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Abstract of the Dissertation
CR FUNCTIONS ON TUBE MANTFOLDS
by
Michael Lee Kazlow
Doctor of Philosophy
in
Mathematics
State University of New York

1976

In this paper wé generalize Bochner's tube theorem
on the extendability of holomorphic functions. We prove
that if M is a connegted locally closed submanifold in
¢™(n > 1) which is invariant under translations in the
imaginary directions (i.e., M is a tube manifold), then
every smooth solution to the tangential Cauchy-Riemann
equations on M (i1.e., a CR function) uhiquely extends to
almogt all of the convex hull. Moreover, the supremum
‘of the modulus of the extended function equals that of
the original function. Thils is one of the few global CR
extensionltheorems known. |

To prove the abow theorem, we f;rst define a notion

of CR functions on tubes over connected, locally closed,

1ii




locally starlike subsets of -R". Using the techniques of
several complex variables, we prove the theorem stated
above in this case. We then use the known local CR
extension theorems, to reduce the proof in the submanifold

case to the locally starlike case.
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§0. Introduction

One of the major differences between holomorphic
functions of several complex variables as opposed to one

complex variable is the property of holomorphic extendability.

On évery connected open éet Q in Cn, there ekists a holQ;
morphic function f which cannot be extended to a holomorphic
function on a larger open set contalning Q. This 1s no
longer true in ¢” (n = l).. Given a connected open set

Q.in ¢™ (n > 1), is there a largest open set Q', con-

taining Q, such that every holomorphic function on O

-extends holomorphically to Q'? In general Q' doesn't
exist. However, there exists.a "largest" complex mani-
fold 8, containing Q, with the property that every holomor-
phic function on (O extends to a unique holomoiphic function

on S.

If we restrict ourselves to special Q's, there are
many results on the extendablility of holomorphic functlons.

A féw examples follow:

Theorem (Hartogs): TLet Q be a connected open set in ¢ (n>1)

and let K be a compact set in ¢™ such that Q - K 18 connected.

Then every holomorphic function on 0 - K extends to Q.




2.

Bochner's tube theorem: Let U be a connected open set in

®R™ and 7(U) (= U x 1R"), the tube over U, be the set of
points'in c¢™ whose real parts belong to U. Then every
holomorphic function on 7(U) extends to the convex hull

of 7(U).

In the 1940's, Bochner and Martinelli among others

showed that 1f Q is a connected open set in Cn(n > 1) _ :

with 02 boundary then functions satisfying certain differ-

- ential equations extend from the boundary to the interior.

In the 1950's, Hans Lewy gave the first example of functions

defined on a lower dimensional subset of Cn, satlisfying
certain differential equations which extend to holomorphic

functions. This work leads us to the following questions:

1)  Given a submanifold M of ¢™ are there differential
equations that characterize the smooth functions on M that

are boundary values of holomorphic functions near M?

2)  If there are such differential equations, do
all smooth solutions extend to holomorphic functions on

some neighborhood?

The answer to the first question is yes. The diff-

erential equations are the M-tangential .components of the

Cauchy-Riemann equations. ‘They are known as the téngential
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"to 8 OR function on almost al

Cauchy-Riemann equations to M and thelr solutions are
called CR functions. The. answer Lo the second question
is no. For a detailed history of CR functlon theory
see the paper of Wells.

Cur major result is a generalization of Bochner's

tukbe theorem, which roughly states:

Theoremn: Every ¢~ CR function on (M) (= M x irR™M),
where M is a connected localiy closed submanifold, extends
L

of the convex hull of

T{M).

The reagson we shudy tube-manifolds‘(manifblds of
the form T(M)) is ﬁq-undérstand how the geometry in this’
special case influences the extendability of CR functions;
It is our hope that the information we get.from this
special case will enable us to understand what phenomena

might occeur in fhe general case, as it did in the classical
development of several complex variables. !
T would like to mention two Known results which are
related to the above theorem. The first due to Carmignani
states that for M a polygonally connected set in Rn, the

germs of holomorphic functions on 7(M) extend to the

~onvex hull of 7(M). This can be obtained as a corollary

of results in this work. There is some early work of




Rossl on CR extendability on Reinhardt submanifolds and
a result by Rossi and Vergne on the extension of CR functions
on tube manifolds, where the functions are assumed to be.
Lg'as well as infinitely differentiable. Using_the_-L2
assumption and techniqués of Fourier Analysis, they extend
the functions to the entire convex hull. This is made
possible by the growth restrictions‘bn the CR functions
at infinity. |

We conclude this introduction with an outline of
ﬁhis paper. Section 1 gontains the definitions of technical
terms and summarizes known results of CR theory we need
for feference. Section 2 containg préliminaries on tube
manifoids and convexity. Section 3 contains the statement
of the leﬁmé of the folding sczreen, a major tool in this
work, and Section 4 contains its proof. Section 5 contains
the sfateméntrof'a CR extension theorem for tubes over a
connécted, locally closed; locally starlike subset M of R.
We use the lemmsa of the folding screen to prove the special
case where M is a compact polygonal path; We conclude
the proof'in Section 6. In Section 7 we state our major
theorem and prove some propositicns sbout the excess
dimension of tubes over curves. In Section 8 we use .

the extension theorem of Hunt and Wells to prove a "local"

\

extension for tubes over curves. We then apply our
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results (Section 5, on tubes over locally starlike subsets)
to pateh together these local extenslons to almost all of
the convex hull. 1In the final section we conclude the
proof of the theorem by considering curves through any
pdint'on the base manifold M. We use the results of
Section 8 to give us extensidns from each such curve to
its almost convex hull. Finally, we prove that any two
suéh extensions coincide on the intersection of thelr
domains. In the first appendix we prove that_the exten-
sion theorem gives us an isomorphism of the algebra.of

CR funétibns, when they are given an appropriate Frechet

structure. TIn the second appendix we prove a CR

extension theorem for Reinhardt submanifolds of Cn.“




§1. Definitions and Technical Terms in CR Theory

All manifolds considered here are connected, locally
closed, and of class Cm, and all functions will be of

class Coo unless otherwise stated.

Definition: TIet p € C"; then BT, (C") denotes the set

of all complex tangents vectors V that are complex linear

s . ) bs) . o
combinations of = - i . Let
dozy  Ox; 95 o
ny n
Aip(c )_~ HTp(C )

space to p in C", whereas ATp(Cn) is the anti-holomorphic

. We call HTp(Cn) the holomorphic tangent

tangent space to p in c™.

