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The main purposes of.the thesis are to investigate the
cohomology groups Hi(M,S), of a locally affine manifold M
with some speclal coefficient sheaves,rsuch as sheaves of
polynomiél functions, sheaves of differential operators or
the sheavesg of exponential functions, as representation
spaces of Hecke operators,

There are many examples of locally affine spaces: T'\ (the
spacé of nxn positive definite symetric matrices), where
I' c GLn(m), torus bundles over some locally affinelspace,
local Euclidean space with Bieberbach groups, some solv-
manifolds, the pre-homogenous spaceg of Sato—Shintani, and
the many examples in Pjateckii-Sapiro,

Hecke operators in the category of local affihe spaces -
are definable as "corespondences". When the local affine
manifold M is the quotient of a domain ¥ ¢ gP by a discrete

group T" of affine transformations, i.e. M = T\X, the notion




of Hecke operators, after proper identiflcations, colncide
with the notion of Hecke operators as is wriltten in Shirmura's
book.

And in this case of M = T\X, the sheaf cohomology of M
with the sheaves above 1s isomorphic to the cohomoiogy of T,
For example: When p(m) is the sheaf of local polynomial
functions of degree = m on M, then (*) Hi(M,p(mJ) == Hi(F,Pm(wn))
as Hecke ring modules, where Pm(Rn) = {f(xl, oo xn) /L
is a polynomial of degree = m}. |

Tn some specilal cased, the actlon of Hecke operators
and the corresponding Dirichlet series arve investlgated.

Tn the case X = (the space of 2x2 positive definite
symetric matricies) and T contained in GLE(B), the above
formula (*) combined with Eichler's formula and some spectral
sequence arguwnents, allow one (o prove (%) Hi(M,p(m)) = the
space of cusp forms of weight (2mi2) @ (2m-2) @ (2n-6) & ... ,
as Hecke ring modules, so that the corresponding Dirichlet
series are of Hecke-Eichler type.

Thn the case M = N\X, where X is the Helsenberg group
X = {(x,y,2z) / %,¥,2z € R}, with multiplication given by
(x,y,2) x (W,v,w) = (x+u,y+v, Vv, ztwty-u-x.v), and N =
{(n,m,k)/ n,m,k € Z}, we consider the group ' of éutomorphisms
T = {0 € aub(X)/ o (N¥) = N} and the semi-group & = {0 € Aut (X)/
o (N) © N} of endomorphisms of M. The Hecke ring R (T,h) is
igomorphic to the Hecke ring R (SLE(ZU, MS(ZQ), and the action

iv



of f (T,A) on Hl(T,HJ(M,p(m))) are again reduced to the actlon
of ordinary Hecke ring to the space of automorphic forms (not

always cusp forms), and hence the Dirichiet series are of

Hecke-~Eichler type.
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Chapter 1: Introduction

Number theory of automorphic forms has been investigated
with the aid of the algebraic geometry of the quotient space
\X of the corresponding hermitian symmetric space X divided
by the discrete group I'. But when a symmetric space Y haé
no complex structure, perhaps because of the lack of algebralc
geometry, the available arlthmetic of the guotient space T\Y
is not so deep as in the case with complex structure.

The symmetric spaces attached to quadratic formg or
spaces attached to SL2(k), where k is a number field not
totally real, are examples of symmetric spaces without cbmplex
structure. The arithmetic of quadratic forms is very old,
and recently investigated quite thoroughly by-Siegel, etc.,
but these results loock not asg deep as that of class field
theory and the arithmetic of automorphic forms (complex
multiplication}.

In the case of positive definite quadratic forms, the

- 8ltuation 1is better; since it defines a theta-function; and
via this theta-function, it relafes with algebralc geometry.
But still, it became so, only after the Eichler's theorem
claiming "all automorphic forms are theta-functions" is

established. This is established only for limited T'. For

SLQ(k), the situations are sgimilar.

Even for these cases without algebraic geometry, people

de fined various kinds of zeta-functiong (Dirichlet series);

i.




