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Abstract of the Dissertation
Some results on the pinching problem
by-
Hua-Min Huang
Doctor of Philosophy
in
Mathematics
State University of New York at Stony Brook
1976 |

Wallach has discovered that in dimension 7, there
are infinitely many simply connected compact manifolds M(p,q)
with strictly positive curvature. These spaces are in fact
homogeneous (but not normél); obtained as quotients of SU(3)
by the various imbeddings of the circle Sl. For a suitable
choice of Wallach's metrics, which appears to be optimal,
we can show that the pinching of M(1,1) is 8=16/29°37.
Using this result, we prove that for any 0<t<d, there are
infinitely many topologically distinct M(p,q) with pinching=n,.
On the other hand, the pinching of all M{p,q) is not uniformly
bounded away from zero. It fqlldws from our result that
there is no finiteness theorem for the topological types

‘of simply connected positively curved compact manifolds

with given pinching, in odd dimension., In particular, the




injectivity radius of such manifolds cannot be bounded away

| from zero uniformly. A1l this is in contrast to fundamental

results of Cheeger; Klingenberg, Weinstein, and others in ' 'f

even demensions. - ' I
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Introduction

Global geometric properties of a complete riemannian
manifold M often interact stroqgly with the underlying
topological structure of M. The classical Gauss~Bonnet
Theorem would probably be the simplest and most famous
example, saying that if M is a compact oriented Surﬂace
w;th curvature function K, then the 1ntegral of K over M
is equal to 2mX(M), where ¥(M) denotes the Euler characteristic
of M. We only con51der connected compact riemannian manifolds
with strictly p051t1ve curvature. There 1s an 1mportant
geometric quantlty, the pinching or M, deflned to be the

- quotient of.the minimum and the maximum of all sectional
curvatures on M, that plays an important role in the
relationship between differential geometric and topological

properties of these manifolds.

There are many results on pinching problems which
Seem 8s equally exciting as the Gauss—-Bonnet Theorem; By
definition, the value cf the_pinching ﬁill lie somewhere
between 0 and 1, If the pinching of a simply connected
manifold M is large, say between 1/ and 1, then by the
-now classical Sphere Theorem, M must be homeomorphic fo

a symmetric space of rank one. Fairly recently, Cheegerf5],

and Weinstein[14] proved that given any positive number 0<6=1,




the set of all even dimensional riemannian manifolds with
pinching =6 contains only finitely many different topological
types (and ailso only Tinitely many distinct differentiable

structures),

Tt has been an outstanding problem for quite a while
to decide whether or not the same finiteness results are
true for odd dimensional simply connected riemannian ménifblds.
(It is well kmown that in any odd dimension nz3, there are
already infinitely many Uopological distinct manitolds of
constant curvature, all covered by the standard sphere Sn,)
Various geometric questiohs aré linked to this problem, |
notably a-priori estimates from below for t?e injectivity
radiué of the exponential map. In section 5 we shall prove

that the above conjecture is false, at least in dimension 7.%

Another very interesting questionlthen arisés: What
‘is the smallest number o such that tﬁere are only finitely
many different topologicai types for all simply connected
manifolds with pinching greater than a? (The number o might

depend on the dimension.) This problem is still unsolved.

*Our result should be contrasted with a remarkable recent
finiteness result, announced by M: Gromov, according to
which in particular, the Betti numbers of all n-dimensional,
6—-pinched manifolds can be bounded in terms of & and n alone.
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But one knows from the Sphere Theorem that a<l/k. On the
other hand, we shall prove that in dimension. 7, the number

o cannot be less than l§/29-37.

The above results have some other important geométric
applications. For eXample,'the injebtivity radius of the
exponential map, or equivalently, the length of the shortest
periodic geodesic, is known to have an a-priori lower positive
bound for all compact even dimensional manifolds with normélized
positive curvature =1 (Syngé; Klingenberg). It had been
attempted for many yegrs to ﬁrove a corresponding result‘
for odd dimensions; in the éimply.connected case. We will
see that such a uniform lower bound does not exist in
dimension 7; not even for fixed pinching less than l§/29°37.
But‘on the other hand, by the Sphere Theorem, there is a

lower bound if the pinching is at least 1/k.

One major difficulty to study pinching problems ié
the lack of enough examples. Toﬁologically, all.known
examples are so far locally hdmogeneous spaces, Comparatively'
few (simply connected) homogéneoué spaces admit strictly
positive sectional curvature. Berger [1] has classified

all normal homogeneous spaces with strictly positive curvature.

He proved that all such spaces are symmetyric spaces of




rank one, with two exceptions in dimension 7 and in dimension
13. The symmetric spaces of rank one are spheres, complex
projective spaces, quaternionic projective spaces, and

the Cayley plane; see [3]. Non—normal homogeneous metrics

with positive curvature have been analyzed completely only
very recently by Wallach [12], and Bérard Bergery [3].

It turned out that there are just a few more examples than
the above, except for an 1nf1n1te string of new simply
connected spaces in dimension 7, discovered by Wallach
[13]. These examples are the starting point For our work.
Wallach's crucial technique was to deform the metric on'

a suitablé subspace of the tangent space of a normal
homogeneous space (which always pas curvature = 0). This
procedure usually introduces some negative Curvqtures,

but it may also lead to strictly positively curved spaces,

in some instances.