Definition: If N is a real submanifold of C", then

= a B . -
HTp(N) CTp(N) n HTp(C ) an§ ATP(N) _HTP(N) for all

p € N. Where CTP(N) denotes the complexftangent space

of N at p.

Definition: A manifold N is a CR submanifold of ¢% if
the dimension of HI (N) is independent of p € N. Tt

is generic if the complex codimensionof_HTp(N) as a
subset oanTp(Cn) equals the real codimension of N in

n

C”. A CR function is a complex valued function f such

that Vf = O for all V € AT?(N) and all p € N.

7

6
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Remark: If N is an open set in Cn, then the CR functions
are the holomorphic functions since Vf = 0 for all

V € AT(N) are the Cauchy-Riemann equations.

Definition:  The Levi Algebra to p € N, xp(N), is the
stalk at p of the Lie Algebra generated by the germs of
the holomorphic and anti-holomorphic vector flelds at p
to N. The excess dimension at p, exp(N), is the complex

dimension of £p(N)/[HTp(N) ® ATp(N)].

Local CR extension theorem. (Hunt, Wells,-Greenfield,

. Nirenberg, et. al):
.If N is a'generic K-dimensional submanifold of
ok (n > 1) and the excess dimension e of N 1s constant,
then N has the property that locally each CR function
on N extends to a CR function on a manifold N' of
dimension K + e. If the excess diménéion-is‘maximal

(i.e., the same as the codimension of N in ¢™), then

N' is an open set, N' o N, and the extension is unlque.

We .conclude this section wlth a_brief description
of the Whitney extension theory. ILet U c R" be open,
S closed in U, and f an R" valued function on S. We
say that f is of class Cr_(resp. smooth_or_Class Cm)

in the sense of Whitney if for each multi—index

o € N such that || £ r {resp. for each multi-index o,




if £ is smooth) there exists a mapping f_ : 8 - R

with fo = f, such that the following conditions are
satisfied: if for each s < r ({resp. each integer

s = 0) we write

() G5 g (0)

f_{x) = X f
a Bt

Jatgss &P
where x, £ € 8 and Ju| < s, then for each x_ € S, and
each € > 0, and pair (o,s) with ja| £ s, there exlsts

-lal

a p > o such that ||R, _{x,8)| = s”x—%”s for each

"o, s
x,& € 8 such that UXWXO” < p and H%uxoﬂ < p. These
conditions imply that the fa are continuous on 3. When
S is a submanifold of U, this definition is equivalent

to the usual definition.of ¢¥ (resp. ¢).

Whitney Extension Theorem: Suppose that £, U, and S

satisfy the conditions in the above definition, then

there exlists a Cr (resp. Gm) function T on U such that

- 7 _
g—é-(@) = f(g£) for all § € S. Note that f being
X -

of Class Cr does not depend on U.




§2. Convexity and Tubes

Definition: A gubsget S of rR" or ¢" is convex 1if
x,y € 8 imply that for all t € [0,1] tx + (l-t)y € S.
The convex hull of 8, ch(8), is the smallest convex set

containing 8. The convex hull of a set always exlsts.

Proposition: Iet S be a subset of Rn; then there

exists a unique maximal affine subspace, P(S), containing S.
“ Gorollary: ch(s) ¢ P(S), when § < R".

Theorem: TLet § < R, Then y € ch(S) is equivalent to
the existence of y, €5 and oy € [0,1] such that
p+l : p+1l

y= % oy; and ¥ a3 =1, wherep equals the
i=l i:]_ Lo

dimension of P(S).

Definition: The dimension of P(8) is the convex dimension
of S. The relative.interior of the convex hull of 8, '
rel-int ch(S), is the interior of ch(S) when considered

as a subspace of P(8). Theralmost convex hull of 8,

ach(s), is the union of S and rel-int ch(S).

Remark: The work of Whitney allows us to use the same

definition of smooth functions on sefs in Rn of the form




ach{$) as we used for closed sets in R".

Definition: A subset S of R" is locally starlike if,
for each point p € S, there exists a neighborhood U
of p in 8 such that, for all p' € U, 4(p'-p)+p € U,

where t € [0,1].

Proposition: Every connected locally starlike subset

S of Rn is polygonally connected.

Theorem: Fvery locally starlike smooth submanifold M
of dimension m in R is locally an open subset of some

m-dimensional affine subspace of R™.

Definition: s ¢ r% 1ls locally closed if each point p-

in S has a neighborhood in S that is the intewxsection
of a closed set in Rn and an open set in RY. 9 is
locally closed if and only if each point in 8 has a
neighborhood U which is a closed subset of some open
subset of R". Therefore, we can define the notion of

a smooth funection on § in the sense of Whithey.

Proposition: Let M be a locally closed submanifold

10.

of RY. Then f is a smooth function on the differentiable

manifold M is and only if f is smooth in the sense of

Whitney.




Definition: Tet S © R". The tube over S is the set
7(S) = (z € ¢"|Re z € 8}, where if z = (Zl""’zn) e ¢,

Re z = (Re Zyse.ssRE zn).

Note: T(ch(8)) = eh{r{(8)) because the convex hull of
the cartesian product of a convex set A with a set B
is the cartesian product of A with the convex hull of

B. Also, 7(ach(8)) = ach(r(3)).

Note: If M is a submanifold of R, 7(M) is a real

submanifold of .

Definition: Tet § be a locally closed, locally star-
like subset of R". A smooth function £ on 7(S) is a
CR' function if for each open ended line segment 1 in

S, £|T{1) is a CR function.

Proposition: Let M be a locally closed. locally star-
like submanifold of R". The notions of CR and CR' on

(M) colncide.

Proof': The notions of smoothness colncide. We have
to show that CR' implies CR, since CR implies CR!'
trivially. M is locally an open subset of some affine

subspace in R?. Each line 1 in M determines an element

of a basis for a coordinate chart of that open set, we

denote it by 1. g% -1i4J g% is an element of




HTp(T(M)), where J is the map Induced by the complex

structure in ¢". Since the ‘dimension of M equals the

complex dimension of HTp(T(M)), CR' implies CR. We

will drop the ' from CR'.

Definition: Let M < R” be é.locallj closed submanifold
or a locally closed and locally starlike set. A CR
function f on t(ach{M)) is a smooth complex valued
function such that both £|7(M) and f|7t(rel-int ch{M))

are CR functions in the usual sense.

If M is any set for which CR functions are defined,

let CR{M) be the set of CR functions on M.