2.

these are investigated analytically quilte deepiy, but they
obviously lack an algebralc geomebtrical structure. A most
recent endeavor of defining Dirichlet series of such kinds
is Sato-Shintani's zeta-function. We will discuss them later,
As we learned from the history of the proof of Ramanﬁjan
conjecture, and the egtimation of Kloosterman sums; to reach
to the essentlal depth of arithmetic, an analytic approach
alone is quite insufficilent. When Y lacks compiex structure,
is 1t possible to use some other "structure" (instead of
complex structure / algeb}aic geometry)} to investigate thé
arithmetic of ™\Y? |
We can think of two new pogsibilities: (1) Some real
symmetric spaces Y are the manifold of real points of a
hermitian symmetric doman X (with respect to some anti-
holomorphic involution), If wé restrict our investigation
to categories of such manifolds; we can employ real algebraic
geometry because the quotient space T\Y ig a real algebralc
manifold. (ecf. A, Adler, H. Jaffee, S, Kudla, G. Shimura)
(2) Many real symmetric Spaces‘Y are local affine manifolds
or are closely related to local affine manifolds. For example

quotient spaces of (8L, /SO R)) xR = GLE(E)/SOH(B) is a

local affine mainfold. G ®)/50,(R) is the space of all
positive definite symmetric matrices, which is an open domain
in Rn(n+l)/2.

In this thesis we concentrate on the second possiblity,




i.e., we like to find how well the local affine structure

helps for the investigation of the arithmetic of the guotient
space T\Y. To follow analogies of algebralc geomebry in the
local affine structure case ig not fully discussed here. It

is boo difficult right now. But at least we can notice that
there are several fundamental sheaves attached to local affine
structure., Namely sheaves of polynomial functions, sheaves

of exponential or polynomial-exponential functions, sheaves

of differential operators of constant or polynomial coefficients,
and sheaves of "solutions" of them.

Instead of pursuing the analogy with algebralc geomebry,
we go‘torariﬁhmetic directly. We define Hecké operators in
the category of local affine manifolds, and we define the
action of Hecke operators tb the cohomology groups of the
manifold with scme of the above sheaves as coefficlents,
Lastly we search possibilities of constructing Dirichlet
serles.

I have done this in two examples. The definition in
these cases are similar to the "definition" of Sato-Shintani
zeta-function of prehomogeneous spaces: 1in the latter they
used differential operators while in our case we utilize Hecke
operators.

In Chapter 2, we define local affine manifolds and thelr

sheaf cohomology groups. We show that when the topology of

the local affine manifold M is determined by its fundamental




 group T', the sheafl cohomology of M may be computed by the group
.cohomology of itsrfundamental group L.

In Chapters 3 and 4 we compute these groups for our special
cases. TFor Chapter 3, we consider manifolds c mstructed from
the space of all positive definite quadratic forms, and for
Chapter I, we consider manifolds constructed from the Helsenberg
group. In both of these cases we use a theorem of Elchler and
spectral sequence arguments to show that the cohomology groups
in question may be expressed in terms of automorphic forms.

Tn Chapter 5, we present our theory of Hecke operators
in the category of local affine manifolds. We also congider
the classical'Hecke ring, and our mainlresult'is that certain
elements of our Hecke ring, agree with the classical Hecke
ring ag operators on cohomology. Finally, we mention briefly
some of the possibilities for assoclated Dirichlet series.

CAlL manifolds considered here are assumed to be paracompact
and "C". Any elementary facts about covering spaces, covering
transformation groups etc., are assumed, Also elementary
Facts on sheaves and cohomologles are assumed, In Chapters
1-4, manifolds are always assumed to be connected, in Chapter
5, manifolds have a finite number of connected components.

An unnessesary assumption of the existence of a metric
in the theorem of Chapter 2, page 10 ls used. The exlistence

is always provable, For the proof see Appendix IT.



Chapter 2: Definitions; General Results on Cohomology

(L) Definitions
We begin with the basic definitions of our subject:
Affine manifolds, sheaf cohomology, and group cohomology.
Iet U and V be oﬁen sets in mn, where R is Fuclian |

n-space. A map f: U -~ V is said to be an affine transformation

provided there exists a linear transformation A: R - Rn, and
a vector b € R™ so that for all x € U, ©(x) = A(x) + b € V,

An affine transformation f: U~ V is gald to be affine

isomorphism provided there exists an affine transformation

Livyo U, so that £t o £ is the identity map on U, and

1

f o £~ is the identity on V.

Definition: A system {Ua’ma}aEA of charts (i.e., atlas)

on a manifold M is called an affine atlas if coordinate
transformations $Bom&l: Qpa(UOL N Ué)-% ch(UOL N UB) are always
affine isomorphisms, whenever U, N Ug # ¢, Two affine atlases
{Uu’ma}’ [Vﬁ,?g], on a manifold M are called equivalent if
waoYél and YBO@&lare always affine ilsomorphism wherever they
are defined. An equivalence ciass of affine atlases on a
manifold M is called an affine structure of M. A manifold

together with an affine structure is called a local affine

manifold.
For Rn, the set of all affine isomorphism forms a
topological group, Aut(Rn), which is known to be the semi-

direct product of GLh(R) anlen, i.e., for

5.



