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Abstract of the Dissertation
ON THE ZEROES OFVﬁONNEGATIVE CURVATURE OPERATORS
by
Stanley Michael Zoltek
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook
1976

The object of this paper 1s to study the pointwise
behavior of the Riemannian sectional curvature function ¢.

Since we are interested in the pointwise behavior of
o, we work in the sétting of an arbitrary inner product
_space V. G is the Grassmann manifold of oriented 2-planes

in V. A curvature operator R is a self-adjoint linear

transformation of AE(V) (e.g. the curvature tensor of a

Riemannian manifold M acting on AQ(Mm), where M 1s the

tangent space to M at m). Tor a curvature operator R, its

sectional curvature

is given by




For dimension V £ 4, Thorpe has shown [1l] that the
minimum and maximum sets of Op are intersections with G of
linear subspaces of AQ(V), and he has given [2] a simple
characterization of positive sectional curvature in terms
of the curvature tensor. In fact, Thorpe [1], claimed that
his description of the minimum and maximum sets of gn was
true for all dimensions. |

'We give a new proof of these results for dimension V = L
and we show that they do not hold for higher dimensions. More
specifically, for dimension V = 5 we exhibit a family of
curvature operators with non-negative sectional curvature
each of whose members does not conform to the characteriza-
tion suggested by Thorpe's results [2] for lower dimensions.
Furthermore, it 1is shown that one member of this family has
& zero set whiéh is not the intersection with G éf a linear

2(V) and so contradicts Thorpe's result in [1].
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INTRODUCTION

The object of this paper is to study the pointwise
behavior of the Riemannian sectional curvature function.

More specifically, the Riemannian sectional curvature
of a Riemannian manifold M is a real valued function ¢ on the
Grassmann bundle of tangent 2-planes of M. Let G denote the
Grassmann manifold of oriented tangent 2eplanes at m € M.
G can-be made, in a natural way, a submanifold of the vector
. space A2 of 2~vectors at m. Fﬁrthermore, since G is a 2-fold
covering space of the manifold of (unoriented) 2-planes at m,
we may regard ¢ as a function on G. We will be Interested in
the description of the minimum and maximum sets of ¢ and in
the gquestion of characterizing positive sectional curvature
in terms of the curvature tensor. |

Since we are interested in the poinitwise behavior of 0,

~we shall work in the setting of an arbifrary inner product

in V. A curvature operator R is a self-adjoint linear trans-
formation of AE(V) (e.g. the curvature tensor R of s Riemannian
manifold M acting on’Ag(Mm), where M 1s the tangent space to
:M at m). For a curvature operator R, its sectional curvature

:t G~ R is given by
cR(P) = {RP,P>

or P in G. (For more information regarding the motivation of

space V. G is then the Grassmann manifold of oriented 2-planes




these definitions see the Preliminaries.)
For dimension V < 4, Thorpe has shown [1] that the mini-

mum and maximum sets of 6., are intersectiocons with G of linear

R
subspaces of Ag(v), and he has given [2] a simple characteriza-
tion of positive sectional curvature in terms of the curvature
tensor. In fact, Thorpe [1] claimed that his description of
the minimum and meaximum sets of TR Was true for all dimehéions.
In what follows, we shall give a new proof of these
results for dimension V £ 4 and we shall.show that they do
not hold for higher dimensions. More specifically, for
dimension V = 5 we exhibit a family of curvature operators
with non-negative sectional curvature each of whose members
does not conform to the characterization suggested by Thorpe's

result [2] for lower dimensions. Furthermore, it is sown

that one member of thils famlly has a zero set which is not

the intersection with G of a linear subspace of AE(V) and

so contradicts Thorpe's result in [1]. -




BACKGROUND

The Rlemannian sectional curvaturé-of a Riemannian
manifold M is a real valued function ¢ on the Grassmann
bundle of tangent 2-planes of M. A precise definition in
terms of the Riémannian connection of the manifold will be
given in the next section. |

In this section, it 1s our goal to explain fhe importance
of sectional curvature and to see why manifolds of strictly
positive curvature are s0 interésting. To this end we shall
state several results relating the curvature of a manifold
with its topological properties. Finally we shall see that
in certain situations, knowing the sectional curvature of a
manifold tellsus, up to diffeomorphism, that'the manifold is
a sphere (possibly an exotic sphere).

Perhaps the best known result relatihg the topology and
curvature of a Riemannian manifold is the Gauss-Bonnet
theofem [7 1. It relaﬁes the Euler Characteristic X(M) of
‘a Riemannian manifold M with its sectional curvature function
. In the case when dimension M = 2 1t says that if M is a
compact connected oriented Q—manifold, then JMU = y(M). 1In
he case of the torus T, x(T) = 0 and sb the Gauss-Bonnet

heorem implies that we can not put a metriec on the torus

hich gives rise to strictly positive (or strictly negative)
cctional curvature.

Tet & be a positive number with 0 < 8 £ 1. An n-dimensional




k.

Riemannian manifold M is sald to be 6-pinched if its sectional

curvature function ¢ satisfies
A £ g = A

for some positive number A, If the metric g of a Riemannian
manifold is replaced by cg (¢ a positive number) then the

. 1 .
curvature function ¢ becomes —»x0 and so we can "normalize"

c
the metric so that 6 = ¢ s 1.

Hopf [1l1l] proved the following theorem:

Theorem 1. A complete, simply connected l-pinched Riemannlan

manifold M is isometric to an ordinary sphere.

J. Wolfe'[l2] has obtéined a compleﬁe classification of
the complete l-pinched Riemannian manifolds.
The next theorem due to Myers [13] relates the sectional

curvature of a manifold with its fundamental group.

Theorem 2. A complete 8-pinched Riemannian manifold M with

§ > 0 1s compact and has finite fundamental group.

The following theorem is due to Synge [147.

Theorem 3. A complete §-pinched Riemannian manifold M (with

8§ > 0) of even dimension is either (1) simply connected or

) non-orientable with wl(M) = Zg-

The next two thecrems give a partial classification of
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8§ -pinched complete simply connected manifolds. The first is

due to Berger [15] and the second to Kiingenberg [161].

Theorem Y. Tet M be a complete simply connected Riemannian -
manifold of even.dimension which is &-pinched. If &> %ﬁ,

then M ig homeomorphic to a sphere. If & = %3 then M is
either homeomorphic to a sphere or isometric to a compact 1

symmetric space of rank 1.

Theorem 5. A complete simply connected Riemannian manifold

of_odd dimension which is %_pinched i1s homeomorphic to a

sphere.

Tn the above theorems (4 and 5) we do not know if M is
diffeomorphic with an ordinary sphere. However, Gromoll [17]

has proved the following theorem.

Theorem 6. There exists a sequence of numbers

1

T = 61 < 62_< 63 <...5 1lim 6k = 1, such that if M is a complete

Ao
simply connected n~dimensional Riemannian manifold which is

Bnﬂg—pinched, then M is diffeomorphic to an ordinary sphere.