Proposition: Tet M be a submanifold of R'. Then

(M) 1s a generic submanifold of cm,

Proof: Let m be the dimension of M. Then n-m equals |

. . . n . s
the codimension of M in R as well as the codimension

of 7(M) in C%. The space HTp(T(M)) (p € M) 1is spanned ;§

e DD d o
by 35; - 1 ; 35;’ where the 55;’ form a basis for

Tp(M). Therefore, the complex dimension of HTP(T(M)) | fj

equals m, and the complex codimension of HTp(M) in

HTp(cn) equals n-m.




§3. The Lemma of the Folding Screen

This section contains the statement of the lemma
of the folding screen. The proofs of certain propo-
sitions which are necessary for the proof of the lemma

takes up most of this section.

Definition: Let Al, Ag, and A3 be three distinct points

. n N _
in R and 1; i = ch([Ai,Aj]) [Aj}'

2

Lemma of the folding screen: Tet Aq,

Ag, and AS be

distinct points in Rn, n =2 2. Then

ro: CR(T(ch(ll’g U 1133))) - CR(T(ll’Q U 1153)), the
restriction map of functions, is a bijection.

Define Fg by

Fg = {z ¢ Cane z; =01 # 2 and O0<Re zg<l} U

{z € Cn[Re Z. = 0122 and 0 < Re =z
1 1

< 1}
n
and GO by

Go = {z € C"[Re z; =0123, Rez, 201i=1,2 and
Re(z,+z,) < 1}
We drop the n, wheﬁ there 1s no confusion.

13




14,

There exists an affine isomorphism B of R" to Rn,

such that B(Al) = 0, B(A (1,0,...,0), and

o) =

B(AS) = {(0,1,0,...,0). B equals G¢T where T ig a

translation and ¢ € GL(n,R). Define TC(X+iy) =

T(x)+iy and Gc(x+iy) = G(x) + iG(y). Extend B to
Coor ¢” to c?

a complex affine isomorphism B by

C C ..C C

B =@GT . B is biholomorphic and preserves

. , C
ty. Sine BY{7(1 1 = and
convexity ince (7 ( 1,2 U 1,3)) F o an

c | _ N , ¢*
IB (T(Ch(li’g U 1133))) = G,» 1t follows that B

maps CR(FO) isomorphically onto CR('r(ch(ll,2 U 1133))).

L _ - .2, 2
Let 0 < € < 5, W, ~‘:31-2;2, Wy = zhz, - b(Zl+22),

. . n n
and Wy = Z4 for 1 = 3. Deflne F, and G, by

I n :
F, = (z G,FOIRe wy < 1 - €]
and
n n
Gg = (z € GO]Re w, < 1 - ),

We drop the n when there is no confusion. We will prove
that Z; 2 Wy is a holomorphic change of varlables in a
2]

neighborhood of G The proof for Gg (n > 2) follows

easily.

First we prove that w = (wq,wg) is one-to-one near

(zl-zg,zl+zg—€(zlfz

~

G . Let w= (wl,wg) and W = (wl,ﬁe) =

2)-




15,

Suppose that w = W. Then 278y = Zy~Z, OT
(1) | )7y = z,Z, and
o ghrvc\a hrasg 2 -
Z1+Zg"°(41 22) = Zl+22"°(zl+22) Or
— 2 L2 o 2 2
(2) zy - lue(zlnzl)+22~22—e(zg—zg) = 0

Substituting equation 1, equation 2 beccres

(3) (2,51} (26 (2, 4E 42,47, = 0.

(2-@(214%l+22+32)) # 0 near G..  Therefore,

Ly=Zy = Eneiy = 0 near Ge' 1 ?!
|
Note that |
: | 3w, ,) | | -
. : BTEi;giﬁ“: det ( 1 RE 9~2€(zl+22).
1°=2/ 1-Pez 1—2622

: 1

Therefore, tie Jacoblan in non-zero near 5 .

Proposition: U,F =F and U, a =@
. Co<esy ¢ ° Oe<z © © ‘

Proof: Surpose without loss of generality that n = 2

and z € F, is such that x, = 0. Let ' _ o

e . 2, 2
Ue(xl,yl,yg) = Re w, = Xlw- ex] + e(ylvgg,. TLet

| 'f(xl,yl,ya)(e) = Ue(xl’yl’yg) - lte, Tren f(Xl’yl’yg) is N
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continuous function of e and f(xl,yl,yg)(o) = xy-1.

Therefore, there exists an e' between 0 and % such that,
for all ¢ between O and &', f(x13y13y2)(€) < 0 or

z € Fe' The proof is similar for Go‘

Definition. Let © be a smooth complex valued function

on Fe’ where 0 < ¢ < %. Then u 18 a CR function if

u]Fe - 7(0) is a CR function. If u is a smooth complex
valued function on Ge’ the u is a CR function 1f

u]Ge - Fe is a CR function, where O < ¢ < %L By

continuity, u € CR(GG) implies uIFe is a CR function.

Definition: Let U be open in rR? or ¢ and ﬁ be a

smooth complex valued function. Then u-is flat at p € U
if u vanishes to infinite order at p. If S 1is a sﬁbset
of U, u is flat on 8 if it is flat at all points in S.

u is o-flat if u is complex valued fﬁnction on 8§ c ¢

u

and -— 1is flat on § for all 1.

5zi

Theorem: Let u € CR(FO) and U be an open set in o
containing Fo such that Fo is closed in U. Then there

exists an extension W of u to U such that U is

3-flat on F




7.

Proof: let a = (gl, ©38oMy s uT ). Define

u,(z) by
n .
o = £,
Syi=) * B,a’ u
ua(Z) = (~1i) £, §q+nn(z), Z € F,
Byj; S
Define R by
(a,8)
- (z'-2)” oy
W e Pors ) I R ()

Note that

(z) (z-2)?

N |
Jarg [ss OB TE

is the s-th order Taylor polynomial of Ud Trnerefore
u_ and R satisfy the conditiors of the Whicney

o (G‘:S) . ) '
extension theorem. Tnerefore there exists a smosth

extension U of u such that

slaly

- {z) = v (=)
agl ann o
Xy7..0y,

for z ¢ FO. Note that

é%’(z) - gu @4'iég (z) = : 9 (z) + o (z) = 0
oz axi Byi | oy 5 v,




is tangential to FO

i
k .
(L) 0 M -6 onr..
3y £z ©
g i
Note that
S R
E = = K
ij Bzi 841 ij

By the Whitney extension theorem and (1), we have

Koy ke
—%— ou_ _ —ik j% 9u O on F,.
0z 4 ale dz ayj
ou_ .
Therefore == 1is flat on F
o7,
i

Note: The above theorem holds with FO replaced by Fe

since the argument is local.




