i=1 74 : i=1 74
o h h
> H M, O(-nZ~ ¥ Z, Y/ O(-nZ- I Z, -Z,)) is surjective. Now
. B, ., B, "1
i=1 i i=1 71

—Zl)) is nonzero. Therefore,

the usual cochomology exact sequence argument will show that

Z.)) ¥ €2+l. By Proposition 2.7,

Lo, O (=n2)/ O (-nz- ¥z .

+

1

1B

i 1, O-nz-
: i

| e

ZB ~ZF)) = (0, 5o the exact sequence
s A

1
1™ (M, ) (~-nz~

. B,
i

171

I M=

Zy =Zy)) Hl(M, O (~-nZ}) - Hl(M, O (=n2z) /O (-nZ~ % Zy —2p))70
17i i= ’
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A &
shows theat I'L{ {1, ) (-nz)) ¥ € l-l.

dim ‘51?,.-";12 Z =77 c'iimlil(M, O (-Z))y - d:i_mBl'(M,U (=22))

if z "Z.E < =3, then -Z-Z 2 3. In this case, all the inequalities

above sre asctunlily equalities. In particular, m2 = HO(A,O(—~ZZ)).

By Theorew 3.15, we have mom HO(A, O(-n2)), n & 1. Hence

dinm :\LTlffizltHIl = diwi® (&, O (=n2Z)) /a° A, (o) z))

= diati” (A, O(-nZ) /) (~nZ-2) )

- dimt (A, OC-nZ-2)) + dimit(a, O(-nZ))

- it (A, O(-02) / O (-nZ~2))

- dinit® (i, O(-n2)/ O (~-nz-2))

- dimﬂl(ivg Onz)/ O-n2-2)) - (41 + (2+1)

dimi” (1, O

i

) - dimHo(M,OnZ) - aimton, Oy

nZ+7z nZ+z

+ dimﬁl(}i,enz) = y((n+1)Z) — w(nZ) = -nZ-7

Q.E.D.



Corollary 5.2: Let w: M = V be the minimal good resolution

of normal two dimensional Stein space V with p as its only maximally
elliptic singularityT Suppose p 1s a hypersurface singularity,
then Z+Z 2 -3,

The following theorem of Laufer and Lipman, gives an upper

estimate of multiplicity in terms of dimHL(M,Q)).

Theorem 5, 3: Let V = {f(x,y,z) = 0} have an isolated
singularity at (0,0,0). Let n be the multiplicity of V. Then
dimﬁl(M,Cl) z ﬁﬂ:&léﬁ:gl. where M is a resolving manifold of V.

Proof: The proof is a refinement of the proof of [24, Theorem 3.14].

§2 Topological Classification of Weakly Elliptic Double Points

In 1964, M. Artin gave a complete topological classification *
of yational double points. In 1970, Wagreich proved that for
double points, Z:7 2 -2. Using this fact he listed most of the
possible weighted dual graphs of weakly elliptic double points.
Using the fact that -K’ = the summation of aﬁ'élliptic sequence
and a combinatorial argument, we list all possible weighted dual
graphs for weakly elliptic double points. Moreover, all these
weighted dual graphs abtually arise from weakly elliptic‘double
points because we can find a defining equation for eacﬁ of them,
3The defining eguations have been found by an unpublished

echnique of Laufer.



Proposition 5.4: be 2 walghted dusl graph including

genera for the vertices,

of weakly elliptic singularity. Suppose X’ exists. Let Z = 2, ,

Then %2 S 7 «Z. 5 u..
JaRExy; YB L

171
- 7 P . . "A,V
ZE. 1t Zg 2y o B 5 then A_.‘ i

SRSt -
for all Aj [ Bi, Aj & B,

i
i
3]

2ty S 2y

Proof: TFor 0 £ 1 =2 If Aj " B,

then A,* (4, *+2, ) . :
3B By 1 -
< 0 by the definition of elliptic s

3

A *Z
J Bi
A.'Z e
3 Pi
Z Z 9 itEt, Z. “Z
By Baa
that (Z, -7 y o+ (Z VARV YA *Z .
3 B.OR, .
B B i P By B B il
Suppose that 2 We want to

CAULNCR. Sikee

i
3.

£

1 in this Y 50, We ohserve that

v W

cycle, Tt follows

BB P B
-2 for all Aj = B and A,
- ")

2 2
) = z) - ?_1 =
+1 By B

prove A,~A, = Since
i 1

- . oy
(ZB, ZB ) (ZB ZB

i i+l i i
. (Z + 7 ) = {J.
B, Bin

A

Recall i

1

0 < AK = -A (%7 48
3 i

I
i
=
P
0
T
=3
+
+
~1

(7 T

+E)

#
e
(SN

fzted to ths minimal good resolution

94

=4,
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Therefore 0 = A +XK* = 2g, -~ 2 = A A, = «2 = A +A, and A, A, = =2,
J BN J ] J J o

Q.E.D,

Propogition 3.5: Let. ¥ be a weighted dusl h_qph incluatng

genera for the vertices associsgted to the minim:zl good vesclution

of weakly elliptic singularity. Suppose K* exisis. Let %4 = ZB s
o

s Z. be the elliptic sequence. If Z+Z = -1, then there

cen 7 e

Bﬂ
. = —Z g chat 2 = 7 &1
exists a unique Al l’ Al Al Z such th Ly +Al 1l

- ] == h t cA = the
Alfl Bl # ¢. Moreover, if Azen Bl such that Al 5 1, then

AZQZB = -1 and zz.ﬂ 1.

Proof: By the definition of the ellipiic sequance and Z+Z = -1,

there exists a unigue Al o Bl such that Alfl E? * ¢ and Zi = 1,

By proposition 5.4, we know that Al Al e -2, Since z, = L

A1°r < 0 and Al Al «2, we conclude that 2y 1 and Al cannot

intersect any AO<$ Bl with AO # Al. Hemee A2, = -1. Otherwise

A jjT
. = {1 ] . > ' = A
A2 ZBl 0 would lmply that Z, = 2. So i ZB} P
Corollary 5.6: Let T be a weighted dual graph including

1

genera for the vertices associlated to the mininzl good resolutlon
of weakly elliptic singularity. Suppose K? exists and 2 = 72 ,

...,ZB = ZE be the elliptic sequence. Tf Z¢Z = -1, then T must
2

be one of the following forms.



torus
B S R
=1 -2 ~2
S
L»o0
- 1 T - - - - i

96

664

2*_‘-::;\33~1—

z" = Gy xz*lﬂ)(\jz+ xS A )

77 = oy )OI T

Y o3
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& e 3 . 7. = \3 A

~ e = T SN SRR | e - 11 - e =
-3 2 WZ\_\H“V‘_;L -2 -3 -2 -7 Z, 12 2 2 i i
n-1 70 >0 2t = 4:1“ i)( ST
‘Q/ = Ué ‘3
_"2 : s
2 I . ‘
a0
b e et = a3 At

R %0 . 13 _¥ 7('““‘

Py .
o s RS Z= 12343210y
H('h"r
_sz: 2t =y R THH
2=2 )
1 3
T ATy T, L= e s sl 1-~~-1

> ey - ’
130 77 = \35 4 st
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Proposition 5.73 Let T be a weighted dual graph including

geneys for the vercices asgociated to the minimal good resolution of

ularity. Suppese K exists. Let 2 = 2. ,

weakly =1lliptic

B
o
sy FP; . L?:E be the elliptic sequence. If Z 72 = -2, ZBl'ZBl = -1,
then T must be cne of the following forms:
A, By, A, 4B,
&2, AZ, = -1
Bl 2 Bl
z, = 1
2A1+D, is a positive
cycle, ﬁ’D = }31
22=3, AZZ ={, ZQBI,
By 4
Ay & By

where 1‘,1,1 ig the graph of B..
i, 3
i

Proof: By the definition of elliptic sequence and the fact that

Z+Z = -7 we have the following two cases

Th exiat X B
(1) There exist AP AZ(‘ P}.’ A B1 # ¢ Az('\ ]31

\ =+ o paco ® PR = . ==
Al # A,Z. In this case, Al Z 1 A2 7 and zl 1 Zye For
£
= 2, we hawve ks (=K7Y = X +E) 2 A - = Ua
1,2, we ha 0 Ai ( K?) Ai( L ZB R Al (Z+ZB ) 0

i=0 74 1 .

S0 0 = ~4 °K* = 2+ A A, and hence A A, =<2, 1=1,2,
: I i1 i 1

A ez B, asuch that A A

qs Ay E By sud 1743 1, A4, = l._ ‘Since

2 74




°Al
B
1

ey u A2 U Bl.

< 0 and AépZB

.["S.l ::.AZ ;A =) s 2 l 5

2

_éA

ki

AL
J

1

< 0.
1
As

ZB
i3

KB

since -1, z

3 L

which a contradiction.

(I1)

A

this case, we have either (A) 1

and By

2, or (C) AlﬂZ = -1 and

-

Tn  (A),

So either Al-(K5)'

Ay (-R?) = A

It

(-K?) =

= -2,

0 or Al-
Ay

is

‘E\L

1 + 2 =0, l.e., A

"M

a contradiction. If Al'(nK’)

such that A A l. The

172

-3 and =z

1
0, i.e., A=A

= 1, there is n

1 U3

So A2'Z

1°

heace 2 = .

A+ Z
1 By
In (B), 0 2 Alé(—K’)

By

= A, (
s

=0 and A Z_ =0, 2

1 B,

We have Al-A

Then Aj

1.

-2 an

D ke b

il

oZB

0, i.

A L . — .
n % Al, we have Ai 7z = Ai

i

L
A KT = A (E 2

+E)
i=0 B

i

and A *Z
guch that A, +A

j 1
Moreover, we know that =z
It follows that A

Z= A +A_+ Z

There exists ique A, %= B
exists a unique ]“ﬁg 1

1€

Moreover, we have =z

AZ'Z

> .
0 or Aj A2

1 -1, there is no

>0, t.e.,

1. Hence

3 4

372

, we have A
l

and A 2
3 Bl

'ZB =1>0,

12 1

3

This case cannot occur.

such that A

1 In

4
N Bl F b,

-1

*Z -2 ané zq 1, (B AI‘Z =

1.

A

1

7 = -2+1 = ~1.