In the previous theorem the pinching constant depended

‘on the dimension of the manifold. Ruh [18] has found a way

0 avold this difficulty. He considers the curvature tensor

y. of a Riemannian manifold M as a éelf adjoint linear transférm—

tion of Ag(Mm) (the "eurvature operator" of M: see the next




6.

section for a more detailed explanation). He then calls a

Riemannian manifold strongly &-pinched if the eigenvalues

ki of R satisfy the condition 6 < xi < 1 for all 1. Phrased

in this terminology he gets the following dimension free

result.

Theorem 7. There exists a constant & # 1 such that a complete,
‘simply connected, strongly &6~pinched Riemannian manifocld is

diffeomorphic to the standard sphere of the same dimension.

Congidering the wealth of theorems on manifolds of
positivé curvature it 1s of great interesf to have easy
criteria for determining when in fact curvature is positive
for a given Riemannian manifold. | |

Though it is relatively easy to check if a self-adjoint
operator 1s positive definite (e.g. by checking its eigen-
values) it is a formidable task to check positivity of

sectional curvature for a non-positive definite curvature

‘operator.




PRELIMINARTES

Let V be an n-dimensional real vector space with inner
product <;> and for v € V set |v| = J/<v,v>. For p an integer,
1<p<nby AP(V) or AP we mean the space of p-vectors of‘V.

if {el,...,en} is a basis for V, then [eiih...Aeiplll <...< 1p}

is a basis for AP and it follows that AP has dimension (E).

(For more detail see [ 3] or [ 4 ]) A p-vector w is called

decomposable if W = v,A...Av_ where v.,...,v. € V. Hence AP
1 p 1 p

has a basis of decomposable vectors. Thus when defining an

Inner product on AP it suffices to specify its values on

decomposable p-vectors, We set <ulA...Aup,le...Avp> = det[<ui,vj>]

where ui,vj € V. For £ € A2 we set ||&]| = W<E,B>. It follows
that if {el,...,en} is an orthonormal basis for V, then

{ei Ao he, Ii1 <oea< ip} is an orthonormal basis for AP,

1
Let'{vl,.f.,vp} and {ul,...,up] be two bases for some

p-dimensional subspace P of V. It then follows that

v A...AVP =det A u A...Aup, where A is the change of basis

1 1

matrix.

n
n

phic to R and so A(V) - {0} is disconneccted and is the

The dimension of An(v) = ()} = 1. Thus An(V) is isomor-
union of two connected components. An orientation of V is a
hoice of one of these components, The orientation determined
y'an ordered basis {vl"'“’vn] for V is the component of

n ) . . :

A (V) in which v,A...Av lies. Let {vy,...,v,} and

{u'5...,un] be two ordered bases for V and let A be the change
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of basis matrix. It follows that these bases determine the
same orientatiah of V 1f and only 1f det A > 0. (See [ 5 }].)
Given an orientation of V, an ordered basis {vl,...,vn} is
called an oriented basis 1If it determines the given orientation.
_ Two decompesable p-~vectors & and B will be called equiva-
lent if there exists a real number m > 0 such that o = nd.

The equivalence class of a p-vector ule.uAup will be denoted
by [alA...Aup]. In this way we can set up a one-to-one
correspondence between oriented p-dimensional subsgpaces of V
‘and the equivalence classes of decomposable p-vectors by:

- P~ [ulA...Aup] |

where {ul,...,up] is any oriented basis for. the subspace P.
Thus we can identify the Grassmann manifold G of oriented
p-dimensional subspaces of V with the submanifold of AP
consisting of decomposable p-vectors of length one by

_P'” ulA...Aup where tul,n..,up] 1s an oriented orthonormal

basis of P. The elements of G are called p-planes. In what

zfollows G will always be the Grassmann manifold of oriented

2-planes.
Iet M be a Riemannian manifold with Riemannian connection

(see [6 1, [T 1). By M,, we mean the tangent space to M aft

The curvature tensor of a Riemannian connection v is a
inear transformation valued tensor R that assigns. to each
1r of vectors X and Y at m a linear transformation R(X,Y)

M. into itself. For Z € M we define R(X,Y)Z be extending




X,Y and Z to ¢ fields about m and setting

R{X,Y)Z = (vaYz-vaxz~v£X’Y]z)m.
‘The Riemannian sectional curvature of a Riemannian

manifold M is a real valued function 0 on the Grassmann
bundle of tangent 2—pianes at m. For the72—dimensional
subspace P of M, spanned by the orthonormal‘vectors X and

Y we define 1ts Riemannian sectional curvature by

o(P) = <X,R(X,Y)¥>. It is easily checked that this value does
not depend on the choice of orthonormal basis of P. (See [6 ],
page 73.)

' R can also he regarded as a self-adjolint linear operator

on Az(Mﬁ)- We set <ﬁX1AYl,X2AY2> = <R(X1,Yi)Y2,X2> where
Xy ¥, € AE(Mm). (Since Ae(Mm) has a basis of décomposable
2-vectors, 1t suffices to speclfy the values of R on decompos-
able 2-vectors.) It is this interpretation of R which leads
us to a generallization of the curvature tenéor,

Let V be an n-dimenéional real inner product space.

A curvature operator R 1s a self-adjoint linear transformation

of Az(v). The space R of all curvature operators has

dimensilon [(g)2 + (2)]/2 and inner product given by:
<R,T> = trace RoT where R,T € .

We also generallze the concept of sectional curvature.

iven R € R its sectional curvature is the function

G = R defined by O (P) = <RP,P>, P € G. We define the

.
.
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zero set of R by

7(R) = (P € Glo (P) = 0}.

Let {el,...,en} be an oriented orthonormal basis for V.

We define

by

where a €

the star operator

* 3 AP . p\P7P

CFa,B> = anB,eqA...Ae >

AP and g € A" P, 1%t is easily checked that this

definition is independent of the cholce of oriented ortho-

normal basis for V. It is also easily checked that

22

for a,8 €

If dimension V = 4 and p = 2 then *

a,b € R we set [a,b] = {x € R]a £ x < b}.

= (_l)p(n-p) identity and so * is non-singular (see [4]).

A2

Ag,‘aAB = BAG, it follows that * is symmetric.

By R we denote the sef of all real numbers. TFor

—~ A2 and since




il1.

Section 1. THE BIANCHI IDENTITY AND THE GRASSMANN QUADRATIC
2-RELATIONS.

~In this seétion we examine the space & complementary
in R to the subspace R = {R € R|R satisfies the Bianchi
identity}. It is shown that § is néturally isomorphic to
A4 and we establish the relationship between § and the
Grassmann quadratic 2-relations which are necessary and
sufficient conditions for decomposability of elements in |
Ae. These results are well known and the proofs we glve are (
found in [ 1 1. |

|

Given R € ® we associate a 2-form on V with values in

the vector space of skew symmetric endmorphisms of V by
<R{u,v)(w),x> = <RUAV,WAX>, u,v,w,x € V.

It is easily checked that this "association" is a vector

‘spaceg isomorphism,

Using this identification we define the Bianchi map
: R~ R, Given R € R we set )
Eb(R)](u,v)(w) = R({u,v)(w) + R{v,w)(u) + R{w,u)(v). Those ‘
ﬁrvature operators such that b(R) = 0 are said to satiéfy
she firgt Bianchi identity. It is easily checked that b
. a linear map and so its kernel is a linear subspace of R
hich we will denote by B. ' | o

Iet & = gt

» the orthogonal compliment_of i3
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each ¢ € A4 we associate S € R by <S,.0,B> = <e,anB>, where

a,B € A%, In order to show that e b SE 1s an isomorphism

n

A" = 8 we will need the following lemma.