$4. Proof of the Lemma of the Folding Screen

Before we start the proof of the lefma of the folding 1
screen, we notice that we have reduced the lemma to proving 7
an.isomorphism between CR(FO) and CR(GO). The following
proposition 1s the specilal case where n eguals 2. The
proof (which the general case will not depend on) is
nice because it uses certaln abstract theorems to give 5}
us a short pfoof. Unfortunately 1t doesn't generalize -
to the higher dimensional case. We also give such a k
proof in the case of F€ and Ge' If we view the folding.

screen, FO, as foliated by the variables Ygs«e s¥ps the

speclal case would tell us what the CR extensions should
be on each slice . There seems no way using abstract
techniques to show those extensions vary swmoothly with

the exira Variables. We will then abandon this abstract

approach and reprove the theorems we've used in our

special case. We wlll use standard integral formulas

so that we can prove the final extension varies smoothly ' §ﬂ

with respect to all parameters. o 51

2

o) - CR(FE) be the restriction ' .

Proposition: Let r : CR(G

map on functions. Then r 1s surjective.

19 .. i 2




20.
Proof: Let Vi be defined by .
vy = [ZVE Celixi] < 1 and x; < 0 or x, < 0]

2 N
and V,, = V; U GJ. Note that V, equals ch(Vl). Let

u be a CR function on Fg and W be a 3-flat extension

of u to Vg.

{O on V1
ho= 1
3& on Gg

Define h by

Note that h is smooth and that dh equals zero. Since
V2 is Stein, there exists a smooth function Jj : V2 =
such that 3j equals h.  Therefore, j is holomorphic
on vl. By Bochner's tube theorem there exists a
unique holomorphic extension k of lel to V5. Let

A

U=Tu ~ j+tk. Then ¥ equals u on Fg, since J equals k

on F

o <

-by continuity, and Ju équals Zero on Gg since

k is nolomorphic and U equals dj on Gg.

Proposition (Maximum Modulus Principle): Suppose that
ro: CR(GS)'% CR(F?) 18 surjective for n =2 2 and

0Ose¢<4%. If uisaCR function on 62, then

sup  [u(z)| = sup Ju(z)] .
ZEGE | . z€RY




|
Proof: IFf sup |u(z)]| is infinity there is nothing |
ZER |
e 1
to prove. Suppose sup Ju{z)| is finite, and that
A3
e

there exiSts az_ €G -F such that
0 e )

[u(zo)] > gup |u(z)|. We will show a contradiction.

ZEF€

Case 1. TLet n = 2. Let v(z) equal (u(z)mu(zé))"l,
so v{z) is smooth in a connected one sided neighborhood

Q of Fe, such that Q@ < G and v 1s holomorphic on

E:}
qQ - Fe' By continuity, vy o= V[Fe is a CR function. By
assumption there exists a v, € CR(GE) such that Vo

equals v on F_. Define h by

- on : : : o ?
V-V, Q o .
0 on a one-sided neighbornood of Fe wnich

doesn't intersect @

This h is conﬁinuous and Sh equals O'in the sense of ;

distributions. Therefore, h is a holomorphic function

that vanishes on an open set. This implies h is the

zero constant and v equals v, on Q. Which is impossible

because 1t implies that v, equals (u.(z)~u(zo))—l on G .




Case 2. Assume n » 2, z equals (zl,zg,n), and

2
uﬂ(zl,zg) equals u(zl,zg,n). Then Yy € GR(GQ) and

by Case lwe get a contradiction.

Corollary: CR(Gg) is isomorphic to CR(Fg).

Proof: Let u; and u, be CR functions on'Gg such that

2

2 e :
ul]FO equals u2|F0= Then u;-u, equals zero on Fo.

Therefore, sup I(ul—ue)(z)] equals O or u; equals Uy

ZEGO

Lemma: Tet r : CR(GE) - CR(FS) be the restriction mep

where 0 < ¢ < %. Then r is a bijection.

Proof: Let U be a Stein neighborhood of G_ such that
z - w is biholomorphic and Gé ls closed in U. TILet

Vl = {x € U]xl < 0 or Xy < 0}, Vé = Vl U Ge’ and let

V3 be the hull of holomorphy of V Let u be a CR

o
function on F .. Let %ﬁbe a o-flat extension of u to

V3. Define h by

- {() on {z € V3]xl < 0 or x, < 0}

du on {z € V3,X1 2 0 and x, = 0}

The function h is smooth on VB' “Since V3 is Stein there

exists a smooth1function J VS*% ¢ such that 8j = h
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and J is holomorphie on Vl. The local version of Bochner's
tube theorem (see Komatsu) states that every holomorphic

function on a one-sided neighborhood of Fe extends to

a neighborhecod of Ge' Therefore, there exists a holo-
morphic functlon k : Vg-% ¢ such that k equals J on

|- Iet T=" - jtk. The proof follows ss it did in
the case ¢ = 0.

We will now conclude the proof of the lemma of the

folding screen with the following proposltion:

Proposition: Let r : CR(G?)'* CR(FS) be the restriction
map on functions, where n = 2 and 0 £ ¢ < %u Then r is

a biljection.

Proof: Case 1) et 0 < ¢ < %. Choose a neighborhood
Ut of F? to be U x C%™2 where U is the set defined in the

proof of the case n'= 2. TLet V{ = V; X ¢"? where the

Vi's are the sets defined in the proof of the case n = 2.
Tet u be a CR function on FS and Y be & S-flat extension

of u to U'. Let hl, h2’ and h be defined by

0 on Vi
h = ,
1 EQ on G:
BW 1 . ‘
0 on Vi' |
by = 4 8 n 2
on Ge

6w2




2l

and h = hldﬁl + hydw,. b, h, and h, are smooth and have

compact support for fixed W, and n, where n equals

(yg,...,yn). Let j be defined by

hy (€,vw,,m)
C g "Wl

. 1 -
J(Wlﬁwg.’n) - E'Iri J‘ dg A dg 5
where we define hi(—,wg,n) to be zero outside of its
support. If D is any derivative with respect to

Wl,ﬁl,wggﬁg, and 1 we notice that:

Dhl(wl"t,wg,n)
E

' hl(wl“tswgsn)

dt A dt = D | - at A 4t
_ C

§

C

h (C»JW :'ﬂ) -
- D Ic L g—wf ¢ A df

= D 2ri Jlw ,w,,n).

Therefore J is smooth. Using the generalized Cauchy

integral on a curve I contained in the unbounded component

of supp hl(~,w2,n) U supp hg(-,wg,n), we see that

B (e wn) = e L. 2y (gwp,n)aC A Al
BTTI 1272 2ril ‘J’lc G“"Wl a‘v} 1 2

1 1

= hl(wlnwgaﬂ ) .

