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ABSTRACT OF THE DISSERTATION

(1)
THE PHRAGMEN-~LINDELOF TYPE THEOREM

FOR THE QUASILINEAR EQUATION

by
Igor Krol
Doctor of Philosophy
in
Mathematics

State University of New York at Stony Brook

1976

The Phragﬁen—Lindele type theorems were studied from dif-
ferent points of view by various mathemeticians. Results
of this type are used to obtain the uniqueness and approx-~
imation theorems by means of the maximum principle on
ugboﬁnded domains by imposing some restrictions on the
growth of the function at infinity. At the same time,
these results are helpful in establishing the maximum

principle for solutions in bounded domains when there are

gaps in the prescription of boundary data or singular

points on the boundary.

Here we introduce a result of the Phragmen-Lindellf type

iii.




e P
for a quasilinear equation of the form le(]M%i [lx):zO

whiéh may be considered as a nonlinear analog of the Lap-

lace operator (jnzé).

For this purpose we complete our previous investigation of

the behavior of particular solutions of the above equation

h
in the spherical comne in F% which are to be used as bar-

i

rier functions for the maximum principle.
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INTRODUCTION

The purpose of this paper is to establish a Phragmen-

Lindel8f type theorem for the quasilinear equation

-2
(0.1) div (qulf Uy) =

where LLX :‘..(QM/?X,{J‘;..)(?%/?XI‘L)) //{_/34(‘;-@'

Equation (0.1) is a special case of an equation of the

form

(0.2) v CZ(X,MX)EO

= h
where X 1lies in a bounded domain £1<: R and CZ(%);)

is an n-dimensional vector-valued function defined on

h
&2 x K and satisfying the following conditions:

1) The function & —» (L(X.§&) " is continuous on

P\ for almost all X€£) ; the function X— A (%)
is measurable for every g€ R -
y 1A, 8)] q”l g Pt v A for almost all |
xe S5 | |

3y A(x,5)-& = IEI for almost all X& 52

[at,8) — ax,2)) (5 -2)=0, §/‘ZC

for almost all XE?.gZ

Let C, (fQZ denote the space of infinitely d1fferen~

tliable functions with compact gupport in i:L . Let L; CCD
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be the space of locally summable functions on &)  with
gradients (in the sense of distributions) belonging to
L (Q) iéjb-::oo . The completion of C (Q)in the
norm "U_”L (©)) Will be vritten L CQ) We denote
by C varlous positlve comstants and by Df an open ball

centered.at O . Moreover, [CZ and QQ. are the comple-

ment and the closure of S;l » and ng, g2{7]) CY::[EZ/]I%m
Let LL be a function in 14 CED We say that a function

LJi
U e ((2> is a solution of the Dlrlchlet problem for

the equation (0.2), if for all %)6 [4 (g2>

03 Satou) g dx =0, (u-p)e L,i (D
Q2

Edquation (0.2) and more general elliptic equations of second
order were studied in the works of 0. A. Ladyzenskaya and

N. N. Ural'ceva (see [1]), J. Serrin ([2]}-[4]) and other
aufhors. It was established in [1], as a particular case,

that every generalized solution of (0.2) which belongs to

L (EQ) satisfies a HUlder condition in the interior of
S;{ . This property also holds in the neighborhcod of a

boundary p01nt prov1ded that the lower (volume) den31ty of

F3 \ E;L at this p01nt is p031tive

J. Serrin, in his works [2]-[4]1, established a maximum

principle, a Harnack iﬁequality for a broad class of quasi-
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linear elliptic equations, and obtained estimates of the

solution in the neighborhood of the isolated singularity.

The question of the existence of generalized solutions of
general quasiligear elliptic equations was taken up in the
papers [5]~[8]. From these results it can be shown without
much difficulty that a unique solution of the problem

(0.3) does exist. “

Different forms df the Phragmen-Lindel8f principle for
linear elliptic equations of second order have been given
by Gilbarg and Serrin {[9], Hopf [10], Gilbarg [11l],
Serrin [12], Mevers and Serrin [13], Landis [14], and

Blochina [15].

1

Further bibliographical references may be found in these

papers.