The paper is organized as follows: In Section 1,
we briefly review and compile the faects aboutrLie groups,
homogenecus spaces, and invariant mefrics that will be
‘used later. Section 2 and 3 contain a sketch of the necessary
curvature computations. In Section L, we discuss Wallach's

examples from our point of view. All the results nmentioned

above then will be proved in Section 5.




1. Basic Facts.

A Lie group is a group G which is also an analytic

-l of the product

-manifold such that the mapping (x;y) -
manifold GXG into G is analytic. There is a special kind of
algebra -~ the Lie algebra - canonically associated with

every Lie group.

A Lie algebra is a vector space % together with a

mepping [,] from ¢fx ¢f into such that
[a,V,48,7,,U] = al[vl;U] + a,[v, ul,
v,u] = -fu,v],
(V14 0V,5¥510 + [V5507,,V,1] + [V,,[7,,7,1] = o.
We recall how a Lie algebra @ corresponds to a

Lie group G,
(Rb) is a left (rlght) translation on G if L (Rb)

is the transformation on G such that L,(x) = ax (Rb(x) = xb),

for all x in G, where a,b are fixed elements in G. The

vector Tield X is left invariant (right invariant) ir

(dLg)Xgl ngt ( (ng)Xgn = Xglg )s

“where dLg is the differential (Jacobian) of Lg.
The left (right) invariant vector field X is uniquely

determined by the value Xe of X at the identity element e

in G. We denote by ¥ the set of all left invariant vector




fields., ¥ will form a Lie algebra if we define [U,V] to
be UV-VU, & is called the Lie algebra of G, It may be-

identified with the taugent space of G at e

i

There is a natural homomorphism Ad, cglled the

adjoint representation, from G to the general linear group

GL() ory, defined as follows:
= dR_edlL . .
Adg(X) ng dLg_l(X)
We define ad:¥~ gl(Yf) to be the differential of
the adjoint representgﬁion Ad at the point e (the identity
of G)Q ad is a Lie algebra homomorphism from ¢ into the

Lie algebra gl(UJ) of all linear transformations on % .

One has
‘adX(Y) = [X,Y] = XY-YX.

We can always put a riemannian metric on the Lie
group G to make it a riemannian manifold. Now we discuss
special metrics on G, the so-~called invariant metrics.

The metric <.y > defined on a Lie group G is called

left (richt) invariant ir <'X;Y > is coqstant for all left
.(right) invariant vector fields.X and Y onG, i.e. all

lert (right) translations are isometries. By the above,

it is always possible to put a left (right) invariant metric

on any Lie group, just by choosing an inmer product for the




Lie algebra., If the metrlc is invariant under both left

and right translatlons, then this metric is called bllnvarlant.

A left invariant metric is biinvariant if and only if

it is 'AdG--invariant on 4 . For a compact group G; one can
always choose a more or less canonical biinvariant metric,
essentlally given by the Klllll’lg form. The bilinear form

B(X,Y) = Tr(adXOadY) on ©f,

where Tr is the trace of a vector Space endomorphism, is

called the Killing form of G. B is invariant under Ads.

A connected Lie group G is called semi-simple if the Killing

form of G is nondegenerate. The Tollowing facts are well

known:

(1) Let G be a Semi~-simple Lie group, then G is
compact if and only if the Kllllng form of G is strlctly

negative definite.

(2) If G is a compact Lie group, then its Lie algebra

is the direct sunlf= 3@Y,o], where 3 is the center or

‘-é, The commutator [‘-g,tg] is semi-simple, and the restr:r.ctlon

Bl [tq ] is strictly negative definite. Now we can put a

biinvariant metric < y > on the compact ILie group G: We

. choose -B for <, > on [t.g,lg]; where B is the Killing form,

we give the center 3 some euclidean metric, and we make

3 and [¥,4] orthogonal.




Let G be a Lie group apdAH a closed subgroup. Denocte
‘by Q/H the set of all left cosets gH. Q/H'carries a unique
structure of an analytic manifold such that the natural
'projeétion G- Q/H becomes an analytic principal fibration.
There is a natﬁral smooth action of G on G/H induced by
left translations on G; g,(gH) = g, 8H. This is a transitive

action, and one calls Q/H a homogeneous space.

Now we will discuss iﬁvariant metrics on homogeneous
spaces, i.e. metrics on G/H for which G acts by isometries.
It is not always the case that invariant metrics exist
on homogeneous spaces, HOWever; if for example, H is a

compact subgroup of G, then one can find an invariant metric

for G/H. For the purpose of this thesis, we always assume

that G is compact.