ILemma 1.1. TLet {el,...,en] be an orthonormal basis for V.

For 1 = i< j<k<4d =n, gset g,, 5

1 k4 eiéejAekAe&

If R € ®, then
'<R’SinL> = 2[<R(eiAej),ekAe&> + <R(ejAek)’eiAeL>
+ <R(ekAei),ejAeL>].

Proof. <R’Sijk£> = tr RosijkL = G§B<R°Sijk&(eaAeBLeaAeB>

-

= = <Slgk&(e AeB),R(eaAeB)>

<8

= 3 <8 1yen, (e he ), 2 <R(e Aeg) e Aes>e, Ae >
a<p | LIEY B B 6 o

= Z 3 <R{e AeB),e Ae (>
a<B y<&

X <e AeBAe Aeé,eiAejAeKAeL>.

Collecting terms finishes the proof.

Proposition 1.2, The map ¢ 5 o, 1s an isomorphism of 1’\.1’L onto

8. In fact e - éé S, 1s an isometry.

ro0f , It is clear that s is a linear map of Aqlinto R. Let
_,,..,en} be an orthonormal basis for V. The image Sijk&

an arpitrary basis element eiAejAekAe& (i < J <k <4) of
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!\LL belongs to §. This follows, since by Iemma 1.1,

<R’S‘jk%> = 0 for all R € B. Thus s maps A4 into 8. In

i
fact given R € R, Iemma 1.1 implies that R € B & <R’Sijk&>

O

for all ijkt. This means that {Sijkbil <1< j<k<4ds=nl

spans 8 and so s maps A4 onto 8, If we take R = SGBYé in

Lemma, 1.1 we see that this spanning set is also orthogonal

and so a basis of 8 and furthermore that Hsijk&ﬂg = 6, This
1

proves s 1s injective and that the map e - —% Se is an

isometry.

Proposition 1.3. a € A is decomposable if and only if

<8o,a> = 0 for all 8 € §,

Proof (Necessity). By Proposition 1.2 for every S € 8§ there

exists e e at such that S_ = 8. But then |

<8Sa,0> = <8 0,0> = <e,ahe> = O, |
(sufficiency). Let {el,...,en} be an orthonormal

basis for V. Then a = Zl£i<j$naijeiAej' By Proposiﬁion 1.2

<8a,u> = 0 for all S € $ if and only if <8y 534 8s %> = 0

1 21 <3<k <4 =n, Itis easily shown that -

S..k&a,a> = g[aijakb - aikaj& + ai&ajk] and it is well-known

f and only if By g8 = Byplin + 23485k = 0, 1 =1<j<k«<4 é n.

Corollary 1.4, a € A% is decomposable if and only if
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Proof. ILet {el,...,en} be an orthonormal basis for V. Then

a = 21$i<j5naijeiAej
and

NG = 22 g1 cgaieatsn (P13 %0 TR irP e Ry )08 5 ey

ZlSi<j<k<&Sn<Sijk&a’a>ei ejAekAeL.

Thus aAa = 0 if and only if <Sijkba’a> =0, L1l <j<k<4ds=sn

and so by Proposition 1.3 if and only if o is decomposable.

- Remark 1. The conditions that <Sijk£a’a> = 0,

1=1<j<k <4 <n, are known as the Grassmann quadratic

-

2-relations.

Remark 2., By Proposition 1.3 it is clear that each curvature
operator § € & has sectional curvature identically zero. The
COnversé ls also true; We have seen that for R € R, R = S+T
where S.G 8§ and T € 8, Now gp = 0 implies Op = O. It is

%Well-known (see [10] page 16) that if a curvature operator

~has zero sectional curvature and satisfies the Bianchi identity,

then it is the zero operator. Thus T is identically zero
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Section 2.  TWO RESULTS OF THORPE

In this section we restrict ourselves to the case
dimension V = 4, It is our goal to re-examine two results
of Thorpe (see [1], [2]). The first [2] gives a simple
characterization of posibtive sectional curvature in terms
of the corresponding curvature operator and the second [1]
gives a description of the minimum and maximum sets of 0,
the sectional curvature function. The proof we give of the
first result will differ from that found in [2] and was

Suggested by Robert Geroch.

By definition of & and B, R = B ® 3, where ® means
orthogonal direct gum. | | '

We défine m as orthogonal projection from ® into 8.
Since 0, =0 = 0_ it Follows that w(R+) c 8" and so we

R B+S B
can conslilder 7 as a map of RY into BT

Theorem 2.1. TIf dimension V = 4, then the wmap

+

T R - ﬁ+

dentlty and having non-negative sectional curvature is the

orthogonal projection of a positive semi-definite operator

Let & = (R € RI<RX,X> = 0¥V X € A%} and & = (R € JEN

is onto; 1i.e. each curvature operator satlsfylng the Bianchi

To prove Theorem 2.1 we will need the following lemma.

z 0}
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Lemma 2.2. Tor g,n € A set g.m = {*E, > and g(€) = £-E,
Let M = (8 € £%|g(g) > 0) and N = {2 € A°|g(E) < 0}. TFor

RER set @ = (€ € A°|CRE,E> < 0}. If o, = 0, then either

R
Q cMor §c N.

Proof. Tet 8 = [§ € A?TH@H = 1}.

Since * is a non-singular, self-adjolnt linear transform
ation of A° it follows that - is a non-singular indefinite
inner product on A, By Proposition 1.3 and the facf'that
A oig generated by * = S1ogy 1t follows that g € A? is
decomposable if and only if g(&) = 0.

If Q N M 4 ¢ then the function & v <R§,é> assumes a

minimum on M N 8. In order to show this we will consider the

‘sets 5; = (e € glgle) < %J. Each Sg is a compact subget of S,

c
i+1

continuous function & + {RE,E> assumes a minimum at some

c s c o c
g o Si and igl Si = MN S. Now on the compact set Si the

point &, € Sg. Since @ N M 4 @ there exists m € M NN 8§ such
ﬁhat {Rn,m> = ¢ < 0 (select T € Q N M and set n = rA|r|). If
we assume the function & ~ {RE,E> does not attain a minimum
}§=l contalrs a subsequence

} . with the properties that £. € g% - g© and -

b =l k K K-1
. s8. > <<BE&, ,8, > < c. But then li
i 1,771y -

mg(g, ) =0
k+1 1

koo k

585 > < ¢ for all k which contradicts op 2 O.
K ;

The minimum value < 0 is an eigenvalue (apply the
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minimization technique of Lagrange multipliers to the function
g - (RE,E> on 8) and s0 there exists x € M N & such that
Rx = uX. |

Similarly if Q 0 N 4 &, then there exists y € N N 8 such
that Ry = o9y where ¢ < 0.

Since the eigenvalues 3 and © zorresponding to the
eigenvectors x and y are both < 0, R is negative definite
on thé spen of {x,y}. But g(x) > 0 and g(y) < O implies
that g{tx+(1-t)y) = O for some t between O and 1. This
together with tx + (1-t)y 4+ 0 (since x and y are linearly
independent) contradicts op = O. (set §E = tx + (1-t)y and

-

note U%W-E ¢ and oR(g)-< 0.)