AAy € 6L (R), by,D, ¢ RY, (A0 ) alhsib,) = )AL,

l: ?ﬁ P) a)
When X tRn is an open seb, define Aut(X) = (f € Aut(@®™)/£(X) = X},

DAL (y))

Then Aut(X) is a subgroup of AutGRn) oin which we take the
induced topology.

Example: Tet X c R™ be an open set, and I < Aut(X) be
a discrete subgroup which acts on X properly discontinuously,
with no fixed points in X. Then the quotient M = T\X 1s a
local affine manifold.
_EEEEE: Since I acts properly disconbinuousliy on X, X is
a covering space of M, Lét p: X = M be covering map, and pick

a cover U = (Ua) so that each U, 1s evenly covered by P.

For each @, fix a connected preimage U, | < p"l(UO) and let
. ;

- fo n A Era -7 - P
Py Ua - Ua,l c X € R be the homemorphism between Ua and

Ua,l' Now suppose U n UB # F in M, then we may find 6&,6 €T

so that 6a,B(Ua,l) N UB,l evenly covers U, N UB, Then

-1 . . - P ;
mBow = 6¢;B and is an affine isomorphism of cp&(UOL o

g)

U n o (U B,l) to @g (U, N UB) (v, ;) nvU

&
0,1 o, B o, B o, 1 B, 1
We shall be particularly concerned with a specilal case
of this example.

Definition: Let X & R® be a contractible open set. Then

we refer to X as a domain in ™, When T acts on X as in the
above example, and has no finite subgroups, we refer to the
local affine manifold M = I'\X as the quotient of a domain by
a discrete group acting freely and properly discontinuously

on X without finite subgroups.




T

Remark: Let X = &Y - (0}, n= 3. Since X = gh-1

xz R, X
is nob contyactible for n 2 3, We may also consider the
discrete group T of affine motions generated by
x » 2'x%, x € R™ - {0}, This T is fixed point free and without
finite subgroups, and the quotient M = I'\X is compact. How-
ever, the topology of this manifold is not determined by its
fundamental group . When n = 2, gset M= E? - {0}, Since M
is not simply connected we may‘congider the universal cover
X, which ig homeomorphic toIRg, however the affine structure
18 not realized as an qpeh set in B?, so this 1is also not of
our type.

When a manifold M is local affine with éharts (0,9, )>
we have an interesting structure sheaf: p(m), the sheaf of
local polynomial functions of degree < m. When U < M is an
open set, define the sections over U, T(U), by T'(U) = {f: U - B/
for all U with UOL nNuU #4#, fow&l : ma(Ua nNu)y-» ¢ is a
polynomial of degree = m on{Rn}, T(U) is well defined, since

-1 N
on U, 0 Ugs focp[3 = (i‘ocpOL )

o (@aowélj and the affine ilsomorphism
(¢ao®él) preserves the degree of polynomials on R", IfUDV

the restriction map T{(U) » T'(V) is injective, moreover if U

is "sufficiently small", then the restriction map is a bijectlon:
T(0) = T(V) = the space‘of polynomial functions of degree = m.

We define the sheaf of local polynomial functions of degree

<m on M, p(m), by the local sections T(U) for all U open in M.

As we shall also be concerned with other sheaves definable



8.

by virtue of the affine structure on M, we now consider a
general sheaf, 8, on a manifold M with local gections T(U,S);

Let u = (Ua)aéA be any covering by open sebts of M (l.e.,

M zagA Uy» U, open). We define a chain complex C, = {Ci(M,u),Bi}
by setting Ci(M,u) = the free abelian group generated by

Noeee N Uai # B 1 and

v, Nu,_N...n Uai/aj € A, Uao

ai : Ci(M’u) > Gy (M,w) determined by ai(UaDﬂ ess N Uai) =
1 . : ‘

X (—1)J U N ... n %a N eco NU , where ﬁ means omit

J=o "o J- %1 %

U, - Then we have a co-complex {Cl(M,u,S), 613, by letting

ot M,u,8) be the free abelian group generated by the additive
maps h determined'by assocliating to every nonempty intersection

Uy, 0 ... NU, an element h(Ua Neoo NUL ) of T (U
i L .

n " e 9 ﬂU g)
o i, 3 a o.°

"0 i
and 8, : ¢T(4,1,8) » ¢ (M,u,8) be the map defined by

(6ih)(x) = n(d;,4(x)) for all x € ¢, (M,u).