Let G be a compact Lie group; H a closed subgroup

of G. The biinvariant metrics for G, as described above,

induce invariant metrics on G/H. If < ; >hdenotes a biinvariant
metric on G, W the Lie algebra of H,-then the Lie algebra (g
of G admits an orthogonal decompositionf =KM-® P, where

P= kL, and [P,]Pp, i.e. AdHCP)C$' The restriction of the

_inner product < , > to the orthogonal complements of the

-

tangent spaces to the fibers gH, therefore projects to an

'invariant metric on G/H. We call the metric obtained in




this way a normal metric. Furthermore, if P can be written

as a direct sum of P., i.e. p= G)’P such that Ady (P )CPi

for each i=1,°**,m, then we can deform the normal metr:l.c

on ¢ to a new metric <, > on ¢ as follows,
<E,Y >= Za<X,Y>,
| =1t

Whel"e ai>0, X = Z Xl’ Y._. E Yl’ and X ’Y EP ’ —_ l’ooc,m.
i=1 i=1

This new metric on G/H is G~invariant s but not normal

in general, since biinvariant metrics are essentially unique.

iy




2. The Curvature of Homogeneous Spaces,

We will discuss the curvature of a Lie group first,
Once we know the durvature for a Lie group, we can use
O'Neill's formula to compute the curvature for homogeneous

spaces,

Let G be a Lie group,(g the Lie algebra of G, <, > .
a left invariant metric on G. We use A* to denote the adjoint
of a linear transformation A on with respect to the
given metric <, >, l.e.y< AX,Y > = < X,A¥Y >, For example,
< [X,Y],2 > = <:Y,(adx)*Z >. First we need the Levi~Civita
covariant derivative v, It suffices to work with left invariant

vector fields on G

Proposition 2.1,

(1) %Y = 1/2{[X,Y] ~ (ady)*Y - (ady)*x}

Proof:

Since X,Y,Z are left invariant, we have:

X <Y,2 >= <YY,2 >+ <¥,%% >= 0,

T <XZ2 >= < %WX,2 >+ <X,%Z >= 0,

Z<ELY >= < VXY >4 <X, >= o0,

From the above equations, we can derive the Following
‘formula:

(2) 2 < %Y,z >=<[%,Y],Z >- <7Y,[X,2] >~ <X,[Y,2] >

This yields (1).
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We now compute the riemannian curvature tensor R
for G, in terms of first covariant derivatives. Again, it
suffices to consider only left invariant vector fields

X,Y,Z,W on G.

Proposition 2.2. ‘
(3) <R(ELY)ZW > =< VRZsVyW > = < VeZ,950 >
- < V[X,Y]Z’W >o
Proof: |
By (2), <'7XY,Z > is a constant function on G,
hence VXY is a left invariant vector field on G, It follow

that X <Vy2W > = <V gV ZW > 4 < VyZ, %W > =0

Y

Y < VXZ,W > =< VYVXZ,W >+ <L VXZ.’VYW > = 07
Subtracting the above equations and using the
definition of R, | |

Vg — V

R(X,Y)Z = v,V Z - vy [x,r1%

Xy
we obtain (3).

From the last propositibn we can derive‘a simple
algebraic formula for the sectional curvature of G, in
terms of data of the Lie algebra only.

(5) < R(X,Y)Y,X > = 1/4] (ady )¥Y + (ady)*x]|?
~ < (ady )*¥X, (ady )*Y > ~ 3/40|[x,¥v])|2
- 1/2 <[[X,Y],Y1,X >~ < [[Y,Xx],X],Y




Proor:

We choose Z=Y,W=X in (3). Then,
(3*) < R(ZT)T,X > = < V7,7, ¥ > - < VY5 VyX > - < V[x 7L >
Applylng (1) to each term in (3') yields

< 9T, %X > = /4{||(ady ) *Te(ady)*x|® - |I[x,7]]121,

< T, %X > = < (ady)*T, (ad, )*X >,

< V[X Y]Y X >=12{<[[X,¥],Y],X > = < (ad[X Y])*Y X >}
- < (adY)*[X Y] X >

Insert the last three equations into (3') to prove (4).

Coroliary Z2.k.
| If <, > is a biinvariant metric, then‘adX is skew

adjoint, and

(5) VXY = 1/2[X:Y]!
(6) < R(X,Y)Z,W >= -1/, < [X,Y],[Z,W] >,
(7) <R(E,TT,X > = /400X, 1|2

In order to generalize the curvature formula for
Lie groups to homogeneous spaces, we need the assistance
.of O'Neill's formula which compares the curvature of two
_riemannian manifplds M and N related by a riemannian submersion;

'geg also [11], [6].

= 1/2{< [[X,Y],Y],X > - < [[X,Y1,X1,Y > + ||[X,7][?]

12




Definition 2.5,

A riemannian submersion w is a smooth map from a
riemannian manifold M of dimension n+k onto a f%emannian
manifold N of dimension n such that dm has rank n for ail.

m €M, _ 7

By the implicit Ffunction theorem, n’l(p) ig a smooth

k—-dimensional submanifold of M for all p € N. Let‘Vq be

- XL ‘ '
the tangent space of 1(p) at g, Hq:Vq the orthogonal
complement of Vq in Mq. We call H,V the horizontal and
vertical subSpace-respectively; and use h;v as subscripts

to denote the horizontal and vertical components, 1 is a

riemannian submersion if the restriction dﬁIHq is isometric

for eaéh g € M. Givenla vector field X on N, there is a

unique vector field ¥ on M such that Xq € Hq and dﬁ(Xq):

TT(CI)z

for all q € M, ¥ is sometimes called the horizontal 1ift

of X. We will derive thé Tormula which gives the relation

between the sectional curvature with respect to a horlzontal

2—plane<5 in M and the sectlonal curvature with respect to

the plane dn(é) in N. Let X,Y be vector Tields on N and
K(X,Y) = < R(X,Y)Y,X >, Note that if X,Y are (locally)

orthonormal, then K(X,Y) is just the sectional curvature

wWith respect to the planes spaqned'by X,Y.

Proposition2.6.