To illustrate the Phragmen-Lindeldf principle, we recall
a classical result concerning the growth of subharmonic

functions in an unbounded sector in the plane.

Let F{ be the sector, defined by the inequalities
- X y < Cﬂ( , X’>’0 . In polar coordinates
CF 9) the equation of the boundary h”< will be

* 2o2 where C= tﬁh, }4édi> . The function
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! ,
W= _f) CQSDJ@ is harmonic in the sector P{ and
vanishes on the boundary rb#( . This function approaches
o
infinity like f> as F'—5 O on every ray

G =¢constant.

Theorem (Phragmen-Lindellf)
Let U satisfy the inequality
AU >0
in a sector !( of angle é; . Assume that Ltéfﬂ_on the

_ o
9"201

St ol | R ey U O} =0

Then L é.}{ in k‘

bouﬁdary and suppose that

The Phragmen—Lindele theorem asserts that the growth of
the above function W oas Jb”ac@ is characteristic of
harmoﬁic functions which are unbounded in a sector. That
:is,‘ény harmonic function which vanishes on the boundary
and is not identically zero must grow as fast as ?QQ
Moreover, if a harmounic (or subharmonic) function is
bounded along the entire boundary of a sector l< of angle
T : ol

2 - and if it grows more slowly than as — OO
L - | P h

then it does not grow at all (i.e., it is bounded).

The main device of the proof consists in the determination
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of 2 harmonic function in ki‘% = P< (} I)R which
remains bounded away from zero and has an appropriate
growth as F3-4>€><> . This function is to be used as a

comparison function or a barrier in the maximum principle.

In the linear case a function having these properties 1is

| o
o R Pdcome
2ol 2 o

R™ -

We (o =1-2 R™ tan

It is easily verified that MGQ is harmonic since it is
L

the imaginary part of the analytic function of iizjbﬂ

| Y S
Lo 2 Log —o
@=1L+=R . |
The basic method applies to much more general situations,
and the theorem can be extended to include not enly more

general linear elliptic operators but also bounded as well

as unbounded domains.

Our main goal is to establish a.result of Phragmen-Lindell£
type for the quasilinear equation (0.1). The proof w1ll

be carried out by a écheme analogous to that used in the
example above., Since the maximum.principle for the eqﬁation
(0.1)‘has been éétablished by J. Serrin [2], we ought to

find a solutlon of the equation (0.1) with propextleu simi-

lar to those of the function W (S) Q) in the linear




case.

| n
Let L((EJ-denote the cone in i%,

() ={x: 0<p<l}
where COSG=><n|XEF4 and 0 < { <gr . We

shall Shpw that equation (0.1) has a non-negative solutilon

of the form

. _ \
(1.1) LL(TJ@)Z? 79)((9) |
which vanishes on ﬁbﬁ((£> . Here }ﬁzb\({> is a number

and -f (f@) - C O j:> . TFor the'function

equation (0.1) takes the form

' - - : p2 :
. '-i

Sith 9 {[ELL ? LJ ] 2 :

J f P

 n-2
tLy Sin 9}
. ‘B

_ | . fhﬂ{[{i}a . S:,‘_g (,L/;] =

Thus, »%)(Ey> , g ¢ [f},@] must Satisfj the ordinary‘

il
L

&ifferential equation

33% n-2
{L) ‘(2 (e) ‘()/')(_e>} 1€ (U) Su’t 9}9 4
(1.2) 27 .
| -2

MG Den ﬂDf(@%ﬁ@)J om0 =0




with boundary conditions

w20 =0 . £() =0.

We normalize "E(GD by the requirement that f(O)::ﬂﬂ
Those values of the parameter ) for which the problem
(1.2), (1.3) has a nontrivial solution will be called its

eigenvalues.

Theoxrem 1. There exist two and only two eigenvalues

i)4_(k&> and :)_ (£> of the boundary value problem (1.2),
(1.3)

No(O=0 0 S < e/ CeeD, pen
M) > (p-r)/(p-D) | M_(0) <0 , p=h
for which the corresponding eigenfunctions “E} (;Q) and

A#\)_ (9) are pésitive on r0,2~1 and1

(1.4)‘ HD-/)_& (o) ~ L?(u\) b (iﬁ“— 9) jH,_ GGEO)U,

These eigenfunctions are unique, In the sense that b\i (E)

corresponds uniquely to £ MDa (Q>a

The procf of Theorem 1 will be given in section 3.