B, )

If Al'(—K )

H M=

2 Al‘(Z+ZB )
' 1

._0’

i=0
-1 then

.

It follows that AI-Z 2 -1,

-3.

This

= =1, then Al Al

a4 .
ince Al A

such that

Let

n Azé; B,.

o Aiﬁz

_2’

Bo Ay 74

9 = 1 and

-1 and we are in (1).

Zp -}E) >A (z+z )

£
(Z 0.
= l .
Bl such that

Ay %5

24+ A A,
L1

O
i= R+l. Let A_2 <

d A2¢§ Bz For any

It follows that

1

€., Ai'Ai = -2, We claim that
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7y > 1. TFor if Zy = 1, then supp(ZmZP } consists of those
R

A E? Bl' Consequently ZszBz = (ZNZB Yo (L%ZR ) = 0, However

1 1 1
= ~2+1 = ~1. This leads to a contvadiceion. Since

o

VAR ZB2
1
z, = 2,2z, > 1, Al-Al = «2 and Al'Z = ~1. it 18 elear that

1 2 deg Al 2. If deg Al = 2, then there exists a ﬁniqua

2

3 . = =L Z, = ei’ ' be & aubgrs £
A3‘§ Bl’ A3 Al 1 Z4 1, and z, 2. Let vy be the subgraph o

I' consisting of those Aiﬁk‘Bl’ Ai # Al . Biuce ni*Ai = -2 for all

A, in Pl, ?1 is a graph of rational double p Because 2z, = 1,

3

i
it is easy to see that this case camnol occur., e

.

conclude that deg A, = 1, i.e., A= A UB,. fionce z, = 2,

1 1 i ) 1
Al'Al = =2 and Al‘Z = -1, we have 2, = 3. Thoeo we ave tu (2).
¢
> e {oT? = . oo i A e LY [
In (C), 0 2 Al (-X™) A1 (,L AB.+1} = Ay (A+ZB ) 0.
i=0 "4 1
@ ‘K7 o= Y = <4< g fon 4 b, such th
Then Al K 0 and Al ZBi 0, 2 24 2 &FL, fet ﬁzs; Pl uch that |
. == . P A . = e, 4 M= Erd 3 ?r‘, / + 12 .
Al A2 1. We have Al Al 2 Since z, d A1 z 1,
= AT = So Z = ; bt then Z0Z = (A +
A Al (] Bl and z, 1. So Z A1 + ZB]° R hen Z°Z (Al+ZBl)
. (A1 + ZB ) = Al(A1+ZB Y = 1 which is absurd. Q.E.D.
1 1
Proposition 5.8: Let T be a weighted duzl graph including

genera for the vertlces associated to the mini: good resolution

of weakly elliptic singularity. Suppose K' ewists. Let
Z =17 ,...,ZB , ZE be the elliptic sequence. 1f 7Z°Z = =2 = 7_ +7%

o 3 _ 1 71
then T must be one of the following forms!
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™

(3) : ' Z=1 2 2...2 & . A =R,

e (Y E

B ' '
- 2 - 2 - 2 - 2 A. \\.___?-;,.y PETR LR, [~
- j\x/, 7y = ta Aythy 2

820 r
By
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(5) Low 200D
L is a positive cycle, !DI = Bl
v, = 3, A Z, =0,
2 ;
2 2 By
hp Byy Ay By
where T is the graph of B, .
B i
i
Proof: We [irstly recall that by Propoezitiocn 5.4, Am“Ai = -2 for
all Ai€¥ B By the definition of elliptic sequence and the fact
that Z'Z = —2 we have the following crssz,
(1) There exist A, A, § By, A, # A, such that 2, (y By 7 ¢
# AQ‘\ Byo In this case Al'Z = ol A ek oaad 2. 0% o2, = 1. Let
et = “ Sipce 7 = = =
AB’ A4 Q.Bl such that A1 A3 1 A2 A4¢ tnee 7, 2, 1
. — - . - K= 3 3] e A
and A1 Z 1 A2 Z, there ig no Ai ﬁ;bl: # A, 7 A, such |
that Ai'Al > 0 or Ai"A2 >0, d.e., A= Al J AZ 14 Bla Moreover
2 = = = - Z . i A A et
Zy 1 z, and Z Al A2 + ZBl If FB Ay then
. N 4 A \
A3 ZBl A4 231 md A3’ A4 %:BE. We are in (1). IF
= -2 g 4 ez are 1 2.
A3 AA’ then A3 ZBl 2 and AB ¥ BZ’ we are in (23
(11) There exists a unique Al'¥ By such that Al % $.
i cZ = w2 = +7 -7 < (74 = 0. ‘ol lows
Bince Z-Z 2 _ZB 7B (Z éB ). (?FZB 0 It follows that
i 71 1 1
= for al & cedoular, 1F ALY =
Ai(ZfZBl) 0 for =all AiE* Bl, In pariicul [igl Bl B,
then Ai'Z = 0. So we have either (4) Al'f = -2 and z, = 1,
of (B) Al°Z -1 and 24 = 2.
In (A) A1 Al must be less thanr -7. But this is impossible
because A A, = -2,



In (B) Letd.ﬁ\2 g;Bl such that Al 5 = 1. We claim that
2
A,& B,. Otherwise 0 Z A, (~K*) = A (2 2, +E) 2 -1 +2 = 1,
2 2 _ 1 1 520 Bi
This is absurd. The proof breaks up into four subcases.
(B1) There exist A,, A4<¥-Bl, Aq # A, such that
A3°A1 wmo ] A4°Al and Ty T 7, = 1= Zy It follows that
A= Al U AB u A4 U Bl and 7 = ZA1 + A3 + A4 + ZBl. We are in (3).
2 r.lr A e =
(B2 There exists AB‘T i such that Al A3 1 and

= ~ + 7 2= - )
Z 2. Because Ai 7z 0 for Aiti Bl’ A, # A

i 1° it is easy to

gee that we are in (3).

(B3) There exists A3t¥'B1 such that AI'A3 = 1, 2y = 1

and z, = 2. Since Zy = 2, Zy = 1 and A3-Z = 0, it follows that there

a bs wf £ . i.a.
is no A, - Bl’ Al i Ai # A3 such that Ai A3 1, i.e.,
A = Al U A u Bl and Z = 2Al + A3 + D where D dis a positive cycle
with support = B1 We claim that AZ-ZB "= 0, Otherwise

1
= Al + A3 -+ ZBl and hence Al-z = (}, This leads to a

contradiction, We are in (4).

{B4) z, = 3. Then A= Al B Bl and 7 = ZAl 4+ D where
D is & positive cycle with support = Bl. We claim that Az ZBl = 0.
Otherwise Z = A2+ZB1. This leads to a contradiction. We are in
(5). Q.E.D,
Definition 5.9: Let m: M =+ V be the minimal good resolution
of weakly elliptic singularity p. Let ZB' = Z,.,.,ZB = ZE be the

o b2
elliptic sequence. The set of self intersection numbers of the elliptic
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sequence is {2 2;.,.}Z 2}.
B B
o 2
Lorollary 5.10: Let T be a weighted dual graph including

genera for the vertices associlated to the minimal good resolution
of wealkly elliptic singularity. Suppose K’ exists and the set of
self intersection numbers of elliptic sequence consists of -2

and ~1, Then T must be one of the following forms.
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_l ~2

T Y ST T2

\“""“’% TS - v,z 4424

fizo Ay zo T zh =y ‘)()(43 )

‘ I3 2 (Jf_z'ﬁ' ‘f'l'q-iz_'*'v
L= | A 2zem-oim2 2\ ] g3 d
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Corollary 5.11: Let T be a welghted dual graph including

“genera for the vertices assoclated to the minimal good resolution
of weakly elliptic singularity. Suppose K’ exists and the set of

self dntersection numbers of elliptic sequence consists of -2,

Then I' must be one of the following forms.
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Theorem 5.12: Let T: M * V be the wminim

soad resolution

of a normal two dimensional Stein space with p as its only weakly
elliptic double point. Then the associated weightod dual graph
is one of the form shown in Covellary 5.5, Coroilasy 5.10 and
Corellary 5.11. HMoreover amy such weightcod dual graph has a
weakly elliptic double point structure.

Theorem 5.12 give a complete topoiogical o

vification

of weakly elliptic double points hecause of the Following fact.

Suppose P, € VO and p. € V. are igolated singularivies of complex

1 1

surfaces such that the graph of p dis the same as #
Q

graph of By

Then there are open neighborhocds UO Z&po and U] Top. oand a ‘

homeomorphism h: UO %-UJ, such that h(po) = Pye the proof,
see Remark 3.9 of [377. ' o
§3 Topological Classification of lypersurface Singularities

with h = dimtt(y, 0) = 2,
Rational singularities have Hl(MQKD) g G, The hyper-
surface rational singularities are actuallj'déuble points. TFor
Hl(M,{)) 2 €, Laufer was able to list ail'weighted dual graphs

of hypersurface singularities. TIn this section, we arve going to

@ singularities

list all possible weighted dual graphs of hypersurfac

- with Hl(M,G)) N Ez.
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Proposition 5,13: Let T be o weighted dunl graph including

genera for the vertices associated the wminimal good resolution

of weakly elliptic singularvity. Suppose K’ ewists. Let

7= 0 yeney Lo, Z .

, be the elliptic sequence. If Z2+Z = -3

B B i
o 2
and Z_ +«Z. = =1, then T must be une of the following forms:
B, “B
1 1
(1) _ M« 7 0= 1 751 A, = B, AZCE‘_ B,
) '
-4 A ,,.:.4?:"/ Vi
9 e I
Iy 1
1 .
(2) . Z=12D |p| =38,
—TT 1
[ S - | T ™ [
=324, \;Q_B&) ) P E R A% R
T . o
B By 4, A2 ZB =
1
(3) Z=123D |} =3

(4)

| A —

-2

where FB. is the graph of B .
. i
i
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Proof: Since Z*Z = -3, by the definition of the elliptic scquence,
we have the following three cases:

{1) There are only three distinct Al’ A A3<§ Bl such that

23
Ain Bl%q;,l.EiSB.

(ID) There are only Al, A2€$ Bl such that Alii Bl # b4 A MR

and Al # Az.