(O'Neill's Formula)
(8) K(X,Y) = K(X,T) + Q/AH[X,TJVHB




In particular, riemannian submersions are curvature
non-decreasing.
it .
Proof:

x,f and X,Y are m-related, i;e. (dﬂ)fq = Xn(q)’.
for all q € M. Then [X,¥] is m-related to [X,Y]. Let X,Y,Z,W
be vector fields oe N, and T a vertical vector field on M,

By the above observat:n.on, we have < [%,71, Z>=< [X Y1,z >,
< [%,T1,T > = 0:7Note that T is m—related to O,

Let.V,V be the riemannian connections on M,N
y ) - H

respectively. Using the definition of the covariant derivative

of Levi~Civita we obtain
<HLZ>= 2T LE >4 IEE > - I LT > 4 < [L,73,T >
—<[XZ]Y‘> <[%,Z21,T >=< Xsz>,
and < ?XY,T >=1/2 < [L,Y],T >, Therefore, '
(9) ?XY =‘$£T + 1/21%X, Y] . Furthermore,
<'V‘TTC,Y‘>=-< XT >4 <[T X7, T >= =< VXY T >
= -1/2< [X, Y'J T = -1/2< [X, ‘i’] »T >, and
%< YL > = X< YyZ,W >. Hence,
< VgVeZ,W > = < V2,0 > < 7%y Vel >
= X< VyZ,W > - < - ,VXW > = 1/h< [Y’,Z]V,[X,W]v >
= < vaYz,W >~ 1/h< [Z,Z]v,[X,W]V >, and
< V[X,_Y]Z’W > = < V[X,Y]Z’W > - 1/2< [Z,WJV,EX,YJV >,
Combining all those results yields

(10) < B(X,7)Z,T > = < R(X,Y)Z,W > -1/4< [¥,2],[X,0] >

+1/4< [X,23,, 0,01, > + 1/2< [¥,7],,[Z,0], >.

4




15 .

In particular, if we choose EEY, Wéf, then

<KEDLI > = <RI, > - 3/4][7,7] 2
| = K(X,Y) -3/4l1(%,7]II2. *
‘This_completes the proof of (8).

R(%,T)

Remark 2.7. The term [U,V]_ in (9) is not a derivation,

but linear in two arbitary horizontal vector Fields u,v

on M. Its value at any point g € M depends only on the

€ .
vectors Uq, Vq Mq

We can now eagily compute the curvature of any

riemannian homogeneous space w: G - G/H in terms of the

Lie algebras ¢ 2Id of GoH. By assumption, G is equipped

v
with a left invariant metric, i.e. an inner product on >

which is AdH—invariant, The metric on G induces a metric on

G/H such that G acts on G/H by isometries, and w becomes

a riemannian submersion., By homogeneity, it suffices to

compute the curvature of G/H at one point, say n(e) = eH.

We have an orthogonal splitting ¥ =K ®P , and the projection

T identifies ¢ isometrically with the tangent space of

G/H at n(e). Let X,Y € be two orthonormal vectors, and

let K(X,Y) denote the sectionél curvature of G/H at (e)

‘with respect to the plane spanned by (dm)X and (dn)Y. Then

we have,
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Proposition 2.8. i '

(11) K(X,¥) = 1/4] (ady ) *¥e(ady) %2
-< (adx)*xt,(ad,!‘)*}f >
=3/ 0%, ¥ 1,112 R
~1/2< _[[X,Y],}C],X > - 1/2< [[_Y,X].,X],Y >,
Here [X,Y]T denote the‘? —component of [X,Y]. |

Corollarv 2.9. (Samelson, Nomizu)

If G/H is a normal homogeneous space, then (11)

simplifies to t

(12) X(X, D= 1/4lI[x, 717 + 3/ll[x,¥] 1%
} | - ;/lpil[X,Y]Tllz_-é- Iex, v 0.
In particular, the curvature of a normal homogeneous space
: _ R . : ) _ :
is always nonnegative. '
Proof: Formula (11) and (12) are an immediate consequence

of (8),(9), and Remark 2.7.




3. Deformations of the Normal Metric.

We shall now study a much more special situation.
Let G be a compact connected Lie group and H a closed
subgroup of G. Let)d (g be the Lie algebra of HG. The
normal homogeneous space Q/H is said to satisfy conditionic

if for the orthogonal cbmplement P of |4 in &f, the

following holds:

(1) p = v, @ v, (orthggonal direct sum),

RA(H)V, SV, (i=1,2),
(2) [Vy,V,1V,, | 1
(3) [V}, 7;IcHe v ,
(&) [V,,V,1eR® v, | 1
(5) IfX=3Xp4X,, ¥ = Y+7,, X;,¥, €V, (i=1,2), xyY # o, .;

i
and if [X,Y] =0, then [Xl,Yl] # 0.

The formulation of condition I and the folloWing
lemma were given by Wallach; see [3]; However, we will
present a different and strajightforward proof of this lemma

using 2.(11).