If we let hﬂ(wl,wg) - h(wl,wg,n), then 5hn = 0. So that




hl(wl"tjwzsn)

aJ 1 * 0

= (W, W) = mmr [ 2 at A af .
BWQ 1°72° eri o BWB t
oh
1 1 2 =
= WI T = (Wl"t,WQ,'ﬂ)dt A dt
o awl
_ dh
L p 1 2 - -
= 51 Joommme = (Cowgam)al A ag
C C-wy owy

= h2 (Wlawgaﬂ ) .

For fixed n, J is holomorphic in.wJ and W, on Vi
and zero on an open set of V) (for w, £ supp h (w,,w,)).
, nlr2
Since Vi is connected, J is zero on Vi and FS.
R .

Theréfore, T =1u-J 1is a smooth function of Gz-which

n - ~ ~
equals u on F_. Since uﬂ(wl,we) = U(ngwesn) has the

property that §ﬁn equals zero, U is a CR function. - By
applying the Maximum Modulus Principle, we conclude that

U is the only CR extension of u to Gz .

Case 2) Let u be a CR function on Fg, let u, be the
restriction of u to FQ, where 0 < ¢ < %3 and let ﬁc be
the unique CR extension of u, to G?. Choose e and ¢!

such that 0 < ¢ < e' < %. Then G? n G?, is connected,




has a non-empty relative interior, and contains =

. n n
o1 defined on Go N Gen'

n A ~
F' n Y. Consider ¥ - W
e e €

n g
e! "

The proof of the Maximum Modulus Principle shows that _ N |

The function ﬁe -1 is CR and zero on F? nFwE

e!

ﬁe - ﬁe, 1s zero everywhere. We can define the CR
extension U of u to Gg by the values of ﬁe on GS. It

is unique by the Maxlimum Modulué Principle.




"

§5. CR Extension Theorem: The Locally Starlike Case

Theorem: Let M be a connected, 1oéally starlike, locally
closed subset of R®. Then r : CR(7(ach(M)}) — CR(7(M)) is

a bijection where r is the restriction map and n = 2,

In this section we prove the above theorem where M is
a compact polygonal path. We conclude the proof for the
general cage in the next section. First we need the following

higher dimensional version of the lemma of the folding screen.

Proposition: ILet {Ai}§:0 (K £ n) be a convex linearly.
independent set of points in R°, let 1y 4 equal ch[Ai,AJ}u[Aj], |
)) = CR(T(3Yy 1, 4)) is a bijection, |

X
Then r : CR{T7(ch 391 1o, 3

where r is the restriction map and n = 2.

Proof: If K equals O or 1 then there is nothing to prove.

If K equals 2, we can apply the lemma of the folding screen.

For the inductive step, assume the proposition 1s true for
all positive integers less than or equal to K = n-1. We ' _
prove the proposition for K+l. |

By applylng a complex affine isomorphism we reduce the -

proof to the case where Aj = O and A, equals ey (the standard .
% R L

basis vectors in Rn). Let ET equal T(ch jgo 10 j), S0 E- is

| | | L
the tube over the face of the simplex spanned by all the Aj's

: Kl
from O to K+l except Ai. If £ is a CR function on jg 1O

» 3’

oy
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then by our assumption f has a unique CR extension ? to

K+1 .
1Y E'. We now construct the CR extension T of f to

K+1
T(ch jgl lon) by using P.o1r 2 equals (zl,...,zn), lgt -
equal (22""’Zi-l’zi+l’""Zh)' Let ?Ci(zl,zi) equal P(z)
K+l
for z € jgl B, i # 1 and 1 s K41, so that §g is a CR function
: i

i
fixed gi given by the lemma of the folding screen. Then

on B} U E*., ret ?C be the unique CR extension of fc for
i

~

fgi(zl,zi) equals fc‘(zl,zj) because both functions are
holomorphic in the interior of the domains of the % variable

and their boundary values coincide when Xy equals zero,

.

Define f(z) to be fCi(Zl’Zi)

By construction all partial derivatives of F exist. OL. |
- Y- -
equals zero for i between 1 and K+1. To conclude the 1

proof that T is CR we must show that ¥ is smooth. We now
show that the partial derivatives of T are locally bounded.

The smoothness follows. Since ¥ satisfies the tangential

Cauchy Riemann equations, %;im equals (-i)p %Ei_ for i
‘ ip Ng 1P

between 1 and K+l. Therefore the former inherits local

aa . . 3 3 L.
boundedness from the latter. The derivative 5§;§ igl E™ is

. 3PF :
a CR function and satisfies the tangential Cauchy-
ayip =




Riemann equations in the relative interior of its domain.

OPF
Also 6?;5“ is a CR function., Let F ~(or G, ) be the pull

back by BC of F, (or G,) corresponding to the domaln of

oPF =
2 with §, fixed, where B is the complex affine isomor-
i

phism defined in the lemma of the folding screen. Of course,

2

F is relatively compact. Choose a point z' in the domailn

~ H
of ., Then there axists a 52 and an & between O and‘% such
1

GE QQ -- Ge
that z' € G_~. Let 8 > 0 be chosen so that F " = u,. F,
’ | Co-Cnf <8
: ' 2 72
' CS ;2
is relatively compact. Let G.p = U, G, - By the

Maximum Modulus Principle:

P P
supgél%s,%(z)! - e pasas
ZeGe,& ZEFE’é
. ¢, . SPF .
Since Fs,& is relatlvely compact and 5?;5 is continuoug on
K+1

1Yq EY, the right hand side of the equality is finite.

berefore L 15 bounded Gcg
Therefore 6§E§ ig bo ed on e, 5"

To prove that T is the only CR extension of f, suppose
K+1

g is another such extension, T and g both agree on igl EL,

For fixed ¥y ps.-«s¥p ¥ and g are holomorphic functions of
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zl,...,zKHpn a connected set and have the samz boundary

values on the E™'s. Therefore T equals g.

S . K
Corollary: Let u be a CR function on T(ch jyl 1O J). Then
. Bl 2 .
sup  Ju(z)}] = p% Iu(z)l-
z€dom u zET (

Proposition: Let P be a compact polyzon path in R™ with
vertices [vi}

o

Then r : CR(7T{ach(P))) - CR(%(P)) is a bijeztion.