141l s

Definition: The (%ech) cohomology of M relative Lo the

1
u
. 3 v

cohomology of the complex {Cl(M,U,S),éi}n The (Cech) cohomology

cover U with coefficlents in the sheaf §, H; (M,8) is the

of M with coefficients in 8, H'(M,8), is given by H (M,8) =

1im HE(M,S), where 1im is the direct limit taken over all
coverings u of M,
For a full treatment of sheaves and %ech cohomology with

coefficlents in a sheaf, the reader may see Swan [8]. When




our manifold M is the quotient of a domain by a discrete group
of affine transformations, and the sheaf & 1s a specilal sheal,
gueh as the sheaf of local polynomial functions, p(m), the
sheaf cohomology of M will be expressed in terms of Gthe group
cohomology of the fundamental group T of M., Tor cerialn Tty
we can compube the group cohomology, determining the sheaf
cohomology Hi(M,S).

The meaning of "specilal" for the coefficient sheaves
p(m) is as follows, on R"™ we have polynomial functions of
degree = m, P = pm(Bn) ='{f(xl,,ne,xn) / £ is a polynomial
of degree = m with complex coefficients). When M is the guotient
of a domalin X & mﬂ by a discrete group T, T aéts on mn and we
view Pm(mn) ag a3 I -module by (6, f£(x)) - f(&"l(x)), remarking
that f(éﬂl(x)) € Pm(mh). We will investigate the group
cohomology Hi(T,Pm(Rn)) for certain T with this action,

We will need the following general definltion of group
cochomology. Suppose Gris a group, A a Z [C] -medule, where
%Z [G] is the integral group ring. ILet C; be free % [G]
-modules, % have trivial G action, and suppose that
‘o aiil Cy 8; coa §§ Cl é% CO s Z = 0 is an exaclt chaln
complex for i > 0, so that € o Bl = 0 and & induces an
isormorphism of Ker d;/Im 0, onto Z . Then defining ot - Hom(Ci,A)
and 6% : ot o gt by 6i(h)(c) = h(ai+l(c)), where h € CF and

‘e € C.

i+1°

defines a chain complex for which Homy, (6 (ci,A) =

(h € ¢t / n(ge) = g-h(c), where g € Z [G] and c € ¢;) is a

subcomplex.
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Definition: The cohomology groups H ( A} are the

cohomology groups of the above subcomplex.
Recall that a standard such resolutlon is given by

Cy = 7 [G] x ... x Z [G] (i+1 coples) and then ng%(g)(c.,A) is

determined by fh: G X .eo X G =2 A / h(ggo Y e ggi)
g ah(gon,..., gi)]. We will construct a different resolution
for the cohomology Hi(T,Pm(En)) using the covering structure
p : X M, Sece also Maclane [5] or Hochschild-Serrc {1].
(II) A Cohomology Isomorphism
et M = T \ X be the quotient of a domain by a discrete
group of affine transformations acting freely and properly
discontinuously without finite subgroups, & = p{m) be the
sheaf of local polynomial functions, and consider PmGRn) as
a T-module as above; |
Theorem: Let M =T \ X ag above, and suppose X has a
metric d so that min d{x, & (x)) = € > 0. Then Hi(M,p(m)) =
X€X
TAGET
BY(T, B,)e
Proof: Let w : X = I\X =M be the natural projection;

et W= {U } a €A be any covering of M, and fix connected
a .

components U, ; of w_l(Ua). Set U, 5 = (U, ;) for all
2 2
-1/ .
8 €T, oo €A, thenw (U, ) =U U ard (U .} 8 €T is a
-’ 2 (1 66-.[\ O;, 6, 01. 6 0, € A

covering of X.
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Now fix the cover u = (Ua) so that for all U, ,, diam
E ¥
(Uy §) < 73> where the dlameter 1s measured in the metric d.
>
befine a chain complex C, = {Ci(T)}i by Ci(T) = the free

abelian group generated by {Uy, o » U, 4 seees Uy, 5 )/
o D 1,71 7 i

# B}, with boundary o as in
0’ i

Cech theory. Since X 1s contractible and T acts freely on X
(hence on Ci(T), by cholce of u), we may define H*(T,Pm) as
the cohomology of the compdex H0m25[T] (C*,Pm), where the

coboundary v is naturally assoclated to o, and Hszz[T] (C*’Pm)

has as elements h = (hi), with hy : C; =~ P 80" that

hi(y(x)) =y hi(x) for all x € Ci(F), vy € Z[T] (=group ring)

and for all i,

For our fixed cover U = (U,) of M, suppose U, Noeee DU # B
. . s) i
To define a map g : Hl(T,Pm) é‘Hﬁ (M, p(m)), we must define
: i .
g (h) (Uagﬁ...fWUai) for all h € H (T,Pm).. By our §h01ce of

Yo (Ua) and the fact that 7w is a covering map, there exists

a unique & N

1 &

80 that U&O nu 6, # . Purther, Uaoj

Jl al.’