(IT1) There exists unique Al'i-Bl such that Ajf\ Bl # é,
In the first case, we have A1'Z = =] = A?“Z = A +% and
R - -2
£
= = * = i 2z (0 B . +F >.i\v-z' [
zy Zy Zy 1. Since O Ai (-K*) Ai (.Z ZB,%F) = Ay { +ZB ) i
i=0 T4 : 1
for i =1, 2, 3, we have A,V B, = ¢ and A -A, = -2 for 4 = 1, 2, 3.
i 2 3 i
Let A4, AS’ A65:,Bl such that Al'A4 = A2°A5 = A3°A6 = 1.
Then z, = Zg5 = 2z, = 1. Hence A4.2B1< 0, AS‘ZB1< 0,
A6‘ZBl < 0, Since ZB1°ZBl = ~1, we have A4 = AS = A6 and
[ = b - o 3 ] = -+ -,mf—‘, 1
A4 ZB1 1. However, z, 1 will imply that Z Al A2+A3 ?Bl and
A4'Z = 2 > (., This is a contradiction.

In the second case, there are two subcassas.

_ . ‘
' = =1 = * i > « {K? o= . Y R
(IIA) Al Z 1 A2 Z. Since 0 Z Ai { K:) Ai (iEOgBipb)

> A (74 . - - .
z Ai (Z!ZB ) Ai 2 for

0, we have Ai(\ B2 = ¢ agd Ai

H]

i 1, 2. We claim that there is no Agéﬁ Bl such that

A # Ay # A; and Atz < 0. :Ptherw1se Ay = ~1 and

=z, =z, =1, By our hypothesis, for any Ai(k Bl,

# AZ’ we have Ai N Bl = ¢. Since A is conmneclted, there

1

. at A +A
Al # Aj # AZ such tha AJ 9

= l-or Ai‘A =]




It follows that either A.°Z 2 0 or A.*%Z 2 0. This is a contradic-

tion, Without lose of generality, we may assume that Zy i,
z, = 2. There is no A, % B, such that A *A, = 1. Yor
2 i 1 i 7l
Aj‘i Bis A,y # A. # Ay, we have Aj°Z = 0 = Aj‘ZBl' So
e {7 == = ok =, ¥
Aj (-K*) = A (1-E~OZB +E) 0 and A A 2. Let A3, Aég_", 51
such that Al A3 = 1 = A2°A4, Then Zq = 1 and AB ZBl< 0. &ince
ZBI°ZBl = -1, we have A3 ZBl = -1, 1If A3 = Aﬁ, then
Z =D+ ZB where |D| consists of those Ay which are not in B,
1 ]
Hence A3 ZB = -3. This is a contradiction.
1
We conclude that A3 # Aﬁ' Z, cannot equal to one, otherwise
A4'ZB = —2, which is absurd. Therefore 7y, z 2. Tor any
1 _
Aig; Bl’ Ai # A3, we have Ai-ZBl = 0, Since Bl is connected,
: - >
there exists A5<§ Bl such that z5 2 3125 + 1 and A A3 1.
However, z = 1 and A, Z, = -1 will imply that A,*Z 2 1, which
3 3 B1 3
is absurd.

(IIB) Al'Z = =1 and A2=Z -2. In this subcase, we have

= = il > LI 7 n > . -} -
zq 1 2 Since 0 2 Al (-K?) = 1 < ( Z ZB,+E) > Al (Z ZB ) 0,
1"’0 i g 4
bd E— = > > = L] bl
Al Al 2 and Alf\ B2 $. Also Q0 2 ,2 <(-K?*) A2 (iEOZBiiF)
> . e - = Ne . Fj— ' o
z A2 (Z+ZBl) 2 +1 i. Either A2 A2 2 and AZ(\ 32 # ¢
or A2 A2 = =3, Azt\ B2 = ¢, A2 A2 -2  and AZ(\ B2 # ¢ cannot

occur otherwise AZ'Z Z -1 which contradicts to our assumption

AZ‘Z = -2, Therefore A2 A2 37

such -that Al‘AS =1, AQ'AA = 1. Then A = Al U A, UB,y and

A, G B

-3 and Aztﬂ B2 = ¢, Let A , & By
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K . <
4 Moreover 7 = Al+A2¥ZB and A3 ZB 0 and

By ]
AZ, <0. IfA, +#4A then Z_ *7 2 -2, which is absurd.
4 Bl 3 1 By

4 B Ji
= . = e i . = -1,
If AB A4’ then A3 ZBl 1, since ZBl Z )

Hence A3'Z = AB'(A1+A2+ZB1) =2 - 1=1, This is agaln a

contradiction.

In the third case, there are three subcaseg,

* = - { ™ > & - i = Y
(IIIA) A1 A 3. In this case, 21 1, 0z Al (-I*) Al
( >: Zp *E) = A - (22, ) = -3+l = -2. Either (i) Ajtdy = -3,
i=0 B3 By
A,iﬁ B # ¢ and A{1B = ¢ or (ii) Al = ~4 and Alr\ B2 = ¢

or (iii) A_-A -2 and Al.n B2 # o o Alf\ B If (i) holds,

R 3°

then Al'z Z -2 since zl = 1, This is a contradiction. If

(ii1) holds, then Al'Z 2 ~1. This is also impossible. Suppose

Al'Al = -4 and Alr\ B2 ¢, Let AQfE Bl such that Al‘Az = 1,

Since Al'Z = -3, we have z, = 1 and A = Al U Bl' Moreover,

7 = Al + ZBl and hence AZ'ZBl = 1. So we are in (1).

(II1B) Al°z -2. In this case, we have zl = 1, Otherwise

2 2 would imply that Z°Z < ~4 which is absurd 02 Al=(-K’)

“1
«( z zB +E)y = 1-(z + ZB ) = =241 = ~1. Elther (i) A1 Al -2

1 i=0 71 1
and Alﬂ B, # ¢ or (ii) Al'A -3 and A n B, = ¢. If (i) holds,

1 1._2

then Al'Z 2 =1 since zy = 1. This is a contradiction. Suppose

Al‘Al = =3 and Alﬂ By=¢. Since Al'z = -2, and z; = 1, there

is no A, <% B, such that A;tAp = 1. It follows that A = A U By

== . . = -
and Z Al -+ ZBl But then Z-7 (Al Z )

»Z = A *Z = -2, This




is a conbradiction.
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(FTEC) 4.7 = -1, Then 0 2 A < (-K*) = = Ay ( z 7, AE) Z A+ (Z+Z_ )

3 B, 1 B
i=0 i 1
So Axfﬁi = =2 and A, D B? = ¢, 2y cannot equal to L. Otherwise
A=A 0, and Z = &+ Zy which implies that Z-Z.= (A[+Z, )+Z =
" - L 1

A1°Z SR This is s contradictlion. Therefore either zq = 2 or

. = 3. iat = B, sucl b A A, = &

2y : Az(m 3 uch, that A2 Al 1, A2 =/ BZ

(Lree Hy o 2. Let A 15 AB # Al such that AE'Z < 0.

Then AE*L @ =1 and g 1. Sdnce 2 + AB-A3 AB'(“K’)
-1, AB AB -3. TFor any Aigg Bl, A3 o Ai o Al,
L
i = =) "-.’:
Ai(\ Bl $. Hence, Ai {(-K 1 Ai(.Z ZB.+E)
i=0 "4
=2, There are four subcases.
(IIIC TR ‘ Zo = 1.
In this case a/Bl = ZBl. Therefore AZ‘Z = 2A2'A1+A2‘ZB1 /
@ 23 = 1. This is impossible.
(TTIC o 443 7y = 2
Lince ?l = 2 and Al = -2, there exists A L* l’
A3“Al = 1 and g 1. Ag'A3 is either -2 eor -3. 1If A3 A3 —2,Vthen
A= B,1 I A1 U A3 and 7 = AS + ?A1 + D where D 1s a positive cycle
with D] = Do Then 2'Z = (Agt2A, D)2 = 2A,°Z = -2, This is
a contiadiction. So AB*AB = -3 and we are in (2)
(111C o 14id) Zy = 3
Then A = A1 U'Bl and Z = 2A1+D wﬁere n ié a positive cycle
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with [p] = B,. 1t follows that 74 = 2A°Z = =2. This is 2

contradiction.

(II1C o 1wv) z, z 4

Then Al'Z 2 0. This is impossible by our hypothesis,

(IIICR) zl = 3, Since 72°'%Z = -3 and Al*Z = 1,
- = } =t 1 je ZOA, T {-R7 =
Ai Z 0 for any Aiqg Bl, Ai 5 A1° Moreover O ,Ai {-K*)
L .
Ai (‘E ZB,+E) = Ai Z = 0. Tonce Ai'Ai =2,
=073
(ITICRL)y - ZZ = 1
= . i 2 have 57 oA b
Then Z/Bl ZBl Since Zy 3, we have A2 7, 3Il A,
A_+Z = 3=-1 = 2, This is a contradiction.
2 B
1
{(TI1CRLid) z, = 2. Let Pl be the subgraph of T
N 1 I : - e P A f
consisting of those Aiég Bl’ Ai # Al. Siuce zq 3.
z, = 2, Al‘Al = -2 and Al'Z = =1, we have degAl = 2, As

Ai'Ai = =2 for all Ai in Pl’ Pl is a graph of raticnal double

point., There exists a unique A_ < Fl such that =z, = 3. Because
: voen

3

AB'Z = 0 and Zq = 3, degA3 = 2, 'There exists a unigue A4 €-?l

such that Z, = 3 and Aﬁ.AB = l. By 1nduct1?n Pl is of the

following form



Z = 3A -+ 3A + oo B 34, 1+ 3A, + 3A. 4+ D where D ds & positive
n n—-1 , 4 3 1

cycle with |p| = Bl. Then A *Z = ~3 and Z*Z < -3. This is a

contradiction,
(ITICRLid) Z, = 3. It is easy to see that de = 2.
Hence we are in (3).
{(IIICBiv) z, = 4, Since z, = 3, Al'Al = w2 znd Al-Z = e
there exists a unique A3<§ B1 such that Aa“Al = 1 and Zq " 1.
Then A3'Z 2 1., This is a contradiction.
(TITCBv) 2y = 5, we are in (5).
(YTIICRVL) z, 2 6. In this case, A7 Z 0. This is
a contradiction.
Proposition 5.14: Let T be a weighted duzl graph including ‘
genera for the vertices associated to the minimsl good resolution
of weakly elliptic singularity. Suppose K* exists and 7 = EB s
. o
...,ZB s ZE be the elliptic sequence. If Z+Z = -3 and
2
ZB ?ZB = -2, then I' must be one of the following forms:
1 71
Z=1D»21 z, = 1, 7y 2
D is a positive cycle, {D] = Bl’
A 7 <0
3 Bl
=z s
Aty 7 0o hgy Ay S By,
1
Ay # A



(2)
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Z=1D?2 ., =1, 2z
D is a positive cycle, lD] = By,
A2 <0
3 B1
A2 =0, AS,A4E Bl’

Agsh, &B,, A, %4,




(6)

(7) | e
!L:a -
.