Proof: We corder the vertices according to their occurrence, ;

1

and prove the theorem using mathematical induction orr ths

nunber m of the vertices. We suppose the proposition |
is true for all K less than m. We will prove it for '
m . . Note that if m = 0 or 1 thers is noihing to

prove., I m equals .3 the lemna of the folding screen holds.

| - Let Pm be the part of
the curve from v_ to v . Let P = rel—int ch(Pm). Let B

be defined by

‘ n .
{x € R IHAi(l = 0, ...,K) € Pm I N EEEPY "L AU
are convex linearly independent points,

x € rel-int ch L{Ai}}s

here L(A,} = .U, 1 U 1. | with 1 = chix,y ~{y)
where (a3 = ;44 Vo oy V1o Vi x,y = chlxyli-{y]

and K 2quals the dimension of P -1 if v_ is in the affine
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space spanned-by §M~1 and_eQuals the dimension of ﬁm otherwise,
The set B is relatively open in ﬁhe space spanned by B

(i.e. rel-open}, connécted,,and B contains P_. Let f be a

CR function on T(P ). By assumption f can be extended to a -~

CR function % on T(Fﬁ-l U Pm). For [Ai] as in the definition

of B, one can restrict 2 o T(L{A}) and extend this to a

CR function ?{Ai] on T(achL[Ai}). Given two seté [Ai} and

(A)), let @ = T(achL{A;}) U v(achL{A;}). If Q has nonempty

relative interior then f[Ai} and f{A;} agree on Q, since Q

—~
is connected and the T's agree on 7(1
Vm-1°Vm

}. ‘Therefore
ro: CR(T(Pm U B)) - CR(T(Pm))‘is a surjection. The injectivity
follows ﬁy the same argument we'used.to prove that f[Ai] agrees
with f{A;} on Q. |

The following argument will prove that every CR function
on T(B) can be extended to T(ch B). It is an adaptation of
the argument Hormander gives in hig proof of Bochner's tube
theorem.

Assume that B is starlike with respect to the origin,
Then there exists a largest starlike (with respect to the ori-
gin) rel-open set C containing B.such that every CR fuanction
¢ on T(B) can be extended to a CR function g on T(C). If C
isn't convex, it contains twoc points xl and X2 such that the
segment containing these points are not iﬁ C. We may choose

.l (1-8,0,...,0) and X2

= (0,1-8,0,...,0),

coordinates so-that X
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with & € (0,1) and hey,hey € C For A € {0,1). Since C is

starlike with respect to the origin and rel-open, one can

£ind K+l points d, in C such . that 1 cq, .
1 K+1 0094

rel—int{ch{xlxg} < rel-int ch ;U lo,dif and {o,di} is

is convex linearly independent. Every CR function g

K+1
extends to a CR function g' on T(C U rel-int ch .U, 1 ).
K41 1=1 70,4y
The set C U rel-int ch igl 10 a is rel-open and starlike
k) i .

with respect to the origin, This is a contradiction.
Therefore C is convex.: Since =1 every CR function on B
extends to ch B.

Agssume B is an arbitrary connected rel-open set such
that 0 € B. TLet C be the largest rel-open set, starlike
| with respect to the origin such that every Q € CRT(B) extends
to a & € CRT(C). By the above, C is convex. We must prove
C contalns B.

If not there exists a point § € B-C. Join & to O with
a compact polygonai path in B. ILet £, be its last inter-
section with o0C. Then €l is connected to O by a-polygonél
path which apart from §, belongs to B N Q. Let N be a
convex rel-open neighborhood of El in B, Then C U ¥ is
starlike with respect to &, (C is convex). Let g' be defined
to equal g on T(C) and @ on T(B). By the above g' extends
to a CR function g" on ch(C U N). But ch{(C U N) is star-

like with respect to the origin., Therefore C = B.

Every CR function f on 7(P ) extends to T on T(ach P.)s
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since B contains P_. The extension is unique because the

boundary values of any two such extensions agree oOn Pm'




§6. Conclusion of the (R Extension Theorem:

Iocally Starlike Case

Assume M is a connected, locally starlike, locally |
closed subset of R, Let P be a compact polygonal path
in M such that the convex dimension of P equals the
convex hull-of M. By the proposition in section 5, every
CR function f on T(M) extends to a CR function T, on |
T(M U ach(P)). Supoose P' is another such polygénal path.
Tet D equal T{ach P' N ach P), To.prove that fP agrees
with £, on D if D # ff, we note the existence of a compact
polygonal path P" such that P © P U P'.  Then ?} agrees
with fPh on the intersection of their domains by the
uniqueness of CR extehsions on tubes over compact bolygonal
paths. The same is true for T, and Fon. Therefore Tp

and f?, agree on D. ZLet B be defined by

B =[x € R?x € rel-int ch(F), where P is a
compact pdlygonal path with convex

dim P = convex dim M},

so that B is a rel-open, and B o M. Then B is convex gince
if Xy and x, € B implies the existence of P, and P, compact
polygonal paths corrésponding to Xq and X5s and a compacﬁ
polygonal path PS containing Pl_and P2. Also

ch{xl,xg]-c rel-int ch P5. Therefore r is a surjection.

34
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The injectivity follows as it did in the compact polygonal

path case.

Remark: All of these CR extension theorems hold (for tubes
ovexr locally starlike subseﬁs of Rn) if one assumes the CR
funetions to be of class C° (s 2 2). This will not hold

true when we work on the submanifold case.




§7. The CR Extension Theorem: Manifold Case

Theorem: Let M be a connected locally closed submanifold

of R". Then r : CR(7{ach(M))) - cR(T(M)) is a bijection.t

The proof of this theorem will occupy sections 8 and 9.

o th

pn
w
=
4]

jo]

In section 8 ws prove it when M is a curve. To

need detailed information about the CR structures of i

"
~
o2

o

n

over curves. That is what this section deals with.

Lemma: Let vy : (-1,1) = R” be a smooth'embedding. Thers
exy(o)(T(imY)) is equal to the dimension of the span of

the derivatives of v at 0 minus one.

Proof: The excess dimension of y at o edquals the &5"0132
dimension of the.LeVi Algebra at y{0) modulo the direct sum
of HTy(O)(T(imy)) and ATY(O)(T(imy))._.ThQ Levi Algabra at‘
v(0) is generated by antiholomorphic and holomorphiclve:%or
fielés to ¥ near Y(O); Since tube manifolds are gensric,

the complex dimension of the holomorphic tangent spéce at

Y(Q)-is che, The holomorphlc vector flelds to ¥ ars of the

form c-» Z Y. (T) 8%— (where c is complex) or
i

noo 3 . O ] PO
e 2. Yi(t)(axi - layi). The latter way of viewing a halo-

- morphic tangent vector will be more useful at this point

Note‘that:

&here is an extra restriction on the manifolds considerad.
See the note at the end of this section.