. ,_{
1/ Here and below, OL“J& denotes that C4 < Cl@ EECQ

where 64 and CE are positive constants depending on h

and.F only.

i
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SECTION IX

The Phragmen—Lindel8f Type Theorem

In this section we shall study the sgolution of the Dirich-
let problem (0.3) for the equation (0.1) in the neighbor-
hood of a conical point (defined below) on the boundary.
The beha;rior of the solution 1s characterized by one of the
Phragmen~Lindel8f type alternatives: the solution elther
incréases at least as rapidly as a negative power of the

distance to the conical point, or decreases faster than a

positive power of the distance,

' n
Lemma 2.1. Let GJ be a bounded domain in R and & a
number such that for each point DeVQn 4 sphere of
radius S can be drawn, which passes through 0  and

whose Interior belongs to CQ
. ] 1 . ‘ .
Let LX) & LP < \Q,) be a solution of the Dirich-
' ‘ : : | .
let problem for the equation (0.1), ([/L“SQ> € Lf ( Q) R

K_.P(X) € L; (\Q) , Y = 0 in a (}l— neighborhood of

the point O . Then the estimate

| - B |
(2.1) may IDut] < Lo max [u COl

x&&?ﬂbd(()) 7 -xc—QﬂDd (0)

remains true in a duneighborhood of the point O .




Proof. Let us denote by (i(xj the distance from a point

XG‘EQ. to the boundary

d GO = dist (% R _Q)
It suffices to obtain the estimate

(2.2) L GOT £ e d G

in a Ci—neighborhood of the point O

Let d be greater than or equal to 5E3 aud P = . We

take the origin of our coordinate system to be at the point

JD(Q C.QZ and consider a function

,P_;*'}I Jf;_'_'f}

F() =87 = 1yl

It is clear that fﬂ(3> iz a solution of the equation (0.1)
in [:DS ( p) , 8uch that Jﬁj(%> = O» J"—1<P)"—"- O

If F>>-ﬂ we take the function unl(lj>¢

Let us introduce a function

o 14O
ge sl g \O |
: e .7(3)

w(y) =

i n . 'r(f




=10

and compare U,(g) and -hf(%):hn the domain E;l/j]Dd (d)

whose boundary i1s
ALAND ] = [P 2ND ] UL QN3Dy )]

Note, that by our choice

u()y =0, W =0
for all g GZBSQ.m j)d (O>u

Since
- j’:,% _
T P .
| e r(g) > €5 , M [U(g)< oo
gm0 T 4eQMD, )
it follows that : : .

n-p
| luepl< e8 7 ()
for all | £ [Qﬂbd (0] .

(2.3)

As long as h/(gﬁ is a solution of the equation (0.1) in
CDS (F)) , the inequality (2.3) is valid for all
Y & 5;2 f)])d (D) as a corollary of the maximum principle.

We denote by N%'(ﬁﬁ an inward normal to hbgl at the
point P ana let S Nf_ (P) N Dd (O) .  The follow-

ing computation Leh ' i —n

DGO = ¢ [g+d®] g




(2.5) A -
| { .

leaﬁé to the estimate
1-h
) =1 - P-A
2.4) P =16y =T'(P < ¢8 d 6
Combining inequalities (2.3) and (2.4), we obtain (2.2),

which provided the result of Lemma 2.1,

Remark. Actually, we could have referred the reader to
the monograph [1] by 0. A. Ladyzenskaya or paper [4] by
J. Serrin for the Lemma, but these results are proved under

more general conditions and hence are less explicit.