Proof of Theorem 2.1, By ILemma 2.2 Q = [€ € A2[<R§,§> < 0}

iis contained {entirely) in M or N.

Consider R, = R + t¥, t € R and set QE = (€ € A2[<Rt§,§> < 0}.
Applying Lemma 2.2 to Ry 1t is easily checked that for suffi-

ciently large t, Qt c N and that for sufficlently negative t,

:t c M. (In fact for each t, Q. © Mor Q < N.) Thus we can

define a = sup{t|qQ, = M} and b = inf{t|Q, ¢ N}. By the defin

tion of b and Lemma 2.2 it follows that {R,E,8> = 0 for all

€ M. Hence it follows by the definition of a that a = b.

herefore by the defiﬁition of a and b, for each t € [a,b] -
M and Q, © W, and so by Lemma 2.2 Qy = #. We thus

lude that for each t € [a,b], R + t* is positive semi-
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definite. To complete the proof we set 8§ = tO%, t, € [a,b].

Theorem 2.3.. Let dimension V = 4, and suppose R € R ig such

that o, = O and Z(R) 4 #. Then there exists a unique S € §
such that Z{R) = G N kernel (R+S). Recall that

7(R) = {£ € g|<RE,E> = 0]}.

Remark. The zero set of R, for R € ® such that op = 0,

Z(R) 4+ # is therefore the intersection with G of a linear

subspace of Ag, when dimension V = 4,

Proof. By Theorem 2.1 there exists t_ € R such that L‘-{+1:O5F

is a positive semi-definite operator on Ae. Since

such that ((R+to*)§,§> = 0 are eigenvectors of R+to% with

eigenvalue O. (Apply the minimization technique of Lagrange

multipliers to the function & » <(R+to*)§,§> on the unit
‘sphere in AE). Thus if x € Z{(R), then x € ¢ and
x € ker(R+tO*) and so Z{R) € ¢ N ker(R+to*). Conversely if

x€Gn ker(R+to*), then x € G and

R(x) = °R+t0*(x)‘=r<(R+to%)X’i> = <0,x = 0 and -so

g n ker(R+tO*) < Z(R).

To establish uniqueness, suppose for tl € R,

Z(R) = & N ker(R#t_*) = G N ker(R+t *). Then for x € Z(R),
ER+tO*)x =0 = (R+tl*}x, and so té*x = tl*x. Since * is

on singular we have b, = &y

To complete the proof set S = to*.

C(Rrt_%)E,8> = 0 for all § € A%, it follows that those § € A
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Corollary 2.4. Let dimension V = 4 and R € R, and let ) denote

the minimum (or maximum) value of © Then there exists a

R
unique 8 € $ such that {P € GIGR(P) = A} = @& N ker(R-AI-8).

Proof. TFollows from Theorem 2.4.by replacing R in that theorem

by AI-R).

by R-AI {or, when )\ is the maximum value of Og
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Section 3.  DENSE SUBSETS OF G

In this section dimension V = 5. We describe a collec-
tion of dense subsets of the Grassmann manifold G of oriented
two dimensional subspaces of V. Specifically, gliven P € @G,
we cénstruct a dense subset of G whiéh containg P. In the '
following sections this tool will greatly gimplify our

calculations.

Theorem 3.1. Given P € G, let {el,...,eS} be an orthonormal

basis of V such that P = elAeg. If for xl,...,x5 € R we set

(Xl’XE’XB’XM’X5) = igl x;e; then

Q = {1;03X3:Xq:x5)A(osl:Ys:y&:y5)/“(lnoaxgsxusxs)A(O:l:Yg:yu:yB)H

ix3sxuax53Y33YMay5 € R}

is a dense subset of G whilch contalns P.

To prove Theorem 3.1 we willl need the following lemma.
Lemma 3.2. ¢-Q = [P € G](P,elAeé> = Q}.
roof. (Using the notation of Theorem 3.1)

(Xlsxgnxgsxuaxg)A(Yl)y23Y3:Y43y5)

PE(Gg= P =
(3 5255 %g5%y %5 A (71 5705350576

X¥o ~ XV 40

{P,e.hey = _
L é> ”(X13X2:X33X43X5)A(ylsy23yB:YH:y5)“
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Then either x, + 0 or Y, + 0. We can assume X, 4 0 (vy inter-

changing x's and y's if necessary). Dividing each Xy by Xy

we get
_.(1:X23X33X43XR)A(ylsy23Y3:YA3yQ)
= = = A
H(1:X23X33X4:X5)A(yl:y23y3sy43Yg)N
‘ | Xy '
where for 1 = 2,...,5 we abusively denote T by X Replacing
_ 1 _

Yy by ¥i~X3¥, we get

p '(19X23X33XMJXQ)A(Obyg)ygjyuayg)

“(l:x2:X33xq3X5)A(O:ygayBJYA:Y5)H

wheyre for 1 = 2,...,5 we abusively denote ¥iom Xy by Yy
Since O = <P,elAeé> = ¥, (the new ¥o) we can divide each s

by To to get

(13X23X33X4:Xg)A(O:l:ygayu:y5)

) "(15X2:X33XQ;X5)A(0319Y33YA:Y5)“

Y4 _
where for 1 = 2,...,5 we abusively denote ?i by ¥ Tinally

o i

¥ replacing X5 by X4 =Yy X, We get

b (lsosxgsxuaxg)h(oa13Y3:yu:yg)

H(1303335X43X5)A(0313Y33y49y5)u

Here for i = 3,4,5 we abusively denote XV iXo by X - Hence
le have shown G - Q < [P € GI(P,eiAeé} = 0}.

Tt is clear that 1f P € Q = {P,e;Ae,> } O and so
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{p € Gf(P,elAe2> = 0} < G-Q.

Proof of Theorem 3.1. TLemma 3.2 ghows that the complement

of @ in G, G-Q = {P € Gl<P,e1Ae2> = 0}. Since the function
P - <P,eiAeé> is a smooth function on G it follows by the

implicit functlon theorem that G-Q has co=dimension one in

G and therefore @ is dense in G.
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Section 4. THE CQURVATURE OPERATOR Ry

In this section we dilscuss the possibllity of extending
Theorem 2.1 and 2.4 to the case dimension V z 5. Two claims
are made and an example is presented. It will be the analysis
of this example which occuples most of the remaining sections

and results in a verification of these claiums.

Glaim 4.1. When the dimension V = 5, the zero set of a
curvature operator with non-negative sectional curvature
need not be the intersection with G of a linear subspace
of A?.

Claim 4.2. The map 7, defined in Section 3, need not be
onto. Indeed for dimension V = 5, there exist curvature

operators wlth non-negative sectional curvature which can

4

not be made positive semi-definite by adding an element of A .
Until further notice dimension V = 5. Let [el,...,eB}

'Ee an orthonormal basis for V and k a real number. Set

= e]._/\e'j and consider the following example.

2

Iet R A

N A° be defined by

Bg€1p = €12 ~ ©15 ~ ©3y
Bg®15 = €15 ~ ®10 ™ ©3y
Byegy = €3y ~ ©12 ~ €15
Byeoy = ByPag
R

f
o
®

k€13




It is

Iet o

Reeyy = ke
Reepz = Kepg
Rke25 = ke25
Rke45 = keu5

easlly checked that Ry 1s self-adjoint.