TN S|
""EL— -2 -2 L ‘\._\ ; )
N iy
T
By
(8) .
A T TN
N 2 r// .[,B \\\\ t{‘
~2 o2 S/

is the graph of B,.

i

w
PN
s
()
®
=~

Proof:

we have the following three cases:

(T) There are dnly three distinet A

such that AiY\ B1 F b, 1245 3.

Z=12D D is a positive

cycle ID] = Bl

Azé,z B,y

Z=12230D D is a positive
cycle, ID] = B

1
Lawd
A< B,

3
i
L
o
o)
-
mn
o

o
Qo
®
e
r
e
<
¢

«Z = =3, by the definition of élliptic sequence,

A

1Ay Ay & By

(1T) There are only two. distinet A, A, % By

such that Air\ B1 # 4 1541 s 2,

137




(I11) There exists a unique Al§¥ Bl such that

A By # b

In the first case, we_have Al-Z = ~] = AZ-Z = A3°Z and
_ N | -
= = p o= > s (=K?*) = - > -t =
z z zZ I, 02 Ai (-K*) Ai(iEOZB +E) 2 Ai(Z}ZBl) 0
for i = 1,2,3. So Ai-Ai = =2 and Aif\ B ¢, L 2 1 5 3. Let

AA’AS’ A6§§ Bl such that Al-A4 = ] = AZ-AS = A3°A6.

2, = Zg = Z, = 1 and Z = A1+A2 + A3 + ZBl. Hence A4'231 < 0,

A5 ZB <'Q, and AG'ZB1 < 0., If Aq’ AS’ AG are distinct, then

[y
[

Then

1

. < { £ 3 il - =
ZBl ZBl s =3, Thl? is a contradietion. If A4 A5 # A65 then
AQ.ZB é n2_because Al"A4 =_A2-A4 = 1 and AA.Z

£ -3, which is absurd., If A4 ='A5 = Ags then
1 1

A, <Z £ -3, 1In particular, Z_ *Z_ = -3, This is absurd.
1 By By

In the second case, there are two subcases.

0. Again we

(ITA) A7 = ~1 = A, 7. We claim that there are no A3€$ B, such

1 2

that Al # A3 # Az and AB'Z < 0. Otherwise Al'Z = AZ'Z = A3'

= 1. By our hy?othesis, for any Ai§; Bl,

1
7 =

and z, = 2z, = @

1 2 3

AZ # A o Al, we have Aifl B, = ¢. Since A is connected,

AA, § By A F Ay # A, ‘such that Ajtay = 1 ox Aychy = 1.

2 2
SL .
As O Z A, (-K*) = A (2 Z +E) Z A+ (Z+2, ) = 0 for 1 = 1,2, we
i it, B, i B
. i=0 T4 1-
have Al' 1= -2 = AZ-AZ and Alf\ B, = ¢ = A2f\ By. It follows
that either Al-z z 0 or AZ'Z 2 0, This is a contradiction. Our

claim is proved. Without lose of generality, we may assume that

Zy = 1, z, = 2. There 1s no Aiég Bl such that Ai'Al = 1., For

138
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any Aj§§ Bl’ A2£¢ Aj # AL, we have Aj-é = (= Aj Z. .+ So

i Bl ;
(K'Y = A (B 7, +E) = 0 and A A, = -2, L . D, |
Aj (-K*) Aj(ixoyBi. 3 an AJ A3 2, et AB’ A4g; 1 such,
ai & B oand A e o= = A A, e =
that AQ’ Ag-v 52 ard ’l 3 1 A2 " Then Zq 1 and
: LA, = A, then Z/B, = Z_ . AL cZ = 2A .
AB ZB1 < 0, if AB Ayw Then Z/Bl Bl So A3 Z 2Al A3
*+ A2=A3 + A3=’_ ] I'nis is a contradiction. We conclude that
A3 + A4° 2y, to 1. Ctherwise Z/Bl = ZBl and
Az, = -2, This would imply that Z * Z, 5 -3 which is absurd.
4 B] Bl B]
Suppose z4 = 2. Then exlsts unigue ASéE B1 such that
Fis : A = 1 aad oz == A S Wa = i
A2 o AS ¢-A15 ' Az Loand zg 1 It follows that A Al U A2
J A, 2 < 0, 1 Z o= A_tA A 47 . This i
U A5 u Bl. If By 7B} . then Z 1FA2{A5 7B1 ‘ This is a
contradiction. 8o A/"%F = 0 and we are in (1). Suppose zZ, = 3

|

then A = Al U A, UB,. Similar avgument as above will show that

AA’ZB = 0 and we are in {(2),

(I11B) A1=z @ =1 and AQ*Z = =2, In this case, z4 =] = Zoy e
&

> e (70 . o oLy > o (54 v Te

0> Al {(~K*} Al (‘ZFAB'FL) z Al (ﬁiZB ) 0. Hence
=0 i 1 2

s L. A D= a. -1 cx 2 P = ©
Al Al 2 QL Ai(\ By = 4 Since 0 A2 (~K?) A2 (iEOZBi+E)
2 e (" [ vither AL +4 = .7 . |
z AQ (747 ) 1. eit Ay &2 2 and AZ(\ B, # ¢ or |

*A, = =3 aud A BLo= 4, . AT al to - i
A2 kZ WA, B, = g AZ A2 F ﬁnot equal to -2 otherwise
AZ-Z 2 =1 which is a contradiction. Therefore A2°A2 = =3 and

A2r1 Bz = ¢, Tet A, A, ¢ B

Agr By s Ay, A, & B, such that A *A, =1

173
= . e = A nd =. = = 1, y
A2 Aq' Then A Al U A, U Bl and %3 Zy 1. Moreover,

Z= A kA, k7 and Aylp < Oy A7 < 0. If Ay F Ay,

_ - = =1 = A % and re In (3}, If A, =
then A3 ZBl 1 AA Z, and we gje in (3). If A3 A, then




A +Z, = =2 and we are in (4).
3 Bl

In the third case, there are three subrases.

(ITTA) A.*Z = -3, In this case z. = 1, Since 0 = AiﬁﬁmK’} =

1 1
)
T [ > . A PR - = e * - s a A L
Al('ﬁ Zy tE) Z A, (242, ) 3+ 1 2, either A, -4, ?
i=0 7i 1
L A e g,
and Alf\ BZ F o F Aliﬁ B3, or (Gi) Al Al 3, Al(W 12 .

ES {44 A . = e R = Ia og
and Alﬂ B3 ¢, or (idi) Al Al 4 and Alfj ] ¢. Ia case

vy
2

Y

-4, which -

0

(1) Al-z Z -1, which is absurd., 1In case (i1), A1~Z
also absurd. In case (iii), it is easy to sees that A = A, U B

Let A2§; Bl, Azg% B2 such that A1°A2 = 1, Then Z, 1 ond hence

= + . i VAR this implies that A _+Z S I

Z Al ZBl Since A2 Z = 0, this implies that AZ B, i

flowever, Z +Z, = -2, so there exists A & B., A, ¥ A_ such that
B.L Bl 3 i* 73

2. = -1. ows 7 = A, = AL = -l <0,
A3 ZB1 1. 1t follows that A3 Z (A1+ZBI) XB AB 3 1 <0

This is a contradiction.

(IIIE) Al'Z = =2, 1In this case, z, = 1. Otherwise =z, 2 2 and

1 i
3
Z:Z 2 -4, Since 02 A *{(~K®) = A (% Zy, +EY T A (7 Y o= =24 e -1,
1 Lo~ B, L B
i=0 "1 1
4 g '3 - = — ;'é . » . e - kY T
either (i) A1 Al 2 and Alfl B2 + o or (d4i) Al Al 3 and

A1(1 B2 = ¢, Lf (i) holds, then Al‘Z Z 0 which is absurd,

Suppose (ii) holds. It follows easily that A = A, U B. and

1 1
7 = . A + <7 = +Z = -2, This i ¢
Z Al+ZBl Then Z+%Z (Al ZBl) Z A1 Z This é a
contradiction.
(ITIC) A 7 = -] Since 0 2 A_+(-K*) = A ( % Yo TEY A (7MY =0
1 ' T L 1 iQOﬂBi R B ’Bl :

we have Al.Al = =2 and Alfi BZ = $. There are thvee subcases,

140
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(IT1Co} zy = 1. In this case, A = Al U Bl and
YA Al + ZB . Bence Z.Z = (Al + ZB P AR Al-Z = -1, This is a
1 L

contradiction,
(TIICE) zy = 2. Let A3§¥ Bl’ A3 # Al such that
ASBZ < 0. Then gy = 1, A3-Z = -1 and A3(\ B1 = ¢. Since

i
AS (K" = A ~(‘Z ZB,+E) = A3 yA -1, we have A3'A3 = -3, TFor
o i=0 i

# Al, wi have Ai-Z = (0 and Aif\ Bl = ¢,

= A (L Z +E) =A+2=20, A A, =-2. Let

i -~ B i 1
i=0 "o

such that A1=A2 =1,
{ITLCBL) z, = 1. It is easy to see that we are in
(5).
(TITCRLL) z2 = 2, It is easy to see that we are in »
(6).
(LITCR414) z, = 3. In this case, A = Al 2] Bl and
Z == 2A1 1+ D where D is a positive cycle with IDI = Bl' It follows
thal 77 = (2A1+D)-Z = 2Al-Z = -2, This is a contradiction.
(TLICRiw) z, Z 4, 1In this case, Al'Z Z 0, which is
absurd.,
(ITTICYy) zy = 3. Since Z-Z = -3 and Al-Z = -1,