Theorem 2. Let € > be an arbitrary number énd €>- 0
be a number such that the cone !’((D - [:Q - has a
point O S FHQ . as its vertex. |

Let LL(xY € L ( «9 \3 ) be a non- no‘gative solu-
tion of the equation (0.1), LS & E (Q) ﬂ L (Q)
inp the neighborhood of the point O (UL, ks)v e Lf (Q\j 3

for all g;:_:»o sufficiently small. Then either

lim sup

mox -u._(x)%* = oo

xeD..ﬂ)DSD )

Y- ()

or

PR CH
(2.6) R TS IS C;Ixi\'+(>

wherle. >\+ (4@ and }\ _ (Q) ~ are the eigenvalue”s for-

pi:o.b,lems (L.2), (1.3) of Theorem 1.
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Proof. Here, as before, K (ﬁ"‘ﬁ) is a closed spherical
[

cone in R with its vertex at the point D :
-4
e““E):{XZ Uéef:'g+£) C,oS@:B(nlx'l )]

and ) f’(({). -+ 8) is its boundary.

We denote by V(X) an "increasing" solution of the form
(L.1) of the equation (0.1) in the cone K (E“‘E) ,
which vanishes on ' K(R "-Z)

Voo - ik}}"+?£ (6) -
V(xj > 03 H\/NCX) = () | for all X% GW \((f»g)

Let us consider a function

Mex | UG
. X€ Q(WDP
Wed = max U6 + —————55 - V&
«e O MD min \ <)
* Xe Q(ﬂ])(a

Evidently V(Xj € L (Q\TD 5 We compare LL(X}
and WCQ in the domain Q 0 CD \’Drb with the

boundary

AN (0D RN, ibr>] UMD (@M

For all Xé¢ Q (Y‘D:D}L
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LY € max UK € W .
xe 2D,

Since bL(X):: O an Tukﬁ) O on (AWQZ(W (j) \j)ﬁ>
it follows that LL(X) remains less than or equal to \Mlk)

for x ¢ () (]> \\jb \> as well. By our choice

for .XNFGQ)the latter 1nequa11Ly is valid for ><(“D:)r N Q..

As a corollary of the maximum principle

Leo < Wo ,  xe 82N (D, \ZDJD)

hence
max ICY)
| xe R VD, ,
(2.7) UG£ max LG -+ Yh‘n,’ ‘VC) _V_(x\.
. «UD ! wK
Xe SN, xeSzmin

Statement (2.5) of the theorem follows from (2.7) if

Lim Sup { M—}_(E%z max u@} >0 . 0

x>0 <e Q.M

Otherwise LL(X> is bounded and we consider 'as a barrier

a solution of the equation (0.1)

M ax UG
i K& 9_0’2'])4
W = ‘ S
Y : Vo (x) -2
xe 2MD,
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where _UH.HD- (\) € L;: <L<<ﬁ)) R CU’Y (xX) “W@ﬁ@ ].4;3 (K(@)

and Y (X)) € [o: (R n) is defined by
4 , x KON (DAD,)
Yoo =14 DLyt <d, xe kKON ALH
| 0, xenKOND,
Evidently, U_w (\‘0 = O on qk(e) , and by the
maximum principle U“'\[’r (‘K) = Ud(x) , where U(X) is

a "decreasing" solution of the equation (0.1) of the form

{1.1) in the cone K(e), which vanishes on WK(@)

o
It is known that V,LP_ (_X) S [ ( K((z)) for a certain

>0 . ence, there extsts a mumber O >0 sucn chat
0> t=0, xewD, N [K((Z)\K(Q—_E)}
on the other hand,
%@Q ;%V(@;c,>o , x@"ﬂ)l N K@-E)

so that

(2.8) | B | UR]V(\O =
for all Xéﬁﬂm)’m K&) .
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Let us compare LLG@) and szk)in the domain SZ ﬂ:b4

with the boundary

AQND) = (A NDOV Q. MD)D.

It is clear that L )=0 and Ui,ﬁx) = on
FDSZ r]3>i . DBesides

WG <WED x e LMD,

by our choice of -}fcg)q

The latter inequality is valid for all X & &2[1?)1 as a

corollary of the maximum principle, so thét
U €&, %€ QND, .

In order to complete the proof, we cught to obtain an esti-

mate

(2.9) U-'\}/' CONPS ¢ GO

for all ¥ E K(@)ﬂb,{/ with the boundary
. 2

ALKOND, T =hKEOND,TUTKIOMDy T
Note that for_ali X € [qp{(@)ﬂbgl | ._
Y 6O =T =O. "

We conclude from the relation (1.4) that




U T
- r . oxe¢ 1K (e) {'\”ﬂ),(/g] .