Lemma 3.1.
. Let G/H satisfy (1),(2),(3),(4) of condition I ,
:Let<< s - denote the AdG—invariant metric on Q}. Fix -l<t<oo,

and let <, >y be the inner product on P given by

17




< Xy#Kp, T +1,> = (L+£)< Xy, ¥7> + <K, Y >

Tor X,;,T, € V; Extend <, >y to a metric on Uf : Make W. and
P orthogonal and 'chooSe <y > to be <, > on ki . Now

< . >t is Ad g-invariant, hence 1t induces a new riemannian
“structure ifor G/H. Relative to this metric, let K(X,Y)
denote the Sectlonal curvature of G/H at eH with respect to
the plane spammed by orthonormal vectors X,Y €P. As bofore,
we have identified P with the tangent space of G/H at eH,

Then we have:

K(L,Y) = D6, Y00% (1)< [%1,7 3,0 [X, 7],
(6) + 200,y 012 (1-3e) all i, v, )2
+ t(1~t)< [X,,%701,0%,7]> + tzll[Xl,Yljlll?v,
where if Z €Y, 2 = zh_+zl+zz, Z GH., Z; € Vs, i=1,2

Proof: By 2.(11), we have

K(X,Y) = 1/4l|(adx)*Y4;(adY)*XlI§ -< (adX)_*X,(adY)*Y >
(7) - =L/2< [IX,Y1L, YLK > - 1/2< [[Y,X],X],Y >
-3/LlITX, Y112, |
We have to express everything in terms of the biinvariant
metric <, > on Lg‘r, Recall that
<X, = (L)< X, Ti>+ <Xp,I> = tg XpY> 4+ <X,Y >

*S8ince <, >t is AdH-invariant, ady is skew adjoint with

respect to <, > onp , 1e

18
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(8) < [%x,Z],Y > + < [r,z],x > =0,
for X,Y GT, Z EH-; Choose 6rthonormal bases Wy,*"*,W,;
Zyyercy 23 Zm_{_]_,”',Zn for i, V,,V,, with respect to
<, >1_;. Then, using (8), conditj:onII_ , and the fact tha{:

ad%is skew adjoint on {f with respect to <, >, we have

i - |

(adp )*Y + (ady)*X = j51(< [X,WJJ,Y > +< [Y,WJ.],X _>1-,)Wj
. n

+._Z_

i (< [X’Zi]:Y >t+<.'EY}Zi]sX >’t)%i

=

f
o

(< [%,2;13,7) >+ < [T,2;1;,%,>)2;

=
H

i
ct

(< [Xl,Zi]l,Yl> + < [ﬁfl,zi]l,)cl>)zi

=

fdo »
Bh MBI MB

+.2 (< [X50Z:q,Y > + < [Y,2.]4,X, )7,
. femil 277141771 A T i R g |

n |
= ntizm+§_< [X2’Yl]’zi> + < [Yz’le"ZP)Zi

6([Xy,¥,] = [X,,7q1).

Therefore,
1/kli(ady ) *Te(ady ) 2x12
= t2/4l[X,,Y,] - [X,,7,]lI2
O < ezalinng, 1,1 + [x,,1, 002 - 2< [X),7,0,[K,,1, 1>
e300, Y102 - £2< [Xy,7,],0X,,Y, I>.
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Similarly,
(adx}*X= [X,w. ]X>WJ+Z<[XZ ]X>Z
1

<
n
Z <[X,2;]1,% >z,
1
n
5 <

Il
ct

[Xz,z 1,y >z,

= "t[XzyX 1= t[Xlrxzjy
and by the same reasoning, (adv)*Y t[Yl,Yzj

So we have,

< (adX)*X,(adY)*Y >= tE< [xl,xzj,[yl,rzj >,
Now, _
=< [Xl,Yl] [Yz,ij > - < [X,1,], [Xz,Yl] >
Therefore,

_<(adx)*x‘(ady)*y >,

(10)

U XY LI, T,] > 4 62< (1,1, ], [X55%71 >.
Furthermore,

<[[%,¥1,Y],x > + < tlv,x3,x],Yy >
2< [[x,Y] Y] X >4+ ti< [[%,Y],3 ]1,}( >+ < [[Y,X] X]l,Y >}
-2< [X,Y],[X,Y] >+ t{< [[x, Y]h,Yl] x>+ < ([ X]h,Xl] Y,>

+ < [[X lerylj Xl> + < [[Y, X]l’Xl] Yl> - < [[X:YJZ’Y2]’X1>
- < [0Y,%0,,%,,7,5) |

-2l [x, Y ]2-20< (XY [%y,¥,] > ~2t< [X,¥]y,0%,,7,] >
~tliCx,v1,012, ’
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So, _
~1/2< [[4,Y],Y1,X >, ~1/2< [[¥,X],X],¥ >

(11) =N, vlRee< £, Y3, , 02,7, 10 4t [X,¥3p, 02,1, 1>

= w2l [, Y )IR,

Finally, o

(12)  =3/4lL%,¥] 12 = -3/406l0x, Y], 012802, 7] |12].
Putting together all these results (9) through (12)

yields (6). |

4

Corollary 3.2.

Ir G/H satisfies condition Ir » then the G-invariant
metric <, 2. on G/H defined above, has Strictly positive

curvature, for ~1<t<0.

The argument is very easy and can be found in risj.




4. The Examples of Wallach,

In this sebtion, we study the positively curved
homogeneous spaces discovered by Wallach [13]. The main
purpose is %0 compute explicitly the curvature of these

spaces.,

o

Let G = SU(3), the special unitary group of degree 3

Every non—tr1v1a1 circle in SU(B) is of the form,

e2mipd 0 o o
. . R 1

8 |

T(p,a) = 0 ezﬂlq O - 21g% > 0 !
: i, ’ . PTIG .