® s - - I T -

A% = 0 for any Ai§1 By, Ay # Al' Moreover, 0 Z A, (-K’)

£
A

i=0 74

> .
ZB.+E) Z Ai (Z4Z

Bl 0. Hence Ai'Ai = -2 for all Ai # Al
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and Ai Sld Let A2<§ Ll guch that A2€% B2 and Al'A2 = 1, |
|

(TILCYyi) z, = 1. In this case Z/Bl = ZBl. So A2°Z =

b A, S ALcE 2 3-2 = 1, This is a contradiction. |
1 72 Z b i

(LLLCyiis Z, = 2. Let Fl be the subgraph of T consisting
-t &9 l‘"':__ Sinne ¢ 7 TR e . A {

o£ thoso A13 B1° jnee Ai Ai 2 for all Ai in Pl, Pl is a graph

of ratiocs doublie point. Since 2y = 3, zZ, = 2, Al-Al = ~2 and

Al'Z = -1, it is easy to see that degAl = 2. Hence there exists

lque A, o T. such that z, = 3. 8i A, o7 = =
a unigue A, < Fl guch that %y 3. Since A3 Z = ( and Zq 3,

o o A m Thear avists 3 i A oo =
dLgA3 2. There ewxiztz a unlque A4'” Pl such that Z 3,
A4 # A, = 1. By induction T, is of the following form.
~2 2 -2 =2 -2 -2
By Ay hg By Ay Ay

7= BA4 ek 3A3 A BAJ + D, where D is a positive eycle with :

|D[ = B_. Then Anvz = =3 and Z«Z < -3. This is a contradiction.

1 ;
TTECYd i" = . B - - Eop— . = -
(TTECyiid) %, 3 Since zy 3. Al Al % and Al Z i,
we have 7 3 deghy £ 3. It is not hard to see that degAl = 3 !
cannot occun. Therefore degAl = 2. 1t follows that we are in (7).
T ET) > s & il i O
(TTICyiv} %y 4., There exists a unique A3j¥ B1 such

that AI‘AQ = 1 and g 1. Therefore A3'Z 2 32 =1, This is a

contradiction.
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(I1ICYv) _ z, = 5. Since z, = 3, z, = 5, AltAl = -2 and

Al'Z = -1, we have A = A1 u Bl' S0 we are in (8).

(IIICyvd) z, - 6. Then Aj*Z 20, which 1s a
contradiction, '
Proposition 5.15: Let T' be a weighted dual praph including

genera for the vertices associated to the minimal good reseolution
of weakly elliptic singularity. Suppose K’ exists. Let % = 7

ou‘.,ZB ; ZE be the elliptic sequence. If Z-7 < -3 -and
£

ZB QZB = -3, then I must be one of the following forms.
1 71

&y
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: |
(3) z =1z |
1 B,
|
" z —_— L] —
b=1 A 231 = -3
Ll
A, B, A& B,
1
(4) Zz=122..2"2
B
""2 2 . : 1
_‘\__\ /«f":_:w‘ Z, =1, A7, = =3
{/ T 3 3 B]_
-2 -2 -2 T ./:E;\\ 5, A e .
N N 3% B A% By
T
>
s} ]31
() oz L
Zo=17. 2.....22 ,e
B 1 |
1
/_2 23 = 24 = 1, A3‘ZB = "'.1
[ & S SR S 2 l
~2 -2 -2_-—3_\ A7 = -p ‘
g -2 4 Bl
020
Ay, A, By, AguA, B,
Ay # A,
(6) Z=1 D 2 1. Disa
ST
Asy Fa \\Alr positive cycle, [D| = B -
Mﬂ—-—v—---.’! b B S YO - l
-2 ‘x,\“-h 2/ -2 -2 2,51, 2,52, A%, <0, A, +Z =0
N T T ATy 8 ;
e ' L
r —
B, - L ApA S By, AnM K By, A,




(7 Z=1 D 2 D is a positive 1
cycle [D, = B]
z3=l, z4=3, A3-ZBI<O,
AcZ, =0
4 Bl

Ay # A,
1 2
8 =
(8) A 12 3 Zy
1
Zg = 1.
AZ'ZB = =3, Azf“.; Bl
1
puu .
Az”-:li'Bz Q,,
| 2
(9 Z=1 2 3 4 3 z ‘
-2 1 ‘
A - . - |
L - Zg =1, Ay ZBl 3
-2 -2 -2 -2 -2
Ay & By A& B,
: 3 !
(10) Z=2 4 6 5 & 3 72
B
1
zzml, AZ-ZBl=-—3, |
[
n ‘
-2 Ays By |
|
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(11) | Z=1 2 3 D, Dis a
positive cyele ID] = Bl
_2' jz Zy = 3, .AZ'ZBl = 0,
A, By, A& B,
(12) 7 Z=3 D, Dis a positive
cycle |p| = Bl
2, = 5, A2-2B1 =0,
| Bl AZEBl, A2£ ]32
where,PB' is the graph of B,. ’
i
Prooft Since Z«7 = ZBl-ZBl, (Z—ZBl)'(Z+ZBl) = (., TFor all
Aié%'Bl’ we have 0 2 Aio(uK’) = Ai'(jéozBi+E) 2 Ai-(Z+ZBl) = 0, 3
Therefore, Ai-Ai = -2 and Aiﬂ B2 = ¢ for all Ai% Bl. '
As Z+Z = =3, by the definition of elliptic sequence, we have .
the following three cases.
(1) There exist A, A, A3<§; B, such that AN By A9, |
1 £4 35 3 and Al, A2, A3 are distinct. o |
{(1I) There are only Al,.Aé %%Bl, Al # A2 such that é
ADUBy# 6 # AN By | N
(111) There exists ﬁniéde Al.i Bl such that

Al R Bla! b,




In the first case, we have Al*z R AZ'Z w Aq=Z and

= | = - a1 Fe de o1 (‘{‘: n 5
17 Py =g L. It follows that there is no Ai'T ”lglAi o Aj’

3

123 2 3 such that Ai-Al >0 or A,i-A' > 0 or Atk > 0, f.ed,

2 .
= - ] ] - Ar, A, B auch that
A Al [5) AQ U A3 i) B1 Let A49 Ab’ “6£“ i uch th
A = o e f = n . &1
A4’ AS’ A6E¢ B2 and Al A4 1 AZ AS AB Ag’ Thes
£ = [ & VA AL A
Z, Zg ze and A4 Z <0, A5 Z < 0, A6 z oo If Ay Ar, AG

are distinct, then 7 = Al + A2 - A3 + ZB 5

1
If A4 = A5 # A6’ then Aasz = -2 bLecause Aﬁvz = 0 aud
Al°A4 = A2'A4 = 1. Hence A6-ZB = =1, We sxe dn (2). Suppose
1
= = 1 o . P . A= 7 =3 e e 1 ” .
A4 A5 Aﬁ. Since A4 7z 0, we have A& zﬂi 3‘ e are in (3)

In the second case, we claim that there is ne ﬂq€$ Bl

such that Al # A, # A, and A3°Z < . Other <7 o) m

AZ'Z = A3-Z and Zy T 2y = 2y = L. By our hypothesis, AiE} Bl = ¢

for any AiﬁgABl, Al #-Ai # A2. Since A is connected, there
] - T 2 ‘hot s ] Ao A -'—‘
exXists Ajé% Bl, A2 o Aj # Al such Lhat A? £y 1 or Aj AZ 1.

L4220

Consequently, edither A1~Z Z 0, or AZ

This ig & contradiction.

claim is proved. There are two suhcases:

(114) Since Z°Z =

A1°Z = =1, A?*Z = -2, -3, we conclude that

t4oz -1

i = 1, Ay = 1, However, A?'AZ = -2 so A, « this dis a

7
contradiction.

(IIB) ACZ = =1 = A_-Z,

1 2 Without lose of generality, we may

assume that z; =1, zy = 2. Let Ags Ag By A, A, & B, such that

A7 T2
. =1 =A_- i = nd A . = -2 . Wwe have =
A_cA 1 Az A4. Slnce.z1 1 grd A1 Al s we hav Zq 1

Our
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and A3‘ZB1 < 0, If A3 = Aas than AB AB} = -3 because A3'Z =
- = (., s A A, = =2 aud A 7 = =1
A, (24, Al+zBl) 0. As Ayh, = 2 and A7 = -1,
we have 2 % degAz s 3. in {4}. Suppose A3 # A4n Because

Az-Z = ~1, the proof byealks up into four scvhcases.

(11B1) There cxdst A55 Ay Bly Al # Ag # Ag # A1

such that A5-A2 = A6~A2 = 1. In this case, we have z Zg = Zg

¥ v b= - . ! EN ({ N A e - o - 3
Hence Z Al + A5 + A6 + 2&2 31 A Z O, A% 0 imply

QQZB = =2, A3°LB = 1, Then we are dn (5).

4 =

that A

(11Bii)

a unigue A5€¥ Bl9 Al o A5 £ A2

such that ASFAZ =—"19_z[.l = 1 apd g = 2. In this case, Z/Bl = ZB .

1
So A[}*ZB-L = -2 and A3°ZB1 wo since Ab‘AS -2, A5°Z = (} and
Zg = 2, = 2, we have 2 £ deghA_ = 3. It follows easily that we
are in (5).
(IIBi;i) There cwists a unigue ASég Bl9 Al # A5 # A2
such that AS'AZ =1, Zy 1 aud 2y 2. I Lh}s ;agg A= Al i A2 ] AS
U Bl' Since z, that Aé.zBl = 0. We are
in (6).
(ILIBRiv) 2, = 3. In this cags, A = Al UA, U Bl

Hence A, 7 = 0. We are in (7).
4 Bl o

In the third case, there are three subcases.

(T1TA) . There exizt A,., A, & B, such that A

gs Py B By 10 Bos Ay
are distinet and A?“Z < 0, A3'Z < 0. Because Z:7 = -3, we have

Al‘Z = AZ‘Z = A3-Z = -1 and Zl =z, = 2z, = 1. There exists



Aifﬁ Bl such that'Ai°A1 = 1. Siuce zl'ﬁ 1 and Al.Al = ~72, we have
A2 Z 0. This is a contradiction.
(ITIB) There exists a unique Azq@.Bl such, that

A2 # Al and AZ'Z < 0. Since 2+7 = -3, we have thres subcascs.