It follows from Lemma 2.1 and the above Inequality that

thetve exisis & constant C such that

G (0 < e, xe [KIONKE-$) 0D,

Inequality (2.9) is valid for all X 6%[ K(Q)ﬂj)%l
since —UGL\) 20>0 for X & [ K (/E— S)ﬂrﬁbx/g} and
hence, by the maximum principle, it remains true for all

% € K(@) ﬂ:D/l/g . q.e.d.

Remarks. 1. ¥or _lf)fé 2, équation (0.1) is not uniformly

elliptic, and so does not satisfy one of the following

inequalities as ];E —> O:

D 0 A (‘X,E) BRC
< = RS 4+ 1E] :
(BEJ C;C& )U( §j) 1Z)

-
where E and Q are arbitrary n-dimensional vectors.

-

o (115 1)

Since the modulus of grddient of the solution

(2.10) (e, ) = 5;} NG

of the equation (0.1) tends to infinity as X} —= O for
F ::-;i'h—h’i 77, we can easily alter equation (0.1) in this

case’ so- that the dew e¢quation becomes uniformly elliptiec,

whillle the® futiexTon (2.10) remains Its solution in a neigh-




[
LA

borhood of U,

This is a property, for instance, of the equation

) a
(2.11) div [OL(DLK)LLX]: 0
where (kgt) is an arbitrary smooth fungtion eqgqual to
B2 |
\{\ for large '{ 3>0 and satisfies, for all-t>o
P2 P5

1D T < al), ald-otale) cp ()

Clearly equation (2.11) may be writtem in’ a nondivergence

form

| / 2
(2.12) 3 Q (u,ﬂ |
l SLJ +2 ‘_"“_:" Uy, Ly, ) U'-xix-z"“o-
Q (UX> L d (J
Other examples may be obtained from (2.11) and (2.12) via.

the substitution LL‘=EP (If)_

2. Similar results may be obtained for a quasilinear equa-

tion of the form

33—2
(2.13) divr ([Xlﬁluxl Uy ) "-"’-O.I,_ %GR

in exactly the same way. One would have to consider a quCw

cton UG € LY

Pk
rp |

=

hueot -——( &mf’ lucolPo!x)P
| o)

Y_\
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as a\‘solution of tﬁe equation (2.13), Lj’@ L ;3? (Q’)»
74
(u—g@ S LfF (Q)

The maximum principle and other basic facts on anluticns

4
of the equation (2.13) from L-P’F' (Q) (and more general
4

spaces L. 7 (Q) ) can be fouﬁd in [19].
Ff
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SECTION TII

Construction of a Particular Solution

In this section we conslder the nonlinear boundary value

problem (1.2), (1.3)

ISCRI SO

?nd

(f}) %m Q } A )

+>‘[-\(_P 1) +n-[>][\*¥((/)+§7 ((())7 = E QSm‘ * =0

(3.1) :

]

with boundary conditions

G.2) =0 , f)=o,

where ‘¥(Q> lis normalized by the vrequirement that ﬁ(CD::iD

in order to prove Theorem 1.

In our previous papers [16]~[18], we constructed & non-

negative solution of (0G.1) of the form

" AN
CLLG) =1k )i?anlx}f4)

which vanishes on the boundary of the cone %X : Xhlxlﬁzcog€i%

where ﬂ is sufficiently close to 0 or to ar,

Examples of domains were constructed in [16]-aﬁd it was
shown, using this solutioh as a barrier functibn, that
there exist golutions of problem (0.3) for the equation
(0.1) with infinitely differentiable boundary data, which

do not belong to any of the HBlder classes or are discon-

tinuous in EQ.'. The examples of domains for which the
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above solution tends to its boundary data more rapidly
than any power of the distance function were constructied

in [18].

Let us observe, that the problem (1.2}, (L.3) is nonlinear
and complicated by the nonlinear dependance on :} , SO0

we can not make use of any known facts of spectral theory.