0 0 gRmi(p+q)® ’ 1

Consider the following subgroup G <SU(3),

g 0

0 Eetigs

g € U(2)

Let (f be the Lie algebra of G, i.e. the algebra

all complex skew hermitian 3X3 matrices with trace 0.




2mipé 0 0 ‘
W = 0 - 2migh 0 B €R y
0 0o —.2TTi(p+q)9J
and
7 o Z skew hermitian
41 0  Trz 2X2 matrix o S

Define the (standard) Ad.~invariant inner product
on (Q » Dy means of the Killing form:
<X,Y >= ~1/2 -Re(Tr XY). »
Let A-L denote the ortlliogonal lcomplement‘ of a subspace A | | -
in(ﬁ » We have, .
I :- 0 b4

. .
Z = 1 Z.EG }o

ZZ’

0

For the follow:l.ng, we refer- to Section 3. Set

Vi= l-‘- N AR

__ Vg

Then f =|ld ® V,ev, .

One can easily verify that SU(B)/I'(p,q) satisfies conditionlL,
if pq # O. We shall denote SU(3)/T(p,q) by M(p,q).

®V

If p,q are relatively" prime integers, then M(p,q)

simply conneéteq. The followihg result is due to Lasho.ff.-




Proposition 4.1,

h(M(p,q) 32) = %/rZ, where r = I p2.+ q% + pq, ,

provided P»q are relatlvely prime. - _ -

Corollary 3.2 and proposition 4.1 contain Wallach's
result that there are inrinitely many simply connected,
topglogically distinct homogeneous spaces with stfictly
positive curvature, in dlmen81on 7. It should be p01nted out
that the spaces M(p,q), with respect to their normal metrics,
a%ways have some zero;curvaturés.'We now proceed to give

a more quantltatlve analysis of the curvature of the manifolds

M(p,q).

We define a bases of Uf as follows:

b 3

o] [0 0 1

1 "0 0
AL = o1 0 A 0
0

o o M o

=

0 0 Ag

[0 01 0 0 -
The set A = {Al,---,AS} is not orthonormal yet.,

But we can easily produce an orthonormal basis M = {Ml""’MS}’




by setting Mi=Ai for 1=<i<6,
V3, = (2qp)A,~ (2prq)Ay,
BMg = pho+ g, |
where 4 = fm ' |

Notice that Mg spans ld , the matrices Ml’ 1,0 M

If-

span Vl, and’Mz’MB’MS’ME) sSpan V2.

We need the Lie brackets [A ,A 1 and [Ml,M ] They

are compiled in the following tables.

Table of Lie bracketbs [4554,], i<

25
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Table of Lie b?aclcets [ ,Mj], i<j

j= 2 |3 b 5 6 7 |1 8 i
-M s —%L_’ l
5 M2 /3 q)MH "'M6 | M5 "\/-3- ( q)M!}. (_(]%R)M[“ 1
/ " .
|
|




<7

We now endow M(p,q) with the metric < >, of Section 3,

-l<t<0, and apply 3.(6) to compute the sectlonal curvature

K(X,Y) for a plane sparned by vectors X,Y E]d_, orthonormal

‘With respect to <, >

. 7 7
We can express X,Y as X = Z a,M!, Y = X b.M!
_ ’ jo1 T 17 jmp L 17
where M:{:' Mi (i=2,3,5,6), ;
VI+t Mj!_ = Mi (i=l,z{—’7), |
7 7 7
Zab.=0, Za?=23bp2=1,
i=1 t* i=1 * i=1 *

{Mi} is orthonormal with respect to the metric < y e

-

We choose once and fer all t=-1/2, which seems to

be optimal for all pinching estimates. Then_we_obtain

Proposition 4.2,

K{X,Y) = 5/8< [X3,7939,[%9,¥3 0y > |

+1/16< [X,l_f]z, [X,Y]2 >

< [Xsyjh‘: LX :Y]“?

_'3/4__<_ [Xy,Y,],,0%,¥], >

-Fl/k{ (X570, (%, 0, >
Where Z = zl+zz+z&, Zy €Yy, 2,6V, Z €W,

We can use the table on page 26 to express K(X,Y)

as follows:
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Corollary L.3.

K(X,Y)=l/2 —a b3""‘9~3 2"a5b6+3-6b5+“f§“-( P'FQ)/'ﬁ(al‘_b'?”at?bh) }‘2

+ 1/2 fq/!_\(azb5 asbz)-fp/a(aBbE,—ae)bB)T/”(pq—q)/A(ale—a,b1)}

1 1/8{ asbg—agh ytasbs-a 503 12

+ 1/81¥3/8(a b sma sby) /T /b asbgmaghy) 12

: + 1/8{~21batagby-a; botash, ~/Ip/Magbr-arbg)} 2
+ ;/8{‘alb64a6bl—a3bh+ahb3"J§q/A(a2b7~a7b2)}é
;%/é{ealb5+a5bl~azb4+ahb2+3§p/ﬂ(a3b7”a7b3)}2
+ 2(p~a)2/8%(a1b, -2, by ) +'<(p-—q)/2A (albr%bl)
X{(2p+q)(a2b5—a5b2)+(y+2q)(a3b6—a6b3)} o |

+;/A?{(2p+q)(azbs—a5b2)+(p+2q)(a3b6~a6b3)}é-




5. Proof of the Main Theorems.

Proposition 5.1.