(I1IBa) z, = 2, =, = 1. In this cese, we have

AjrZ o= ~1 = A*Z. Let A ggIBl,.A3@$ B, such that &, A, = 1.

2 3 13

If Zq 2, then there exists a unique Aé%% Bl’ such that

Aa.Al = 1 and Z, 1. It follows easlly that A = Al U A4

2 and A4'A4 = =7, we have A4°Z = 0, This

i

0B

Since =z

1
H
N

il

implies that A4 # A2 which is absurd. It 7y = 1, then Z/B1 = Zé .

Since 0 = A3°Z = A3‘(2Al+ZBl) = 24 A3~431$ we have A3"2B1 w
As Z_ +Z., = =3, there exists A% B such that A 72 = -l

BJ Bl 1 1 i }‘11
It follows that Ai°Z = Ai'ZB = =1 < 0, This ig a contradiction.

1
{ITIBR) : 2y = 1, z, = 2. In this case, there

exists Aif$ B, Ai-Al = 1. Since z, = 1, A °A] = -7, we have

1 1

Al‘ Z 2 0, This is a contradiction.

(ITIBy) 2y = 1=z¢g

shows that this case cannot occur.

9t

{I11C) There 1s no Aid% By

1'2 = -1 and Z, = 3. Otherwise,

L
AtZ 5 =2 and A C(-K*) = A (T Z, +E) = A (ZHL_ ) £ -1,
1 1 1 N0 By 1 B,

A, # A, such that
1 # Al such that

Ai'Z < 0. In this case, A

The similar argument as (IIIBR)
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This would imply that Al'Al % -3 which is a contradiction.

. e
Let A2EE Bl such that Al AZ = 1 and AZ‘# BZ' There are
five subcases.

(LICL) z, = 1, Let T, be the subgraph of T

2 1
consisting of those Ai€$ Bl. Since Ai-Ai = =2 for all Ai in Pl’

Fl is a graph of rational double point. Since
zy = 3, 22 = 1 and Al'Z = -1, it is not hard to check that we

are in (8}, (9) or (10).

(T1cidi) z, = 2. Let T

9 be the subgraph of T

1

wmlaid . ) . L. i
conslsting of those A15$ B,. Since Ai Ai 2 for all Ai in Iy,

Iy is a graph of rational double point. As Zg = 3, zZy = 2, Al-Al = -2
and A1°Z = -1, we have degAl = 2. There exists a unique ABQ;TH; £
such that Zy = 3. Since A3=Z = 0 and Zy = 3, we have degA3 = 2.

There exists a unigue A4§5 Fl such that z, = 3, A4 # Al and

A cA, = 1. DBy induction, T. is of the following form

L

2 -2 -2 -2 =2
oot dl o i s e men e [ —"
Ay A by By 4y

AR 3An+...+3A3 + 3A1 + D, where D is a positive cycle with |D[ = B

1
Then An°Z = -3 and Z+Z < =3. This is a contradiction. : -
(ITICiii) z, = 3. Then we are in (11).
(I11Civ) '22 = 4, Since zy = 3, Al'Al = -2 and A1°Z = 3,
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there exists a unique A3<$.Bl such that A3°Al = ] and Zg = 1. Then

A3°Z 21> 0, which is sbsurd. |

(LT10v) B, = 5. Then we are in (12).

Let 3 M > V be a resolution of normal two

dimensionzl Stein space with p as its only singular point. If

dimHl(Mgﬁ

~,

/2 5 2 and p is a hypevsurface singularity, then the

multiplicicy v@ p is less than or eqgual to 3.

Thiz is a trivial consequence of Theorem 5. 3.

Let m: M » V be the minimal good resolution

of normad two dimensioral Stein space with p as its only singular

point, Suppose Hl(Mﬁfj) h Ez. If p is a hypersurface glngularity,

then the elliptic sequence is one of the following forms:

(1) elliptic sequence is {2z, ZE} |

() ZeZ = -3, Zprdp = <1

{b) L7 = =3, 4E‘ZE -

(e ZeZ = =3 = ZE"ZE

@ 2z= -1, g -1

(&) 2oz =2, 707, = -l

(£ A W S

(1T elldptic sequence is {Z, Z_ , 2.}
| B, B

(g) 247 = <2, Z. 7. = =1 =7 %
B1 Bl A

(i) ZrZ o= -l =2, 2, = L%
B]_ Bl E E
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(111) elliptic sequence is'{Z, 7z, 7. , %}

B

Froof: This is an easy consequence of Corollary 4.11, Proposition

5.4, and Theorem 5.16.

Theorem 5.18: Let m: M ~ V be the minimal good resolution
of normal two dimensional Stein space with p as its only singular

point. Suppoese Hl(M,{)) i &2 and p is a hypersurface singularity,
fhen the associated weighted dual graph is one of the following

forms:

(H
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Proof of Theorem 5.18: This is a consequence of Propositiéﬁ 5;13;
Proposition 5.14, Proposition 5.15 and Corollary 5.17.

By the virtue.of Theorem 5.18 we have the following

Theorem.

Theorem 5.19: Let 7: M > V be the minimal good resolution of

normal two dimensional Stein space with p as its only singular
point. Suppose Hl(M,C)) Q @2 and p is a hypersurface singulayity,
Let A be the exceptional set. ) If Hl(IAf,Z) = (3, then

p is an almost minimally elliptic singularity.

Proof: The condition Hl(lAI,Z) = 0 rules out case (245), (246),
(247), (248), (249) ana (250) in Theorem 5.18. All the remaining

cases in Theorem 5.18 are almost minimally elliptic. Q.E.D.

Remark 5.20: Using proposition 5.13, 5.14, and 5.15, we can list ‘ {

all posgible weighted dual graphs of weakly elliptic singularities

such that K’ exists and Z-Z < -3, By Corollary 5.2, we know

that all hypersurface maximally elliptic singularities must be one

of these forms. However, the list is too long to be included here.

We remark only that the condition on the elliptic sequence of

Theoren 4.7 is automatically satisfied if Z+Z < -3 and K’ exists.




YTER VI

PROBIEH

Tt is bocwa thar 4F g) iz Gorenstein, then the cycle
p .

2 ot i T
K? eximts., On=

following converse question. Given
a weighted dusl ;raph such fhat K7 exists. Is there a singularity
corresponding o Uhe given welghted dual graph and which has

Gorenstein strvcvure? In szetion 1, we give a necessary and

sufficient conditing for rhe existence of Gorenstein structures

for weakly ell:

In section 2, we give a

e dquestion for a very special kind of

singulavivy,

g1 Hecesaary and Sufficient Condition for the Existence
of Gorsratein ure for Weakly Elliptic Singularities

Theotrem 6, 1: Let w: M+ V be the minimal good resolution

of normal two dirensional Siedin space with p as its only weakly

point.  Suppose K® exists. TLer ZB T lyeees

o
ZB . ZE = 7 7 oe the eliiptic sequence. Then v{}p is

o

wnd only 4F 5°(m, O ) 104, ) )

9 ‘
o ZB +E % ZB
j=0 T4 i=0 "4
! 2
is surjective g tJ (=~ 3 Zo 3O (= ¥ ZP ~E} is the sheaf of
i=0 7% 1=2 i

gerns of secid of a trivial line bundle over (HEI,G ).

E




?rogﬁ:":t%>" Choose a computation sequence for 7

as

follows: Zo = Q, zl,._,,zk E,.... By Theorem 3.7,
L 1 4
-K* = I Zp +E. So H (M, O(- T 7 Zp ~E)) = 0. The exact
i=0 7i i=0 71
sequence

ut M, ¢ z Zy —E}) ~ ! (M, {)(— I

Zy )) > o, O(-zz )/@(wzz “E))
i=0 1 = O i=0

1 1=0 1

-+ 0

2
shows that HY o, O~ 1 Zy )) + gt (M, O(- % Zp )/ AN~ z Z, ~F))
i = i=0

1=0 B B i=0 .1

is an isomorphism. If E = is an elldiptic curve, then either

£ 2
OO0, O (- % Zg )/ O (= 3 7 ~B))

i=0 1 - i=0 1

e -

Yo

BEOnL 0 3 2, )/0 (- 2, -m)) or 1O, O (- 7, )/ 6 (-
i=0 1 i=0 1 i= 0

T

Z, ~F))
0 By

1

i

i

ic -

v g gt (M, O(~ y Zp )/\)( % Zg ~E)) by Serre duality and
i= O 1=0 1

Riemann Roch Theoremn.

If |E| has at least two irreducible components,

we consider the following sheaf exact sequence

0 > gj(_ ¥ Zy wz PI0¢ ¥ Zy ~E) » O(- z Zp YO (= L Zg E)
i=0 B 1=0

i i=0 1 . 10 Bt

—E)
i i=0 Oy

') 2 2 £
0+ GG %z, -2 /8- % Zy “E) > OG- 7 2, Z)/ QG 2
o : i=0

i=0 74 . i=0 T4

' 4 L
» 06 &2 7)1 06 7 7, ~z) » 0
i=0 71 i=0 74
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%y,

Y- §
k=2 120 B,

The vsoal long cohomology exact sequences will show that either

4 " L L
IOL OG5 5 306§ 2, m) w0y o, 0(~ ERIUCEENE )

i=0 74 i=0 "4 i=0 B i=0 i

or |
-, 4 : £
L CITON VAV ICHS: 5 E)) vyt O & Z )/ LJ(- ¥z, -E)).
, 3 |
i=0 "1 1"0 By i=0 B i=0 B3
3 ;
Thus =ither @ ( {Xw ¥ Z )) Y& or H (M, f)(— 5 ZB )) = We ]
l-O 5 i= 0 i j
clainm that B (i, ()(~ & Zy )) % € and BN Q, (- ; 7)) > mlor,©) | J
i=0 i | 1—0 By #
is injective. Ctherwise H (M, (- 2 Z )) > H (M,i0) is a zero i
i= 0 |
1 i
man.  Ag v{jp is Gorenstein, there exists w e H (M~A,Q) having

Do z2eros near A and the dmage of  1in HO(MFA,Q)/HO(M;Q) is nonzero.