The procedure below is based on a priori two-sided estimates
of the derivative of a solution of the Cauchy problem for
the equation (1.2)

(3.3) P@=0 19'(0\ =4,

These estimates allow us to solve the Cauchy problem (3.1),

(3.3) and to continue its solution ?(@) onto the Interval,
where ﬁ(@) iz nonnegative.  We dgscribe the set of ) .
for which the solution £k(@) of the problem (3.1), (3.3)

is a continuous, monotonic function of its argument.

These results altogether are equal to the solvability of

our original boundary value problem (3.1}, (3.2).

Theorem 1 has been proved in part in our earlier papers
[16]1~[18] with certain reétructions on :} , I and JBV

We recall these results to clarify the following procedure.

It was established in [16] that for an arbitrary positive

number’ ) not exceeding a certain sufficiently small
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constant (L which depends only on YL and jﬁ , the fol-

lowing relations are valid for f)ézﬂ-—i

@-m/(p-D
- L2()] ~ 2B@E—B) g

-1/ (n-p-1)

1y~ , p<nd
(-0 —4/)
£ \ f‘h“'

where *E(EDG; r fO 7{) is a solution of the Cauchy
problem (3.1), (3.3) and DJR] is an interval on which
~€(€) is nonnegative,

Moreover, it was shown that

|

p-1
[Cn*@g(?ﬂ (gnne) a%’ + O(A)
J( D) :
/2
- where % (@) is a positi*\.re soluiion of the equation
. /2 ¢ 2 A = 2 1
. [y (9)] (%n ) le-p y O+ y" (@)
. which satisfies the condiltion g (0) =0, N

A similar result for negative 3\ , sufficiently close to

1 s f>$ra—i_ can be found in [17]. That 1is, for

j’l - P._n --5\('53"“’{) € (O) QC}‘DBD
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where a_:c{(nzp) is a sufficiently small positive number,

the following relations are valid

r@@h@) o C pelo T 4/(n-2)]_
£ ~ /o4 " |
-9 T pe Lo
1/(nh-p-4)
' ' < h-4
(ﬁT“(])” .}i A/ C2-n) - F
4 f{ 5 .P==h-i

2 .
where -£(G)€"C, [OH#) is a solution of the Cauchy

problem (3.1) (3.3) and'[O’E] is the interval of non-

negativity of -F(Q)_

ey

The asymptoitic behavior of .A(Q)-<f ﬁ;}l for 6-%’$b

is described as follows:

)(ﬂ”«ﬁ) n-p-4 = n-p-4
o- 5 - R e 5 s ) 0]

{for _F<:!q i and

P [ n (1) | o
NOE leh = 2152)5(3; "'(39:1') i-+0[€n i(jr-ﬁ)] , p=h-1

.

Finally, it was proven in [18], that for an arbitrary )

l)\l € (G—d—i OQ) , where (= a(ﬁJPD is a sufficiently

small positive number, the following relations are valid




-23—
DI~ Be[0t]
-4

5 |
Here —g(Q)GE [ [‘OJQE> is a solution of the
Cauchy problem (3.1), (3.3) and {leE] is the interval

of non-negativity of -$(9)h

The following equality holds for { — {)
: i -d
)(’?.) = =+ LP, + O(/i),

where Ls is the first zero of the solution of the Cauchy

problem for the equation

: 0
. e !
fﬁ n

{[32&) - g’?*m] g’ 2o

-2

g@ e = 0

-2
Rg=

’ - ge(‘t) + 9"
with the initial data

) .
g (0)=0, g(®=41.
-As a.matter of convenignée,-the constant =0 (hjf5> |

remains the same throughout all the results.

In order to include the rest of the cases in our scheme, we

use the following argument to reduce our consideration to

the case | !)l'ZZE)(i> .