36
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a n 1 a n
(1) 12, v (2,3 V(2] = 21,3, v D5 2 V(M)
N

0z,

' .
Since Yi(t)5%E is tangent to imy, we may write the right hand
side of the equality as

n n ! a

(2) jz’l gi[i_._z,."l Yi(t)a‘}"[‘gsvi(t)a‘s‘g]-
Using Lie derivatives we see that (2) is just
5 n '2. 1 S

(3) jél i Yj(t)gyg-

Following the above procedure, we get'the following formulas:

(1) 45 y;(t>gg§,i§1'yg¥)(t>agg]
= ng “SKH)('G)E% k=2
(5) {igl v;(t)ggg,igl ng)E%E]
- igl Y§K+1)(t)6§€
(6) 2 Ok 5 v - o
Therefore | -
3 4 O)n Fy (o) ana igl-vﬁK’(o)a§5 K=z
1

span the Levi Algebra of T(imy) at y(0).

Theorem: Let v : I - R* be a smooth embedding, where I is a

closed interval in R. Assume that {y(l)(t)]g:l(i-th deriva-

tive of v) is linearly independent for all t € I, j £ n, and




g+
i=1
ed

that {y(i)(t)} is dependent for all t € T,

wn

Then the 1magegq:

of v is contai in a j- dlmen51onal affine subspace or R%

Proof': Without loss of generality assume that T = [-1,11,
Y(0) = 0, and that Vv equals the span of thg (1 )(O) whare
i=1,...,3. By assumption, Y(j+l)(t) = iglci(t)y(l)(tj,
where the C; are smooth, since the Wronskian of the y(i}(t)

isn't zero, let 7 ! R' - R “/V be the quotlent map and

=

- & ~ o J+ FL) J ~1 _
= 79y, Than ¥ equals iélciy and Y (O) = 0 for

e

= 0,...,J. Therefore YV satisfies an ordinary linear
differential equatiocn. There exists a uhique solution
satiéfying the initial conditions above, and ¥ = O satisfies
both conditions, Therefore v(t) € V for all t € V and the

dimension of V equals J.

Lemma: TLet ¥ be a one dimensional embedded submanifold of
R”. Then M can be decomposed into two disjoint sets R and

ad and nowhere dense in M.

L’J

I. The set I is clo

A

*
M BN atal
LTS WA W )

Fl
Lraba

F.h

The set R satiefiez R —~ UR such that x € RY

I

exlstence of an arbitrarily small neighborhoods U of x in

M such that U is a subset of a J-dimensional affine subspace
PX and PX is the smallest affine subspace containing 1,
Proof: Without loss of generality considzr M as the image

of a smooth embedding v .. (-1,1) = R®., Dafine the sets RT

and J:L ag follows:




R" = {m € Mn = v(t) ang A (t) # 0) where

My (e) = vi(en. Ay B (), and

NACHPSES VIR
Tet B™L pe the set of points, m = y(t)}, in the
interior of J° such that ptt v(t) is non-zero. Define

7 b pe M - (R™ U Rn-l). Define the sets R- and J°

- N o
recursively. Let R equal U R and I = Jl. By construc-
i=1

tlon the R are open and I is closea and nowhere dense,

The R 's have the desired property.

Note: Henceforth, we shall assume that al1l submanlfolds

M of R have the property that every palr of points in M

are contained in a curve s Such that the =set I (:0rresponding
to the previous lemma) is finite. It would suffice to limit
ourselves to the case where I 1is countably infinite; for
simplicity we avoid this, for the proofs only involve
induction. This hypothesisg is satisfied when M is an ,

analytic manifold.




§8. The Proof of the CR Extension Theorem:

The Curve Cage.

Theorem: _Let M be a l-dimensional, locally closed, embedded _
submanifold of R, Then r : CR(T(ach(M))) - CR(7(M)) the

restriction map on functions is a bijection.

Proof: Let M = RUI as constructed in the above lemma. Then

for x € T(RJ) the excessrdimension of M aﬁ X equals J-1.

Near x, T(M) is contained in T(I,). By the local CR extension
theorem gquoted in section 1, every CR function on a sufficiently
small neighborhood U of x in T{M) can be extended to a CR
function on a connected manifold M of dimension n+Jj whose
closure contains that neighborhood. Since TX has dimension

3, M is an open set in T(Tx). Let e = (al,...,eanhere-the

ei’s are noq-negative real numbers. Iet f be a CR function

on UU(U+ie), where U N (Utle) # g. The extension of £|U to

~
~

M must agree on M N (M+ie) with the extension of fiU+ie to
M+ie by the uniqueness of the extension of f£]UN(U+ie).
Therefore for any x GVT(RJ) there exists a sufficiently
small tubular neighborhood Ux-of X in M such that every CR
function extends uniquely to a tubular rel-open set ﬂ%,
whose closure contains U _. Note that the real part of ﬁ%

is locally starlike and locally closed. By our CR extension
theorém for tubes over connected, locally starlike, locally

connected subsets of R, 1 : CR{ach UX) - CR(UX) is a bijection.

4o o




Consider M =_T(I) U {z € Cn|z € ach U for some X € T(Rj),_t,
j=1,...,n}, this set is locally starlike. The set M might e
not be locally closed. It seems that a CR function { on
T(M) might not extend to a well defined function on M by the-
method described in the'previous paragréph. Since M is
locally closed we can extend f to a CR function on a tube M! }
over a locally closed, locallj starlike subset of Rn, where
M' ¥ and M' D T(M). We do this by extending £|U_ to a |
locally closed, locally starlike tubular subset M; of ﬂ% ! ‘
such that the convex dimension of M, = dim M, M, © U, the
closure of the interior of M; with respect to ﬁx contains
U,, and the extension of f to M; is well defined (without
worrying what point x we chose). TLet M!' equal thg union
of the M, and I. ILet £' be the CR extension of £ to M',

By our CR extension theorem.on tubes over connected,
locally closed, locally starlike subsets, there exists a
unique extension of f' to T(achM).

What we have Just done is consider the local tubular
éxtensions we constructed earlier and restricted them to

tubular sets near T(M) so that the extension . is well defined,

We then applied our CR extension theorem.




§9. Conclusion of the CR Extension Theorem:

Manifold Case.