Let w, be the ovder of the pole of 4 on A.. Consider a cover as C
i B i

in Lemma 3.8 of [24]. oOn py where Al % |E]

whers ml(xl,yl) is a holomorphic function, ml(xl,Q) F 0. There

is a holomo]_‘p‘hic funection f(Xl) ¥ = IXl' = R such that
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w1 0y Gy uy)
ffxlfmu 71 f(xl o Wy “'dxl A dyl 70
v
- B 1.
]}3_'
W -1
Let j =y * Hx,) and 3 = 0 for 2.2 3 2 t. Then by
oy 1 1 : o]_
Lemma 3,8 of (247, cls[y] $# 0 in Hl(M”,QD. Let E = zeiAi,
£ L
Z T i AL, Then w, = § zq e, and w -1 > ¥ Z..
By 3870 boogmeh 1 =083 1
Hence A may be thought of ag also a cocycle in
1 i o 7 . . B 1, 5
By, (- Lz })e It follows that clsfr] = 0 in m M, ).

i i
This leads to contradietion. Ouy claim 1s proved. Consider

3

the following commutative diagram with exact rows.

0+ 8%, J(- ¢ 2o ~E)) > 170, 0y > nO, 02 )
o ;f.‘f’(] i Z

{ i=0 "4
Q !

0+ 81,0 (- ¥ Zo 3) > 120, 0y » 5O, O )
=0 1
i=0 B3

5 1
2y -E)) > HOLO) - utor, () ) >0
i=0 "1 : L
| | L Zy
T - i=0 71

H

> utar, ©) (-

£ 1
+_H1(M,, (- Zy ) HI(M,D) -3 (M’Om ) >0
i=0 74
_ z
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It follows that HQy, () ) > B, () ) 4
. ,

&
Z ZB +E % ZB

Look at the following exact sequence

& surjective.

0 -+ 1o, 0(—22 —E)) - H (M,O(

)
i= 0_

ll M

+ H° (M, '3(— E Z VAVICH % ZB -E)) f € + 0.
i=0 1 i=0 74

Let O (- § 2, )/ 0 § 7

~E}correspond to a line bundle I
i=0 By i=0 i

-

over (IE,,()E). There exists f ¢ (M,(D(— Z Zy ))

i= O
such that the image of f in H (M,f](— by ZB )/\J( ‘E)) ]
i=0 74 120 i i
i
viewed 3s a section of line bundle I, jg nowhere zero., So L ig . j
i
a trivial bundle, : L
" =2 " Suppose conversely that HQ4,{) & ) : ,
. ZOZBi"H:‘J ii
3
- HO(M,(D ) is surjective and O % Z )/(?(w E Z ME)) is |
% _ i=0 B 1=0 B3 ]
¥z, _[
i=0 71 |

the sheaf of germs of sections of a trivial line bundle over 5

(]E],OE). Then H° (M, d(-«ii Z, Y/ O¢- & Zy ~E))

0 "1 i=0 4

Hl(M,O(—'L% Zp )0 (= % Zy ~E)).

The exact sequence
i=0 "1 i=0 i

. ’Q' .
0 v HY e, O¢- § Zy ~E)) - uhQ, (-
i=0 i i 0 i

H e bl
—
~—
¥
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1 & A .
Q8 OG- % 2, )/ (- % 2, ~5) + 0
i=0 i =0 T

1 g L. . & PO
shows that H (M, i(~ ¥ Z_ }) = & M, G 7 2, )10~ Z -E}) M ¢
; B, . B0 . B.
= T =0 T4 =0 71

is an isomorphism. Consider the Tollowing commutative diagram

with exact rows

L 3 L . 1
0 > HO(MykS(“ ) ZP ~E}) »-HC(HjﬂB) > 10, O ) o
1=0 "1 { %
A |! Z ZP ‘{'E
r T oi=0 i ,
4 G N
Q- HOQM, O(~ ¥ Zp )Y - HUQLG) s HO(, O Y -
i=0 Y1 . 2
b ZB
i=0 74

g ' ; § _
> wh @, O¢- 3 Zy - S Gy o, ) ) >0
i=0 “1 , g 1 _
S l 2 ZB B !
! | i=0 Ti ,
2 !
> H1(14,O(—- D20 a0 ) o ou (i, 1) )+ 0 ‘!
i=0 i % |
‘ Xz,
i=0 Y4 :i
Since HO(M,gj RS HG(M,{ﬁ } is surjective, HO(M,C}) i
g 2 '
AR 5 7
1=0 oy i=0 5

. 3 I £ ?
> HO(M,iD ) is also suvjective, 8o H"(M,K)(n by ZB ) M¢ 5
£ =0 74
% ZB
1=0 74 '

- g 2 :
ﬁ-Hl(M,ﬁ)) is injective. Since Hl(m;tﬁqm T ZB YO (- F ZB ~E)) % ¢, n
i=0 7i i=0 "4 ]

the usual long cohomology exact sequence argument shows that




nt oy, -

&
I
L

0

L. n 1 £ L
Zy L MO Rz B Y e ulay O ¥ Zg YOG T 2, ~E))
B, Tk=-1 . . . . . B,
1= T i= i=0 i i=0 i

0 "1

is an disomorphism. Look at the following commutative diagram with

exacl yrows

.8 o L . 2 ‘
H (M, 1) {~ & ZB Mzk-l)) +'H1(M,Q)(w z ZB —Zk_l)/‘J(h z ZB ~E)) X ¢+ 0
is i 7 = i i

0 i=0 i

Ts ' ,L
¢ ' 1 % 4
DI Y E R, U= F g YOz, -EY) vog-oq

B, OB, B

=0 T i=0 4 i=0 74

=

et
it
—
=
o
&
o~
I~g

There'exists_ﬁ £ HI(Ms N~ ¥

i i

Use the notation of Lemma 3 £ [24]7. U is a Leray cover for

R o+ et .
Al‘ So there exists {Aoj = yljzo_J fi(xl) + higher power

of Yy 1, ri{xi) is holomocrphic for r < lei S R such that cls[A] # 0

in Hl{M’yﬂb)a Lel @ be the element such rhat <A,w> # 0, Then |

N

2
on p, by Lewma 3.8 of [24], we know that w, > T

1 ' B.Zl + el—l
i=0"4
whezxe wl is the order of pole of w on Al' (w) = {w] + D where
D iz a positive divisor which does not involve any Ai and
' L
] o= ey o [ —_ . i = . =
[w] % wiAi¢ For any Ai‘*'A’ Ai (iEOZBi+E) Ai (w)

‘lwl + A D,
Ai fw] Ai D,
_ g
==y A (lal + £ Z_ +4F4+D) = 0 for all A, € A
i i=0 Bi i

£ .
= Ao (¥ L 4EF[e]) 20 for all A .S A
toieg By | i




L
Let ¥V = .Z ZB_ 4 B+ [w] :Eyiﬂi“ We have Yy
i=0 "4

0 and.-
AirY = 0 for all Ai€§ A. By the proot of Theorvem 3011;

this is possible only if Y = 0. 1t folic gasily that D = 0-'and
3 _ '
(w) = = % Zp ~E. 50 o has no zevos in a aaighborlicod of A,
i=0 74
i.es, () s Gorenstein. Q.E.1,
veop
Theorem 6, 2: Let m: M + V be the minimgl good resolution

of normal two dimensional Stein gpace ¥ wirh p as its only
weakly elliptic singularity. Suppese %° exists. TLer 2 =127,

B
0

@0 p 1s a maximally

.;.,ZB s ZE be the elliptic sequence,
%
elliptic singularity if and only if HOCE,;“

oo mleLE . )

A

nZ
. i=0 By
' _ J
is surjective for 0 < s b oand O~ 3 ZP A ~B) is the
i=0 73 i=0 i

sheaf of germs of sections of a trivial llaz bundle over

(JE[,0 ) for 0 5§ = 4.

Proof: Let us first prove that dimHO(H}{}_; ) -1 =%
PRPAREE
1=0 Bi
'dimHo(M,<3 . ) s dimHo(M,{} ) Yo We recall thar
J d i
X ZB X ZB +F
. 1=0 1 _ 1=0 °1
J ]
y (L2, 4+E) =0 = x( £ Z_ ). The exact sequence
\ B, M. B,
i=0 "1 i=0 i
1 1 f
HOQ, () )-+H(M,Oj ) 0
% Z_ E nZ

i=0 Bi =0 Bi




shows that

dimi®0e, O ) = awntay, O )
3 k|
L7 Lz
i=0 By 1=0 B4
. o
2 disH™ (M, )
] A
i=0 °i
. 1,0 h
= diml (M, )
hj
L 4 4R
, : i=0 B4

we know that either

By the proof of previous theorem,

]
Z. )/ o1z, -E)
By i=0 ©

o 3
H (M, O (~ 3
_—5‘_;_

Zp 2D (=
=0 B3

3 : j
EZp ~E)) ¥ 0 Hl(M,«D(~ ¥
2B, in

i=0 "4 0

]

[

. ; S i
e 100, 00 2, )/ 01 2 -m) % ¢ 2wl O

z
1=0) i i=0 i =

3
Zp ) O(- 1
i=0 i qe=

0

The exact sequernce

0+ B0, £ 2, 0/0- 5 2 8) 5 1, ;)
i=0 4 i= i

.2 ZB,+E
i= i

j A
M, O . ) - EOLO (- ) 7, /O 1 2, -my)
. .

§ 7 i=0 0 i

0

<

BN
0

i=0 B3 |
R« - :
shows that dimH M, O ) 2 dimH U%,() Y~ 1.

1
%4 Z, +E
B
=0 By 1=0 %3
a computation sequence for g as follows Z0 =0,
i+l

« Consider the following sheaf e

Choose

.