S

i
Iy

2 _ | ou

Let us observe the number line. Evidently, l)‘ = {)(i>
for J}sgh_qi in the cases under consideration, since

in our previous results we dealt with ) , sufficiently

pzh

P’i and-oa

close to the irregular points == o s

Let us consider the case j):>Vr*J‘ . The required esti-
mates (l1.4) for the large l)[ has been already obtained
in [18] for all f>—i , 80 we ought to deal with ;) R

sufficiently close to either O or (P»rf)/ffbrf)ﬂ

We take, for example, an arbitrary positive ‘) . By
verbatim repetition of the reasoning in the pfoof of Lemma
1.1 from [16] we obtain the relation

(p-ne) /G-

1. - "ﬁﬂ\(@f}/\“)\ ‘_“‘"Ji F>h~L9
integrating (1.4) over an interval of non-negativity for
;QJ (9) . This shows that ) must be bounded away from
zero in order for —g; (é> to vanish at a certain point of
the interval ( O,%r) . In what follows, this point shall

be denoted by -[W

The lim inferior of all .) , for which the solution of
the Cauchy problem (3.1), (3.3) vanishes at a point E of
the interval (O;ﬁ) we shall agalin denote by A . Evi-

dently, oL depends only on 1 and -P .and [123();

We treat the other cases analogously, so that we need only

consider the case Lo = C)(i). '
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Lemm;a 3.1. Let l)\l :O('l) , P>i and -g(@) - CQ [_0}6—3

|

!

be a solution of the Cauchy problem (3.1), (3.3). Then for , ‘
|

l

all G € [O!E]
h)/(j) JB

o

(3.4) (2] ~ 8 (o~ 93

where [O,EJ is the interval of non-negativity for —F(Q)a

Proof. We wrlte the equation (3.1} in the form

-&n”eu 220 + £’2(e)] oo -

(3.5)
SYRICE Y S ) qu@gm “edr.
First take the case 9@ YD) H’th(Zz )E)], From (3.3)

1t follows that

5
-6 [ 2] © 1900 <LS[$2(T) 1%6) 2 16> de

L‘et M denote the maximum of l?'(@)] on the iInterval

[0 . MEV\.(TTF/Q.J P_)j[ . Since
£(0) < . 4@ <

we have for ?;2

-1 | o\ P2
MF é'C__(i«M) -

(3.7) - M <c.

" So for Qé [O'E] where a_IE(hJPB 1s a suffi~
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ciently small positive constant

(3.8) L1200 < CEcﬁ?: .

In the case 'P-ﬁéz we get from (3.6)

M <c(Lpm2)E

and we obtain once more the estimates (3.7) and (3.8).

Moreover, it follows from (3.6) and (3.8) that for jb;ai

(3.9) 120 < ¢b.

Now we bound lﬁ’(@)l - from below on the interval

-

[O’ ]’Y}‘l.v\ (:j.‘/gjﬁ)]«- By virtue of9(3.5)

: 22 é {n ﬁ%?
L[ £(e)+L7(8)] oo KF@ @)+ 4% L@ de
' o0

For all J3>J_ it follows from the last inequality, to-

gether with (3.7) and (3.8), that

(73.10) 12(0)| = ¢6.

Hence, the relation (3.4) is established for all
Bel 0 min (w72, LY.

Now let us estimate lﬁf(g)] on the interval fﬁVé)e_]p

-~

|

6
<ol é 4] Mo “rde ]|

if 8 :>ST/Q2 . Let ‘P:> 2 . Then (3.5) yields

- p- h-o _ '2 .P-‘.,:—?,‘
O] s "0 <o JIFE %) D s P rde <

(3,11)
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Integrating the last inequality from O to 9 and

uging HYlder's inequality we find

v 6 po2
Y _P-i n-2 , h-2 o
S ) s wdr < 4 D |2 (*"*)l Sn TMJ
o -
Hence 0 , 4
- h-2 :
| el s ede <
Q
which, together with (3.11l), gives ﬁhe estimate
. (2 hﬁ/(f -4)
- Gan 12l < ¢ ($in0) _
- 1f j)<12_ , we use (3.5) to get the inequality
/ =2 [ p2 f2 %:‘f 9.}?( ~ O[ru
O se 0 < c[Ho) 4 (‘9)] s T
2-p [ﬁzhﬁ-»fﬁgﬂ
i >
c[1-47%@] *,
which once again yields (3.12).
Now let us estimate L?T@)‘ f?ém belowvon the intexr-

val FTT/Q,)EJ . Let f);:Z,. We get from (3.5)
e

[ £4(8)+ 2"%(0)

n-2 S ' 2 é
1—’f @ sn 0 2c [-‘Fc('c)+£'2(—.;)] -ﬁ(’r)sﬂ’mh T(;{*’t;