Rﬁm = €y,

= 812 + 815 + 834.

©15 " €34 T 15 - €15 - eg) *t egy

- €15

o,

In the next section it will be shown that R, has non-

negative sectional curvature.




Section 5. THE SECTIONAL CURVATURE OF Rk

In this éection we will analyse sectional curvature on
a dense subset of G containing the zero eo)y of R. The
sectional curvature of R wlll be shown to be non-negative
on this subset, and so on all of G.

By TheoremIB.l
Q= {[(0,1,8,0,v)A(6,0,¢,2,8) 1/l [a,1,8,0,Y)A(6,0,¢,1,8) ]l
K G'SB:Y35:€3@ € R}

is a dense subset of G containing €oyy -

| Let ¢ be a typlcal element of Q;- Our goal being to show
-GRK? 0, we can disregard the normalization factor, since
<leleslicio = el Xgg,0>. set & = Jiclc. hen

£ = [ael+92+Bes+ye5]A[5el+ee3+eu+ee5]

(]

aeel3+aelu+meel5~6e12+€¢23
+e24f9625—86e13+3e34+89e35—yée15
TYECe357 U5
= ~6e12+(as-86)el3+aelu+(me-Yé)e15+8e34
+ee23+ee25+e24+(ae-ye)e35—Ye45
_Rké = ‘5[812‘615'634] +_(ae—yé)[e15~e12—e3u]
+B[e34—e12-e15]+k[(ms—Bé)e13+aelu+ee23+ee25-ye45]

I

(—6—a6+yé-8)e12+(6+ae—y6—8)e +(64&8+Y6+B)634

15
+k[ (ae-pd )el3+0uelq+se23+e e25—ye45]
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CRELEY = (=5) (=8 ~0L0+v 8 8 )+ {08 ~vs ) (64+ab ~y5-B)

2,.2

+B(6~ae+y6+8)+k[(aa-36)2+a2+52+8 +v <]

= 521000 ~Y5 S H584086 Y 6 “+a "0 < ~208Y5

0BO+BY 5y 5 4B 5 0B +BYHB

+k[(aa-36)2+a2+52+92+y2]

= (648 )°-2v5+2500 ~2uBB+2BYS ~200YE

+Y262+a282+k[(ae-ﬁ6)2+a2+52+82+vg] = (*).

For k = 2, we will write (*) as the sum of squares of

rational functions and hence conclude it is non-negative.

Theorem 5.1.
2

2 -5+ 2 —0ED 08 2
(RE,2> = (Lo7)[(y + 22RE008)% o (g o 22020700)%

1+8 1+8

- T \2, 2 2 '
N 2(m+66% v 28 +_2(a+8)26 + 20+ (ae-po-y)?

1+8 1+8 1+8 1+8

+ (k-2)[{ae-88)° + a® + 2 + 8% + v,

Proof. It suffices to check this for k = 2, since
o o 2
(RELE = (BB, + (k-2)[(ae+Bs)” + o + ¢+ 8° + v 1.

Expanding the right side (RHS) we get

2
RES = (1+87)[v? + ZEYB FE0ye-200V)
o | 1+8

82 0820 64000 5340 2e 2 ~00,205 e+, 20 26 2
(1+62)2

-+

‘ i
5 DBS-20.:B5 -200B . 6°-20edc-2085+0 ¢ 28 +2a 08 e+a s
tEo E N 22 3

146 (1+8




o7,

2,12, 02 2 2
+ 2(8 LGt +92)(l+6 )+ (l}cc96+1210,86 )+ (‘15"86"\{)2
1+6 1+6
L2, 2.2 2 8 2 g e
= ¥ +y BT -2v6 20y e-200YE + 5~ )
. 1+3 1+5
.3 22 220
+ 2&9%2 L& 82 L o8 g + 8% + B> + 28
1+5 1+ 145
2 2
- 2aeBd - 2008 + ——y - 220E _ 208D
1+8 1+5 148
2 2.2 2,2
+ 2B 0 28 0% 4 20® 4 207 4 4362
145 1+6 1+8
5 |
+ iu‘iéﬁ_-i— (OLE-BG-Y)E
1+8
2 2 '
-20 %58 and 29_9%3 have been combined.
1+6 1+8
Next note the following terms simplify:
_25_2&5 -2623,3 462015
(P + 5— + 5) = 0
1+5 1+ I+5~
3
.(Eaeig + —Qﬁ%§_+ ”@eg) = 2088
1+6 1+5 1+8
20 2.2, 2
145 1+8
0,232 Ot,2€262 _ wep?
( 2 + 2 ) = Qo€
1+6 1+8
i o
82 + 285 - §° + 5° + 2 5+ d 5 = (B+6)=.
1+5 1+5

Ubstitution yields:

2,.2.2

RHS = yohy-5°-2y6 +20y £ -200Yd+8°6 =20, e85 ~200 8

2, .2

+ 2(52+e +a") + 2086 + 0202 + &23?

+ (8+8)° + (ne-Bs-y)”.
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Now
(ae—86~y)2 + y2 + ate” + 20ye + 8262 - 20.eBB
= 2(0e-66)" + 2BYD + 2y°.
Substitution yields:
RHS = y252 - 2y62 - 2a8y8 - 2008 + 2(32+92+a2)

2

+ 2086 + a°8° + 2v° + 2Bys + 2(ae—56)2 + (a+6)2.

Remark. From the above expression of <Rk§,§> as the sum of

squares of rational functions it follows that <RQ§,§> =0

5° g _ 8
, - e
1+5° 1+5©

if and only if & = e = 08 = O and vy =

Normalizing, this gives a curve of zeroes, parametrized by

5, through_egu.
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Section 6. SOME ZEROES OF R,

In this section it is our goal to find two curves of
zeroes of R, through the zero (e12+el5)/v2. We will begin
by examining a subset @ of G and finding a polynomial
expression for {R,E,5> for £ € A? such that E/|E|| € Q.

Let

Q= (¢ EAT[C = (L,v,0,B,-v)A(0,1+6,5,¢,1-0),
®,B,y,0,e,8 € R]

Remark. It can be shown that normalizing makes Q in%o a
dense subset of G. However,for what follows we only need

-

to know that it contains (e12+elq), which is obvious.