1

I,

Zysenes 2, =T,

xact sequence,




-+ 1 fo B F el bl e -
0+ O(- oo B P IO B2y 2 O a8 g Zy )
=0 "4 i=0 =0 74 =0 71 Vi1
k| N
(- & Zy =EY D~ % 2, -z Y = g
. b. ket
i=0 1 i=0 i
441 o oM
0 *-i)(u 3 Zp -Z )/(Q(u x bp 0 Bz en /02 Z, )
i=0 1 =0 T4 i=0 T4 T i=0 741
3 ,
0T 7~z 306 3 2 2y ) D
oy Tl B, Twin
i=0 "1 i=0 T4
i J+1 o ¥l
0+ O3z )/tﬂ(* 2o Oenz wn, 00Ty 2 )
. B, 52: l P‘ v 3 B. '(V“f? . B.
i=0 74 =0 T 1=0G “1 =0 75
. )
LA - - L Y.
AN S TACOYAVIC by 7y ) 0.
i=0 73 i=0 74
By the usual long cohomology exact Seduance arganent,
J J+i : S 3 3+l
B0, O (- & Ze B/ A -1z ) w0 MO (- T2 <E) /O (5 7 )).
s B. Lo b, X B,
i=0 i i=0 74 I=0 74 i=0 74

The following two exact sequences

j 1, .
0> (0,0 (- 3 7 /0 " Zg M O ) i
i=0 P i=0 Vi 7 |
=0 Py /
o N 1 . N . o J+1 ‘|
> HO(M, O ) > HTGL UG- 3 Zy ~EY /O (- % 2, ) a
-g _ i=0 1 i=0 i
i=0 By
1 i ~ :
> 1 (Mgﬁj+l ) > H @m,u;j )+ 0
52 n oz,
i=0 1 i::O i
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o j+1 o ki
07 HOLOG % 2, 0) » 8708, 0 (- 2 7, -))
1=0 “i 1=0 "1

o j .G+ 1.t
MENCRVICER AR S VIVIGE, Zy ) > B, (- 7 Zy )

> H (M, \J(~- = Zg "E)) » HO(M, 0 (- ¥ OV RVIC: Zy )+ 0
: i=0 "1 i=0 “i i=0 "1

shows that Hd(M,Oj+l ) > Hd(l\{[, O Y and

Z ..FL
i=0 Py i=0 By
d f j+l d [a j
H M U(- 3 ZB )) > B M, U(- & ZB -E)) are the isemorphisms for
i=0 4 i=0 i

7
N
i JLAS

=2

B

d=240, 1,
Suppose p is a maximally elliptic gingularity. Consider . 'f

the following commutative diagram with exact rows

. , |
0+ B0, 0 (- T 2, ~B)) » 8OO0, 0) + ulqu, § )
i=0 51

¥z, 4
f * f i=0 23

0 > 5o, O(- : Zg )) > 1o, Oy > 8%, O ) '
% i=0 i 4

§ o
™~

0 i

i i
!

Cmm e

J+1 :
0,0 (- ¥ Z, ) > HOQL0) HO(M,OJ,+1 )
+ i=0 7i [ { 5 ZB

j _
0> B0 2 2 ) > 1°0,0) » 1001, & | )
i=0 i _

.

I o L
.

J
!
f
1

0 - HO(M, b(~z)) = 1M, 0) - Ho(-M,l‘U Z)




e

= dimHIGﬂQQ)

is surjective

> HI(M,

il
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. 1, . , -
B - H4,0) o atar, 1) ) >0
2
% Z. 4E
A
1, o, & 1, 1 .
U0 2 2 )0 > HO(M, 0 ) 5 H (M, W) ) + 0
.o4=0 g : . %
{ ! ' % ZB
j ; ro4=0 Y1
1+ 1 1L e
Hm B 2,0 - WO, - B, ) >0
PN 1
i=0 ..
! | h 7y
} , f’ i-'=0 i
g
A]. . iy - N + RERNY
H U‘{-iif ('" z ZJ ‘f "} hlo-\/-[s."\(-)f - Hl(Ma 0 J ) + 0
1 i=0 7L l | 5 ZB
; I =07y
—%Wﬁ&@)+ﬂ%m®%)+ﬂ
L . 5 . o, Ry l ‘ ’
2o, <E)) = 0, diwd (M, 3 Yo = dimH M, () )
=0 Ui 4 %
5L, +E X 7, +E
im0 T4 i=0 “1
O It foliows that HO(Mg\ij_l_l Yy o+ HO(M,O . . ) :
5 Z 5 7 |
1=0 B3 1=0 B3
for all 0 £ 3 2 ¢ and dimi®(M,\) 1) = dinB®Q0) ;L
V4
Zg By L7y
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i+l
Moreover, H° (M, ‘2(— % Zy, )) + (M, \9(— X Zy

)} is not an isomorphism
1w0 i=0 1

for al1 0 £ § £ &. The exact sequence

(6.1)
O . j 3 O
0> 06O (- 2 25 )/ (= 7 2 ~E)) THM, O )
i=0 74 i=0 i %7 4R
o OB,
i=0 731
- HO(M,KD j ) >0
L Z
1=0 Bi

i .
shows that HO(M Q (- 2 z )/\D(- Tz -E)) v,
, B,
i= O i=0 74
following exact sequence

We have the

0> 8°00, O(- 3 2 -B)) » 1°01, O (- 1 Zy )

J . %
> B, O (- z Z, )/ O- 5 Zy ~E)) N € - 0. g
i=0 B i=0 1

3 J

()(- )} Z )/()(- x Z ~h) is a gheaf of
i= 0 1~0

germs of sections of a trivial llne bundle over ([E[,(}E) for

It follows readily that

024 =9,
Conversely, suppose HO(M,() j ) e-HO(M,() ) dis
E ZB +E E Z
i=0 F i=0 i
J
surjective for 0 g i< 2, and Q(~ T Z YO (= L ZB -E) is the
. i=0 1 i=0 4

sheaf of germs of sections of a trivial line bundle over (!E]AD )




- §2 Existence Theorem for Alnost i

.j
for 0 2 4 2 2. TFrom (6.1) since H° i, D~ % ZL )/iJ(« L B ~E))
i

: =0 i=0
re, dimHOGH,{Jj ) = dimt” (ﬂ {q )b 1, fy 1nductlon,
% %, +F >: z '
(g Bg i=0 By
dimHO(M,{) )= 4+ 1 dimﬂo(mii}y) =& 4 2. Howevern,
0 7
L Z_ +E
i=0 %3
| . 1 . LA L
dimd™ (M, 1)) = dinH (M, ) )= ddmil (M, ) ) =8+ 2,
: L Y .
VAN % A, 4E
i=0 71 i=0 74
S50 p is a maximally elliptic singularisy,
Corollarz_ﬁLg: Let w: M » V be the mininzl geod resolution

of normal two dimensional Stein spaces with P as ifts only weakly

elliptic singularicy. Suppose p is an welt winlrally elliptic
singularity but not a minimally ellipein singularity and K* exists.

Then VO > is Gorenstein if and only if n”(m;k?(wz}/aﬁ(msz)) ~og.

imally Quasi~Simple
Elliptic Singularities

Definition 6.4: Let T: M + V be the minimal zood resolution

of a normal two dimensional Steln space with P as 1tz only weakly
elliptic singularity. If the minimally elliptic cycle B o= Al is
a nonsingular elliptic curve, ve say that p is » quasi-simple

elliptic singularity.

b
o]
Pt




Theorem 6.5: Let T: M~ V be the minimal good resolution
of normal two dimeunsional Stein space with p as its only quasi-simple
elliptic singularity. Let T denote the weighted dual graph along

with the geners of the Ai' Suppose K’ exists and ZB =Z, 2
o

Z =Z.,=A 1s the elliptie sequence. Let L, be the line bundie
B E 71 . \ 3
1 3 J
corresponding to O(~ 2 Z2_ Y U(~ T 2. -A )
, B, c.n B, 1
, i=0 "1 . di=0 T4
elliptic curve Al. Then we can deform a suitably large infinitisimal

’l..’
By

0 23 24 over the

neighborhood B of the exceptional set of p such that Lj are trivial

bundles cver A1 simultaneously and that T ig preserved.

Proof: Let ZB. = 3 B,ZhAh' Then B %1 % p Zy = eve =4 Z2; = e =1
i h 74 o 1
where E = ZehAh. For 0 2 j 5 ¢, Lj are line bundles of chern

class zero over the elliptic curve A].
n .

of Al In M. Let ZBi = Al + jizBlszj + Di where Al,...,An are

distinet, Al-Aj =1 2353 %n and Di is a positive cycle which

Let N be the normal bundle

does not involve.Algou., An and A1°Di = 0., Then Lj =N
3 J '
¥ z -y o Z
g i=0 Bi 2. .. €)1=0Bi n

P2 ’ Pn

= <'S. 1
where Pi Alt\ Ai 25125 We want to

show that by varying the point of intersection in Ali\ Ai, 2524iZ=n,
we can vary Lj in the Picard variety of Al and make Lj Frivial
simultaneously for all 0 < j £ &, Since c(NMl) = —Al-Al,

1+A1.A1) = 1. By Riemann Roch Theorem, there iz a

2 ooy LtAA
nontrivial section f ¢ P(Al,(j(N 'Sp M. o (F) = 1+q for

-1
c(N Ep

2

o .
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-1 1-|-A1-Al
It is then clear that N & = £ 3 for if

1 Py q
fl £ I‘(Al,O (gq)) is a nontrivial section of the point bundle so
: : I+A <A
that f, vanishes precisely at q, then £/, € Bo(A .0 (N"lf,~ t 15 —l)
1 1 1 P, q
is a holomorphic nowhere—-vanishing section, so necessarily
LA e A -1 -l-—Al-Al

171 £~ = 1. Consequently N % = £ £ and hence
P, q ' 4

some q g A

] 3
—ieiAL - i T4EgBy%2 "L
L, = g7373A108 0 ¢ isoPe 1= . Since

4 py P,

+f

|
A e ': 4 = 1 . & .o
Jf&1 ) )“ Z 0, we have ‘]('Al Al) + I + . +

Bence -

il

[
—~
Ty

[EEN
Y

L
~—r
—~
oy
d"ru

L}
~~
Rt

I
~
gy
Y




Now Abel's Theorem says that by varying the poini of intersection in

: - ) Cmh e

AN A= {pi} s 221 320, we can vary Epi &q in the Picard

variety of Al and make Ep E;l trivial so ithar L, ds a trivial
i

line bundle simulténeously for all 0 5 4§ 2 g.

Corollary 6.6:

The hypothesis is

as Theorem 6,5,
If T is also an almost minimally elliptic singulavity, Then
we can deform a suitable large infinitesimal nedfehborhood B oof

the exceprional set of p such that_&ﬂln is Goreustaein.

Proof: Trivial comsequence of Corollary 6.4 and Theorem 6.5,
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