Suppose the pair of integers p',q' is a multiple
Oof the pair p,q by a positive 1nteger d (i.e. p'—pd,q'~ qd)
Then M(p',q ) and M(p,q) have the same pinching.

Proof: The coefficients of the curvature formula in 4.3
are either constant or only depend on the ratio of p and q.
This proves the proposition. Ih‘fact, M(p,q) is a d-sheeted

riemannian covering'offM(p‘,q')-

Proposition 5.2,

Suppose p,q afe relatively prime. Let ﬁ(p;q) be
the pinching of’M(p,q). Then there ekists.an infinite family
of simply'cqnnected spaces {M(pi,qi)} such that the M(Pi’qi)
are mutually topologically distinct, and their pihching

approaches 8(p,q) as i-roo,

Proof: Since p,q are'relativelj prime, we can find positive
integers m,n such that | mp~nq | =1. Then, p,=n+ip, q =m+iq
are relatively prime for all i; and pi/q p/q4 as i e ,
From Proposition 4.1 and Corollary L.3 (u81ng the compactness
Of the set of tangential 2-planes) it follows that the

Sequence M(pi,qi) is as desired.




It seems to be difficult to determine the pinching
8(pyq) of M(p,q) explicitly, in general, However, we can

compute 6=6(1,1), which we can prove to be the maximal yalue.

'Therefore, Proposition 5.2 contains as an important special case:

L.

Corollary 5,3,

{M M(1+1 1)} is a sequence of strictly p081t1ve1y
curved simply connected spaces such that each M has a

distinct topological: type and 1ts plnchlng 6 approaches

~the pinching 6 or M(l l) as i ~oo.

Another consequence is:

Corollary 5.k,

There exists a positive number such that, in dimension
’ L
7s wWe can flnd infinitely many simply connected topologlcally
different compact manifolds whose pinchings are all greater

than that number,

It is 1nterest1ng to know, what is the supremum o

of numbers satisfying 5.4? This is stlll an open question,

However, by the Sphere Theorem, we have a=1/L. From

‘Corollary 5. 3, it follows that a26 and 8 _l§/29 37 by

Prop081t10n 5.8. We restate these results as:

30




Theorem 5.5,

Let o be the supremum of numbers satisfying 5.4, Then

16/29.37 S q < 1/4.

Remark 5:6. The pinching of the spaces M(p,q) is not bounded

away from zéro unlformly in p,q. In the sequenceiﬁMi;M(i,l)}

of homogeneous Spaces, the pinching approaches zero as

ik,

Proof: Let Ki denote the sectional curvatﬁre function oh _
M(i,1). Choose X = MY, ¥ = M5, Xt = ML, Y' = MY (see Section 4).
Then by 4.3, -

By (X',T0) = (2141)2/(1%4402) = 3,

K; (X ,¥) = 3/{8(12441-:-1)'} ”
the plnchlng of M will be less than K (x, Y)/K(X',Y')
= 1/{8(i% +1+l)}

Hence,

Ir we consider all compact strictly positively
curved manifolds with normalized Sectional curvéture
0 <K < 1, then one knows by a theorem of Kllngenberg that
the injectivity radius of the exponentlal map is always

~ 8reater than q/z, in any even dimension, However,

f@heorem 5.7

The injectivity radius ( and therefore the length

31




of the shortest nontrivial periodic geodesic) on 7-dimensional
simply connected compact manifolds with (normalized)
positive curvature O<%=K51 is not unlformly bounded away

from zero for fixed N, if K<6=1Q/29 37.

Proof: It might be possible to give a rairly simple direct

geometric argument, based on Corollary 5.3, But we prefer

o apply the finiteness results of Cheeger [5],. and Weinstein‘

[14]. Since K and the volume are bounded, the ex1stence
of an a~priori lower bound for the 1n3ect1v1ty radius would
imply that there are only flnltely many topologlcal types

possible for the manifolds in question.'This would contradict

5.5, and the theorem is proved.

At last we compute the pinching of M(1,1).

Proposition 5.8,

The pinching of M(1,1) is 8=16/29+37,

It is very Surprising that this is exactly the same

number as the piqching of Berger's 13~dimensional exceptional

H
t

normal homogeneous space; as-determined by Heintze [8], .

Proof: In order to calculate the pinching, we have to determine

the maximum ang minimum of the sectlonal curvature of M(l 1).

-Slnce P=¢=1, the curvature formula 4.3 reduces to
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3 3
(1) ¥(X,Y) = /2 z (A +2B, )2 + 1/8 = A2+302+%/8
i=1 —

where

A = (—a2b3+a3b2-a5b6+a6b5),

Ay = a2b6—a6b2+a3b5—a5b3),

Az = ( a2b5-a5b2—a3b6+a6b3),

A, = ( alb3—a3b1—a4b6+a6b4+a5b7~a7b5),
Ag = (-alb2+a2b1~a4b5+a5b4-a6b7+a7b6),
Ag = ( alb6—aébl—azb7+a7b2-a3bh+ahb3),
Ay = (—alb5+a5bl-a2b4+éhb2+a3b7—a7b3),
B = ( ahb7—a7b4),

Ba = (=ajborazb, ),

By = ( albh'ahbl)’

C = ( a2b5-a5b2+a3b6~a6b3).