Let
(1,v,0,B,~v)A{0,14+06,56,e,1~0)

u9
|

Il

[el+ve2+ae3+8eu—ve5]A[(1+e)e2+6e3+eeu+(l—e)e5]

‘[el+ae3+8e4+v(e2-e5)]A[e2+6e3+eeu+e5+e(e2—e5)]

= e12+6el3+ee14+el5+ee12—eel5-ae23+a534
_+ae35—ae¢23—aee35-8e24—36e34+eeu5—ﬁee24-88e45

+y6823+v€e2a+Ve25—Yee25+ye2R+y6e35+yee45+yee25

(1486 )ele+6e13+eelu+(l—e )e15+( —-CL-0L9+.Y6 )e23 |
+(-8-Bo+ve )e24+2ye25+(a,e-876 )e34+(@—a8+y6 )835

+(B"BB"§“YE)G}+5-




Il

R E
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(l+e)[elg—e15~e3a]+k6e13+kee14+(l—e)[el5~e12-e3u]

+k[-m-ae+Y6]e23+k(zy)e25+(aé—36){e34-e12-el5]

+k[B-BB+YE]845

il

(l+9~l+8—a£+56)elg+(-l-e+1~e-ae+86)e

15

+(—1-e—1+e+ae—ﬁa)e34+k[—a-ae+ya]e23

+k~(2Y )625+k[8 -Bo+y 519454-1{6 e13+kee14

' <ng :§> =

(1+6)
+(oe~
+My2+
26%42

+8 (ae

+k[(—a—a9+y6)2 (B“BB+Y€)2+E

L4g° -1

- +(p-8

Set o = v

<R2€,§> = 48° + Ugs + 867 + 289(1-9)° + 25°.

For fixed 8 set -

f(e,

Now © =
Ry

= £ =

n

5)
0 =.<

is minimum of Tf.

dF o - 2
=S5 86 - Hp“(1-8) = 4(2+e o - LR

dr
o8

= Ug + 28%%5 + U = 2(32+2)5 + Ug.

(26-(0e-86))+(1~0)(-20-(cte-p5))
65)(~2+ae-36)+k[a?+se+(~m~ae+ya)2
(8-po+ve)”] |
0-(ac-85)-6(ce-66)+28"~20-(0e-B5)
-85 )-2(ae-ps )+{ae-55)°
2+62+4y2]
(ae-B8)+(ae~B8) k[ (-0-ao+ys)°
o+ye) s 2rePiiy®] = (%)

0 and kK = 2. Then

2

8% + bgs + B 6° + 28°(1-8)° + 26°.

R2§,€> = 0= f(8,5) = O, Thus a zero of

But, at a minimum of f,
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2
Hence 0 = 62 a.ndf):-:g-s—

842 8542

It remains to verify that for these values of 6 and &,

f(8,5) = O.
8% -o8 82 |2 _28 5, DB \2
f(- L ):}'1'(2 ) +LI'B(—'2_)+B(2 )
s+25+2 B+2 Be+2 8 “+2
v 2520 )7 4+ 2522
5—!—2 B+2
o B!
= gsz‘BQBEJ“ gB 2+25(2)2+
(B=+2) g +2  (B7+2) (B +2)

st gg? (%2 | bt 82 . 8”

S (8%2)7  (3%2)®  (8%2)®  (p%+R)T (8%42)°
_ b -854-16;3 +M54+16a 0 0.
(8%+2)" T (%)

Thus <Re<‘§,§> = 0 if

g = (14 Eézg)elg + (B2B ZEye L+ (1 - §%55)315

+ (-B)(l + —%E—)e24 + (—gﬁ—degu + (B)(1 - 22 Ye)s-
B +2 842 B +2
set g1 = (p%r2)E = (28%+2)e,, + (-2B)eyq + 2e15
+ (-8)(28%42)eyy + (287)egy + (28)eye
then.
<rgte = o.
We then ﬁave B H 1(8) is a curve of zeroes through

- B
'12+615)/J2.
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CIf in (%) we set k = 2 ang § = B =Y =0 we get
<R2§,§> = 48° - hge + a?se + 2(a+ae)2 +oen. Following an

approach identical to that above gives

£° = 2e,, + (20L)ell+ + (2m2+2)e15 ~ 20e,q
+ 2a2e34 -+ (a)(2a2+2)e35. | ‘
2 ' ‘
For the sake of brevity we will merely check that ”§2 is |
- 2 g
decomposable and that op (Hgiﬂd = 0. It suffices to show |
. 2 |8 |
£°A8% = 0 and <(R,2%,£5 = o. |
1.2, .2 ‘ 2, 2
§§ AET = [2e12 + 2aela + (2a +2)e15 - 2ae23 + 20 €3y
o | .
+ (o) (20542)eg 1A 2e) , + 2ueqy + (2a2+_2)el5
- 20,4 + 2&.2e34 o+ (a)(?a‘+2)e35]
= (4@2-4a2)e1234 +u(2u3+4a;2a3-4a)e1235
2 2
: + (0)612A5 + (o +ha“-bo -l )e1345 + (O)e2345
= 0. | S '
ﬁ g = 2[e e =€q, ] + lae,, + (2m2+2)te -e, 5= j - loe
2> = 127%157%34 14 15°127%31 23
2
20 egy ey ey ] X
= [2—2&2—2—-8}.2]&}12 + Hae ) + [~2+2a2+2—2a2]e15
2 2 '
+ [—2f2a -2+20 Jeg) - 4ae23

<3252,§2> = <-Aa2e12 + ﬂaelu - Heq) = 4&923,§?>
= 8% + 842 - 8a° ¥ 842 = 0.

2 | |
Thus 8 — HEE%Q%W is another curve of zeroes through (e12+e15)/1/'2".E
E(B :
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Section 7. THE ZERO SET OF Rk

In this section we prove Claims 4.1 and 4.2 and for each
k > 2 we explicitly describe the zero set of Rk'
Until further notice we get k = 2.

Consider the following five vectors.

a; = €5(1) = le, p-2e) g+2e, ple+2ey 408y

a, = el(-1) = hé12+2e13+2el5+ue24+2e34—2eu5
Ay = 52(1) = 2e12+2el#+4e15—2e23+ée34+4935

oy = 22(-1) = zele-ee14+ue15+2e23f2e34~4e35
ag = ~12,-12e

5 1

It is clear from the above construction of %l and 52 that

<R2ai,ai> =0, 1 =1,...,5 and thus B, = “aiw-e Z(R,) for
i=1,...,5.

Tet

HEvI L

g = HalHBﬁH&g”Bg+||0t3uB3+nﬂqnﬁq+n°‘5”55 T o1z %y

Il

It is easily checked that B 8e34 and so %-E G. Now

B By _ - - -
<328’é> = {egy=eq, e15’63M> = 1. |
We have found five zeroces of R2 whose linear span
¢ontains a 2-plane 1n G with non-zero sectional curvature.

Let L, = 7(R,) (To verify Claim 4.1 we need an example

which satisfies the Bianchi identity.) Now by the remark
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at the end of Section 1, ch = GR2 and so Claim 4.1 of Section 4
is verified.
Claim 4.2 is now easily verified. If there existed

S € 1\4 such that L2+S were positive semi-definite, then each

X € Z(Lg) would be a minimum of <{(I+S)E,E> on the unit sphere ‘
in Ag, and. so would be an eigenvector of I+38 With zZero elgen- '
value. It would then follow by Theorem 2.3 that Z(Le) wa.s
the intersection with G of a linear subspace of Ag, namely

the null space of L+8. Howevef, we have shown that this is

not the casé.

Lemma 7.1. If ' *
Q= (Pe€ g|pP = (a,l,B:O,Y)A(B,O,E;l,B)/ﬂ(a,l,s,o,y)ﬁ(gjoseal’e)né

| : @,B,v,a,é,e € R} !

then | - . |
'.G-Q‘ = .[P € GIP = (0,0,8,0,v)A(6,u,8,M,68); '

Q,B,Ys8,4,€,M,0 ElR]- i

- Proof. Replacing ehe, by e,fe) in Lemma 3.2 shows that
g-Q = [P € GI(P,eer4> = 0}. Now

0 = <P,e2Ae4> = -<P,*(elAe3Ae5)> = Phejheghes = 0.