Let M be a connected, locally closed submanifold of RY
of arbitrary dimension. Tet f be a CR function on T(M).
'Let Cl and 02 be two compact locally closed submanifoldé of
M of dimension one such that.their convex dimension equals
that of M. Uslng the results of the previous section, we

o~

know that there exists CR functions T. which are the exten-

C,
: 1
sions -of ffT(Ci) to T(ach Ci). We will show that ?C equals
. _ 1
%C on the intersection of their domains.
5 |

A)  If the distance of ¢, from C, is greater than 0, then
there exists a one dimensional locally closed manifold 03

in M containing C, and C,. As in the polygonal cases T

1 C
: 3
equals ?C (i = 1,2) on the intersection of their domains.
i
Therefors %C and fp are egual on the intersection of their
ot ,-D -

1 2
domains.

i

B) Suppose that'Cl nec, = @4, and the distance between the
Ci's ig zero. Tet x be an element of the intersection of
relative interior of the convex hull of the C.'s. There
exists & compact curve T, in each C; such that X is in the
relative interior of the convex hull of the image of Ti.

This reduces the question of %c agreeing with %C. near x
1 : 2

to the previous case.




}
c) Suppose that C; N C, A @, 1et 2€C NC,. Let x be
an element of rel-int ch ¢y N rel-int ch C
the restriction of ?C to the tubs 2ver line segment between
i

t
(1 = 1,2) is a CR funztion. The functions

x and E. fX,C

i

1 1
i and T have the same boundary valus on T{(g). There-

x,Cl x,C2
fore they are equal.

Define B by

B = [(x € n]x-E.reléiht ch C, where C is a 1-

dimensional manifold whose convex dimsnsion
equals that of M)

N
¢ or(T(M U B)). Since

We can extend any £ € CR(7(M)) to an
B is locally starlike and locally closed 9 extends to a
T € CR(7(M U ch B)). The closure of B contains M, therefore

ch B equals felfint ch{M). This oxtension is unique becauss

of the unique extension to'B.

Corollary {The general Maximun Modulus Theorem): Let M be a
connected locally closed subset of R" (or a locally closed
submanifold of R?). Tet u be 2 CR function on T(ach{M)).

Then

sup  Ju(z)] = luz)] .

sup
z€domu z€T(M)
The proof is the sam2 as it was in the lemma of the

folding scresan.




Appendix 1 . ‘

Let N be the tube over a

-
<
[

celly closed submanifold M

of Rn. The CR functions on §

&
=
@
m

rrechet algebra when

- given the induced t0pplogy froz ths Frechet algebra of smooth
complex valued functions on I, Thelonly property of Frechet
algebras that CR(N) doesn't trivially satisfy is that of
completensss. Since the topology on CR(N) is that of conver-
gence on compact subsets of the function and its partial
dérivativés, we onjy naed to show that locally any Caucﬁy
SeQuence of CR functions converges to a CR function. TFor

any small neighborhood U in N, the CR functions'on U are

elemﬂnts of thQ_Ker X, where X is an anti-holomorphic

_h

vector field, The vector field X is a continuous operator

[ ag

on the Frechet space of smooth cor splex valued functions.
Therefore the Kernel of X 15 clos d,rwhich implies CR(U)
~ is closed in ¢°(U,C).
The topology on CR(N)can be induced by the following
. set of seminorms. Tet X be a compzot set in N, ILet [ﬁi}

be a localily finite coordinate covering of M and U, = T(ﬁi).

Define ”f”a w where @ 1s a multi-index by
. EIRA

iy ¢ = suw sup sup  [D™e(z)]
g I m| =a U, 2€KNU,

where m = (ml,mg) and




n m m _
m P 1 a 2 ) 2 R
D = T The symbol i stands for the usual dariva
: ‘ o] EETERR
3% 1 oy ° 3y °
m. -
3 1
tive in the y directions. The symbol g stands for dcrlvan
~l '
Ox

tives tangent to M.

We will now put a Frechet algebra structuré on the CR
functions on T(ach M) = ach N, Let [ﬁi] be a 1ocallyfinife
cover of ach M, such that Wi 0 M is a coordinate patch fof
M. Let K be a compact set and o & multi-index. Define

by () = max(llell, oo swp sup  swp - [DMr(2)]),
i _ | mf =q [W ) zew, ﬂrel int ch NﬂK

. A 7 . m V ‘ * S + 3
where D' are the usual derlvaulves with respect to standard

e

coordinates. The Py o are seminorms. The topology is
Sy

Hausdorff and locally convex., It is complete since ir :E‘,,l is
1
a LdU“hJ soquencn then 1im £, exists and is continuous.
n—l
By the above, (lim ¥ )|M equals lim(f, ol M) and (1im fn)lrel*int ch
. n-—w}oo '.'l«-ioo n-—}m ;

eguals 1im(fn|rel—int ch N). Both functions are CR. Since
oo : .

1im T, is continuous it is CR as wall.

Theorem: Let r : CR(ach N) — CR(N) be the restriction map.

Then r is a Frechet ilsomorphism.




L6,

Proof: The restriction map is obviously conbinuous.
That r is one to one was proved earlier. By the closed

graph theorem; the inverse map is continuous.




D Define exp(M) and

W

- 'n
'.,o--,e )

,(wl,...,wn) € M}

Definition: Let K etween O and 1. A set

Mccn.

Definition:

locally clogé . ,
epr(ach(T'é?lbg_C. ‘ ; f'utT ® C and f
ulepr(rel;iﬁt_ch' GR{Fﬁnctions. ' i
Note: The reiéfi_e- ~“]jilfequals_

rel-int ch(T).é:rel' n -“'b'thzare conveﬁ,'

rel-open, and haVé'




Theoreﬁf;ff df,locally closed, part tubularﬂ

Then r : CR(eXpK(ach( T @1030))

Proof: The map
(T@

such that exp Tfé C. Therefore

Let v € CR(T @ ¢). ILet

u(zl""’ZK’ZK+i;_5 5"' 5;}3zn + Bvipn) has the same

boundary values on

a CR map on eprfééh T 1§é50)). This is the only CR

extension of u becaus ﬁiiéR'extension uy of u could be
. 1
pulled back by exp to ,_OR functlon ul. But Uy = G by

the uniqueness of the exten51on of CR functions on T & log C.

Corollary: Let M T @ C be as above._ I u € CR(exp®(ach
u € CR(exp (ach(T ® log C))) then :
sup |u(z)| = sup I'u(Z)I.
z€dom u - zZ&€TEC

Proof: Let (epr)*u‘bé the pullback of u, then

sup [u(z)] =  sup | (exp™)*u(2)|
z€dom u - z€ach(T@log C)
= sup ... |(exp™)*u(z)]
z€ET@log C
= sup lu(z)].

z&T® C
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