Since X,Y -are orthonormal, i.e.
7 7 7
2 a;b; =0, Taf= 3 b? =
i=1 * i=1 Jdi=1
we have the following inequalities,
3 o 2 7 R 3 _
ifﬁ(Ai+Bi) giizAi =14+ hiflAiBiz 0,

S 1/k.

First we show that the minimum of the sectional

is not less than %/37.

7
b Af ’
4 .

curvature
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3 3 7
K(X,Y) = %/2 z (A 1+2B; )2 + %/8 b A2 + %/8 hAa + 302
=1

3 ' 3 7
122 (A +2B;)® + 1/8 ZlAz + g/37 24A2
i= .
= 2/37 % (A.4B. )2 1 2/37 ; A% + 1/2 ; (A 23 )2
= 4+B; )* + < -+2B.
/37,2 Ae#By)® + 2/37 2 AF + 172 T (age2m; )

3 3 _
+1/8 % A% -~ 2/37 3 (A.4B.)?
A i=1( 154

i=1

3
+72/37 lez

| 3 o |
= 2/37 + 2/37_2: (13/uAi+6Bi)?~ > 2/37:
i=1
2L737 MY +ﬂ7"1 37 M),

- | Y =v2,/37 M 5 + V13/3
then by formula (1),

IF we choose X

K(X,Y) = 2/37.

Hence we know that 2/37 is the minimum of K(X,Y).

In order to find the maximum of K(X,Y),

we need
the following inequalities: |
g A2 = 3 az(sz bz)\— 2 £ a, boa-b
j=1 L 3 %#1 k_k iv1
(2) : = A'?B'? - (= akbk)2
‘ £ A'RBr2 < (isk,1 = 2,3,5,6),

= vb§+a§+a§+ag, B = y%g 5+b6,

A = vh%gai+a$, B = vﬁ§+bi+b$, :

3 3 3
= g/37(1+ui§lAiBi) + 169/8-37i§lA§ + 70/37 Z A;B;

34
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(3) A, S A'B' (i=2,3,5,6).
(4) C < A'B',
3
iEJ_AiBi = Ay ‘/(ai-I‘a%)(beFb%y + Azﬂai%%)(bi—}-b%) r'-.

+ A vTal+ah)(b +07)

(5) < A'B'{vﬁaﬁ+a$)(bi+b$7 + vﬁa§+a$)(b§#b§).+ v(a§+aﬁ)(b§+bﬁ)
< ;/2A'B'(az+a§+b2+b$+a§+a$+bifb$+a§+az+p§+bz)
= A'B’(al+a4+a7+b +b7)
= A'B'(2-A'2-p'?),

3 )
z 32 = Asz ( 2 a.b.)?® (j=1,4,7)

= A®B® = (1-At2-BtRyAt2pr12),

Using (2) through (6), we have in (1),

, 3 . _ 7
K(X,Y) = l/2.21(A1+2Bi)2+ ;/8_zlg§ + 3C2
1= 1=

3 3 3 7
< %/2 z (A +B. )2 + 2 A.B. + 3/2 2132 + ;/8 = A2 + 3C%
i=1 : =11t
1 2 g (A B. )2 1/2 g A2 ' g A BL . 3/2 g B?
F + + .B. 4 P
/2. / ioy 1 FyZ B+ /2 2 B

3 -3 . 3 o 3 . .
l/2(l+1+i§1AiBi )+ iEIlAiBi + 3/2:1.-..2-1]31 + l/SiflAi + 3C

.3 _ 3 N 3
/2 +3 ZAB., +3/2 5 B2 1 1/8 5 A2 4 302,
/ i=l + 1 /_i=1 A




i

Furthermore,
3
Az < 1, cz < (A!BI)Z’
1-1 : :
3 ' :
Z A;B, = A'BY(2-A'2-B'2),
i=1 1 : :

3 _
s B2 < (1“A'2"B'2 Al2B|2)
i=1 *

Therefore,
(7) K(X,Y) = 5/843/2(1-A"2- B'2+A'ZB'2)+3A'B'(zuA'z—B'2)+3(ﬁ'23'2)
where
0O = A*,B! =< ], _
Now consider the function
(x,y) = 1-x? -y + xPy® 4 2xy(2-x? -Yz) + 2xP Y )
defined on 0 = {(x,y) I 0=x,y<11}, |

The maximum of T is assumed at the point (X,¥)

where 3L/3x = ooy = 0,
or along the boundary of Q,
df/ax = ‘6xy2+lpy—2xe 1+2xy }=( xz-;;yz )2y,
3f/3y = 6x? y+4x—-2y(l+2xy) (x2+y2)2x.
The solutions of éf/ax = af/ay 0 in Q,

are x=y=0, or X=y=1. Therefore one has to look at the boundary

of Q. It turns out easily that, when x=y=1, 1(X,¥) reaches

its maximum £(1,1)=2.

Hence we know in (7), K(X,Y) = 5/84-3/2 f(X,Y)}
= 5/84-(3/2)2 29/8
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1f we choose X=M{}, I=M§, then K(X,Y) = 29/8. .
This implies that the maiimum of K(X,Y) is 22/8; So we have
Tinally determined the pinching of M(1,1) to be
o 2/37 16
©29/8  29+37
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