Hence {considering P as a 2-dimensional subspace of V and

elAeSAeR as a.3-dimensional subspace of V) 1t follows that

P N (elAeSAeB) £ (0) and so there exists v € P such that

=1and v = {¢,0,8,0,v). Choosing w € P guch that
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lw] = 1 and {w,v> = O we have that

P = vAW = {0,0,B,0,Y)A(d,4,e,M,8)3 0,B,Y,0,0,¢,M,8 € R.

Ii

Next we analyse the séctionai curvature of Rk (k = 2) on
G-Q." Our goal being to explicitly describe Z(R )(k > 2) we
can disregard the normalization factor. '

Let _ |

g = (2,0,8,0,7)A(6,u,¢6,m,0)

= (ael+Be3+ye5)A(6el+ue2+ee3+ne4+8e5)

= aue12+aee13+ane14+aee15—86e13-8ue23+8ne34+see35
-Y6815-Yue 5'Y£935‘Yﬂeu5

= auele+(ae~55)e13+anelu+(ae—y6)elB-Buegs

-YHe etBNe,, +{(B8-ve)eg -yney . -

R, E ='auﬁelg—eIS-e34)+(ae—Y6)(e15~e12~e3u)+Bﬂ(e3u-e12—e15)
+k[ (ae-B8)e) gtane ) -Bue g -vue 5 -vney ]
= (au~ae+v6—8n)ele+(ae-Yé—au—Bn)eIB

+(5n-ae+y6-au)e34+k[(aE-BB)e13+ane14—8ue23~yueé5—YﬂeMB].

{Ry»8,8 = ou(au-a8+ys-gn)+(a8-vs ) (a8 -v6 -au-gn)

2 2 o 2 o 2
+81(BN-08-+y8 —ai )+k[ (e =58 ) +a Zn 248 Zu Py 2u By 202

22 2 )2

= 0°0° -2 us+anys ~auBnt (a8 -vs ) - ua ~ao8n

; |
+y By 8B TR oo -8 N8 +B MY 5 -8 naw

+k] (@ e-88 ) e "n%+8 Zn 2y 22y 202

= a2u2-2a2ue+2auyé—2au6ﬂ+(ae-YB)2-2aeBn+2y66n

5 )
+52n2+k{(ae—55) +a2ﬂ2+82u24Y2u2+Y2ﬂ2] = (¥*).
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For k = 2 we will write (*) as the sum of squares of

.polynomial functions.

Theorem 7.2, 'For kz 2 and € € G-Q,

<&§,®==($wmewéﬂufﬁﬂewﬂnﬁ

o 9
)y u2+v2ﬂ2]

+(k-2) (%48 %u7).

+k[ (e B

Proof. Expanding the right hand side (RHS) we get
2 2 2
RHS = 8™n"-2088nt+2v88n+2auBnia

+y262+2auvé+a2u2+28gug-uausﬂ+2a2n2

2
k[ (ae-B8 )ty “uPry PnPia®n s 20

2 2 ( L
Ty : o

92—2aeY6—2a2u6

-2a2n2-25

Note the following terms simplify as follows:

2auBn-laupn = -2ouBn
2a2n2—232n2 = 0
22 .22
B U ~2B U =0 }
ageg-eaeya+y252 = (ae-ya)g.
ubstitution yields:

RHS = a2u2—2a2ue+2auy6—EauBn+(ae-Y6)2

2
—2@88n+2y68n+82n2+k[(ae—Bé)2+a n2+32u2+y2u2+y2n2].

o _ e, te
h:orem 7.3. Tor k > 2, Z(RK) = {%(‘lfgfli)’iEQﬁ’ie35}'
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Proof. Tor k > 2 Theorem 5.1 implies that the only zeroes

of Rk in @ are iegu. For k > 2 and € € G~Q an -analysis of
the polynomial expression for <Rk§,§> given by Theorem 7.2
will show that the only zeroes of Ry In G-Q are (e te )/A/2
and te35.

For k > 2 and & € G-Q it follows by Theorem 7.2 that

: <ng:€> = .('Bﬂ‘FU.e-Y&“U-LL)g + Q(BLJ.—G.T])E
+k[ {ae-p3)2 + vou? + von2]
+(k-2) (a"n+e%2).

Now for k > 2 (§ € G-Q), {RE,8 = O implies that
2 20 |

a®n® + 8%° = o. : :
Case 1. o =B = 0.

2 2,.,2 2)

Then <RK§,§> = Y26_ + k(ygu ¥ N~) = 0 implies that

M=m=8=0. (v #0since a =B = v = O would imply that

= 0 which is not possible since ||g]l = 1.) Then
B = (0,0,0,0,Y)A(0,0,E,O,B) = ‘Yae35 = & 935 (Since ng = l)'
Case 2. o =u = 0.

Then <Ry 5,8 = (B1rvs)? + k(8% %4y 2n?)

= 0 implies that
=n=0o0ord=y=00rd=mn=0. (0a=8 =y = 0 would
mply that £ = 0).

If B =m=0 then 6§ = 0 and so

= *e

g = (03030305'\’)’\(0:0)33038) = -YEe 35°

35




would imply

Cage 3.

Y

0 then n = 0 (B # 0 since a

that € = 0) and so

n

B

Then <Rk§,§> = (a0 ~v5-0u

imply that & = 0.)

M

Y

(0. # 0 since «a

i

5

i

Then <R, &,5> = (a6-v8)" + k(ac-gs)?

0 and oe-B5

(0,0,8,0,0)8(0,0,2,0,8) = gy = +ege.

(0,0,8,0,v)A(0,0,e0,8) = {(Ba-ve)e

2e21y2,° 0 implies

0 would

0 then & 0 and so

(O,O,O,O,‘\();’\(O,O,E,O,B) = "'YeeSS = ke

0 then 0&2(8-1.1)2 0 implying that @

0 would imply that £ = 0.)

2+i£~).

l_(CL,0,0,0,.O)A(é,1..!.,0_,0,;.:.) = au(elg+915) = :h(

0 then (a8~vy5)% = 0 and thus

(U,0,0,0,Y)A(ﬁ,o,o,o,g) = (ae-yé)el5 = Q.

0 implies that
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v
i

,(G,O,B,O,Y)A(ﬁ,O,E,O,G)

It

(ae—BB)els + (ae-Yé)elS +‘(Be-ye)e35
= (Bo-ve)egy = ey, .

Proposition 7.4. For k = 2 L, is not the projection under 7

of a positive semi-definite operator on Ag.

Proof. Suppose it is. Then for some & € I\.LL

semi-definite operator on AE.