O

2

i
o .
-9 :
cgf @ =n  Tdrze

froﬁ which we deduce
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| e
(3.13) )] = c(sﬂheﬁ@ﬂ (pet)

For ’P<f2
o
h-92
P ng TAT

o 2&'*£Q(-]WP

2] 5w 28 s 0 [#40)+1%0) = 20 l-?’(@)\g-?

and this gives the estimate (3.13) omnce again. This proves

the lemmsa.

We have established relation (l1.4) for all ) s f>i$
for which a solution of the Cauchy problem vanishes at a
certain point of the interval (IJJTD + In the following
two lemmas, we prove, on the basis of reltion (1.4), the
solvability of the Cauchy problem (3.1), (3.3), and the
fact that the first zero of the solution of the Cauchy

problem is a continuous monotonic function of parameter ),

Lemma 3.2. For any }
}?[mih[oj- h) mmc(O —-»]

there exists in a neighborhood of 9»1 O one and only
. [ N . .
one solution gp(é> S C L Of$“> of the Cauchy prob-
lem (3.1), (3.3). This sclution may be continued in a

unique way throughout the entire interval of its non-nega-

tivity.
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Proof. For the proof, it suffices to rewrite equation

(1.2) in the equivalent form

Poy=4-3Dh(p-Dn ] x
(3.14)
8 ' T %?
- de ) PP D) L s it
o EXf(f) ﬁ @ﬂ] Sih %T o

where Q E[T%E] and to observe that the operator on

the right side of (3.14) maps the set

M={g:te Cgff),e-]; 204 £10)=0, -4 <f1rof

into itself for small & , and is a contraction operator

on M.

The continuability of ﬁ(@) to any interval L—Oj(),] R ‘F.<‘37"

where -ﬁ(@) = o , follows from the relation (1.4). q.e.d..

Phe continuity of the first zero e (JC) df the solution
of the Cauchy problem (3.1), (3.3) we establish by verba-
tim repetition of the reasoning in the corresponding
lemmas from [16]-{18], making use of reléfion (1.4),

proved in Lemma 3.1.

Tt was proved in [lé], that the fifst Zero ﬂ Clj) of the

Cauchy problem (3.1), (3.3) is a decreasing function of

for small positive ;) . This result requires the rela-
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tion (1.4) only and can be extended to all positive

by verbatim repetition, since relation (1.4) 1s now
— , f~h) _h>]
established for all ) & [ hmn,(oj —, ), max (O, %f} ‘

To conclude the proof of Theorem 2, we need only the fol-

lowing:

Lemma 3.3. The first zero -g(l) of the solutlon of the

Cauchy problem (3.1), (3.3) is an increasing function of

for all negative } . _}\"é [ mih(O) %{%)) X (D, %:S)J

Proof. Let }1f>}2 . Let [i i_;:iEQ,- denote the

>

first zero of the solution .ﬁi(g)of the Cauchy problem

(3-1), (3.3)- Put l/{,i = f)‘kt :f- 0 (9) . Obviously,

bLi is a solution of (3.1) in the cone
Ki :z{x: 0<0el; ) cosgthl‘xl"{},

and it is equal to zero om (N/(-L . suppose that £, <0,
By (1.4) |
| [ = max @
fel0t,] f2 (9)

and, hence, for X € K,‘ N '315_4
(3.15)

U, (<) € CU, 0o

Besides,

0= U, < C U, (%)
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. | for X C—f} t’{,l m CD,} . By virtue of the maximum princi-
|

i ple, the inequality (3.15) remains true for all X& KJ-‘CD;],,

I_ ~ Since )4 > 3\2 and 'E'E (O>n igthis implies that for

sufficiently large

| ),
. | ui (?;O):r > ﬁjD)\Q = (fua CF, O)q

o This contradiction proves Lemma 3.3 and concludes the

proof of Theorem 2.
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