RK+S is a positive

Tet o = e ote stey) - Then Ra = -a and <qu,a> = -3,
Thus {(R, +S)a,0> = 0 imples that <{Sa,a> = 3.
Now since 8§ € Aa it follows by Proposition 1.2 that

S = 2 A

l<i<j<k<dsh

<{sa,0

15651 9kt > Mgge € R. Thus
= Zpcic jeratas a5 gy o0
1123M<e34+e12’e12+e15+e34> * Mogsleggtengseqptergreg
+k1245<eu5+e24,e12+815+e34> +'K1345 e3&+e15,e12+e£5+e34>
+k23u5<eé5?ele+el5+93§>

= 2Mpgy T Pz

3

_Since {8e,a> = 3 it follows that A oq) + *13u5-2‘§“

Setting Wy = e13+Ke24 and W2.= elu+ke35 wg ggt the

0llowing:




4o.

|
=

<Rkwl,wi> = <ke13,e13+ke24>

<Rkw2,wé> = <Kelu,elu+ke35> = k
<8wy oWy = k1234<"eea"kel3’els+kezﬁ>
Mo35 "6255813+k624>.
+x1245<ke15,e13+ke24>
+*1345<eu53613+3624>
K23u5<—ke 528 3+ke, W
= ~Pkhypgy .

{Bwy,wy = k1234<e233814+k635>

>

{ke 102€1 4+ke35

*r 1035
A onsS—eoss e ytkegs)
+7\13}_|_5 -635-—1{6 142 614+Ke35>

= ~2khigus,

Thus <(RK+S)Wl,wi> = k(l—?)l1234 and <(RK+S)w2,wé> = k(l_EJXlBMB' |

. 3 . 3 \ 3
‘But 11234 + kl345 z 5 implies that k1234 z g or k1345 =
Jw

mplying that <(R +S)wy 5wy, S <o or {(R +S)w2,w2> < 0, thus

ontradicting the assumption that Rk S is positive semi-

lefinite.
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Theorém 7.-5. There exist curvature operators which satisfy
the Bianchi identity, have nonnegative sectional curvature,
and each of ﬁhose zerolsets is the intersection with G of a
linear subspace of A2; but which are not the projection
under 7 of a positive semi-definite operator on A2.

Proof.  We claim that for k > 2, each curvature operator Lk

is of this type.
It follows by Theorem 7.4 that L, 1s not the projection

of a positive semi-definite operator and by Theorem 5.1 that

c(Lk) = 0.

i(e12+e15)
| 5
To complete the proof we verify that (for k > 2)

" By Theorem 7.3, for kX > 2 Z(Lk) = { 1

,iegu,i635

Z(Lk) = spanZ(Lk)ﬂG.
That Z(Lk) - spanZ(Lk)ﬂG is clear. If € € spanZ(Lk),
then & = a(e12+e15)/J§'+ be2u+ce35, a,b,c € R. By

Corollary 1.4, £ is decomposable

® 0 = EAE = [a(e12+915)/J§-+ be,y + ce35]

| A[a(e12+el5)/V§'+ be,), + ce35]
_ 2ac 2ab
= —_— el/\egAeBAe5 + -fr-elAegAeuAeB + 2bce2AeuAe3Ae5

JZ JZ

wab=ac=bc=0ea=b=0o0orb-=-c = 0ora=c¢=20

& E = Cege OT g = a(e12+e15)/V§'or g = be,.

Theorem 7.6. If dimension V = n = 5, then there exist curva-

ﬁﬁre operators LE which satisfy the Bianchi identity and have
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the fdlloWing properties:
1. For k2 2, g z 0
Ll'l
k .
2. TFor k = 2, Z(LE) 1s not the intersection with ¢ of

a linear subspace of A2.

3. For k =z 2, LE 1s not the projection under 7 of a

positive semi-definite operator on Ag.

Proof. Tor n 2‘5 let {el,...,en} be an orthonormal basig
for V and let w = span{el,eg,e35ea,e5}. Since W <.V,
A2(W) < A2 (V).

We define the linear maps wlAE(V) - Ag(w) as follows:

for

-

m(8) = 21y gan 215045

Notg that if £ = (i§1 aiei)A(jgl bjej) then wl(g) = (.gl aiei)
A(Jél bjej)f Thus if £ is decomposable then m,(E) is decompos-

‘able.

For k a real number and dimension VvV = n = 5, consider

fthe following example:

Let Ry : A%(V) » A2(V) be defined by
Rne = 8, 4=8, _=a
k-12 — 12 15734

x°15 T ©157%127C3y




43,

o o
Fe@any = egy=e1po7e;

BkeQH-" Rke35 = 0.

n_o s
Rkeij = keij for remaining eij’

Note that for k > 0 <RE§,§> P <Rkjl(§),wl(§)> for all & € AE(V).
Let L, = m(Ry). Then L} satisfies the Bianchi identity
and for k = 2 |

0 o(8) =0 (8) = <RE,E> = <Ry (8),m (E)> = o.
I, R :
k k
Thus LE has property 1. _
To éee_that LE has property 2, let 8. (i =1,...,5) and

8 be defined as above. By the natural inclusion of AQ(W),in

A2(V) we can consider 8 and B; as elements of Ag(v). Then

o (83) =0 (8,) =0, (B;) =0andoc (g/8) =0 (p/8)
n'‘ i n'i R i n n

L2 R2 2 L2 RE

= 0p (B/8) = 1. Thus we have found five zeroces of LD
2 .

2
linear span containsg a 2-plane in G with non-zero sectional

whose

curvature and so Z(Lg) is not the intersection with G of a
linear subspace of AE(V). |

To see that LE has property 3, let's suppose it is the
rojection of a positive semi-definite operator on AQ(V).

hen for some S € Au(v), R;+S 1s a positive semi-definite

n_ n g
Let o = ejgte gtegy. Then Ry = - and <Rka,d> = -3,
s <(RE+S)&,@> =z 0 implies that <{Sa,0> = 3.
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Now since 8 € Au, it follows by Proposition 1.2 that

5= Z1gicickatsn MetSigee Migge € B-
A direct compution (similar to that in the proof of

>3
123 1345 T 2
Sgt W, = e13+kegu_and W = elu+k835' A direct computa-~

Proposition 7.4) shows that <{Sa,> = 3 only if A y ot

tion shows that

<(R§+S)Wl,wi> = k(1-2)X  5q),
and

<(R§fs)w2,wé> = k(l-e)x1345.

3 . I . 3 3
1o3h + K13H5 2 5 implies that A ,q) = j or 11345 2T

implying that <(R§+S)wl,wi> < 0 or <(RE+S)W2,W2> < 0, thus

Now X\

contradicting the assumption that R;+S is positive semi-

definite.




4.

CONCLUSION

In this section we summarize what_has been accomplished
and we point out what s8till needs to be done. -

Our main contribution has been the construction of a : |
family of curvaturé operators possessing quite unexpected ?
properties, J
More specifically, for_dimension V 2 B, we have construc- !
ted curvature operators with nonnegative sectional curvature _é
which are not the projection of positive semi-definite | :5

operators. We have also constructed curvature operators with

nonnegative sectional curvature each of whose zero zet is

not the intefsection with G of a linear subspace of AQ;
These latter examples show that Thorpe's description of the
zero set of such an operator [1] is only valid in dimensions
£ 4. The first examples show that Thorpe's result of 21
can not be generalized to dimension =z 5.

What remains to be done, for dimensions = 5, 1s to find I fi

a simple characterization of positive sectional curvature

and to find a description of the zero sets of curvature ?%

‘Operators which have nonnegative sectional curvature.
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