U 1 # F implies U ro= 8(U ) = U . We proceed
@y,07 %50 48y 060,

selecting unique 6, s = 1,.... , 1 so that (Uao,l nu, N ...

MU, 5 N .-

N UOL 5 )y N Ua 5 % ﬁ and (Ua J 6 a.,
8 1 1

s-17 "s-1. s’ 0
. . ! .
nu 8_1,655_1) n Uas’él # B implies & = 86 . Bince




LI ] >

L A U =
’ a.,yéi) h,(Y (U o0 L Ual,ﬁl’

)) = v h(U s Uy g5 wee s U 5 )s ¥ €T, we may set

., O . .
Oq204 O i* 1

T = n(U \
ao,...,ai ( ao,b’ o

[/(Z{(h)} (Uo;oj see Ual) = f . . €T (U'CLO n ... nNNuo 1’p(m)).

We have shown, and 1t is easily checked, that g is well

defined, and defineé an isomorphism Hi(T,Pm) e= Hi (M,p(m)).
Now guppose u1=={Ui] is a refinement of W satisfying

the condition diam (Ui,é) < %, for all w,d. By general theory

of group cohomology, the corresponding CL(T) provides an

equivelent definition of H*(T,Pm) (i.e., a chain homotopy of

complexes exXists), and our above argument shows Hl(T,Pm) 2

Hil'(M,p(m)). Since refinements satisfying our condition
are co-final among all coverings of M, we have Hi(T,Pm) =
Hi(M,p(m))n

Remarks: When m = 0, the sheaf £ of complex numbers,
and the sheaf cchomology Hi(M,g) coincides with the (singular)
cohomology Hi(M,ﬁ) of M with complex coefficients. In this
case, the T action Py = # is trivial, and our isomorphism may
be found in Maclane, P.136 [5]. A result similar to ours

("De Rahm Theorem") when M is a C- manifold and $ = sheaf

. of vector valued differential forms may be found in Kuga [4].

A different result may be obtained in the case when the

affine manifold M is a open set in IR with a contractible

universal cover, as in the example M = Eg -{¢} above. Here
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the sheaf p(m) is constant on M, and we have Hi(M,p(m)) ==
Hi(T,Pm), where T is fundamental group of M, but the T action
on P, is trivial. We shall not be concerned further with

this case.

When X = the upper half plane, and T is a Fuchsilan group
of the first kind even admitting elliptic elements and/or
parabolic elements, acting on X as conformal maps (not affine
map), a results of our type is obbainable with suitable
modifications of the definition of group cohomology. In this
case the cohomology of T (honntrivial action) amy be evaluated
in terms of cusp forms., For these results see Shirmura {71,
chapter 8, or the papers of Eichler refered ta-there. These
results, together with their relation to Hecke operators, will
be essential in the examples considered in this theslis where
Hi(T,Pm) is computed, and the actlon of Hecke operators
determined, and should perhaps be viewed as the starting point
of the thesis.

For the special choiceg of X and T to be considered later
in this thesis, we shall need the following results concerning
the application of our theorem,

Proposition 1: ILet M = I'\X be the quobtient of a domaln

X by a discrete group of affine transformations acting fréely
and properly discontinuously on X without finite subgroups,
and suppose further that M is compact. Then there is a metric
d on X Satisfying the assumptlon of our theorem: min

xEx
1ASET
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a(b(x), x) = € » 0.
~Proof: Since M is paracompact, we may plek a metric dM
on M (partition of unity). Let p: X = M = T'\X be the projection

map and set d = p*(d the "pull-back" metric., By definition

)
| T acts by ilsometries (l.e., preserves distances) for this metric.
Since M 1s compact, we may pick a compact fundamental
domaln D © X for T acting on X. Fix a point O € D and consider
the c¢closed metric disc Ar of radius r about ¢ for the metric
d., Since D is compact, we have D «© Ar for sufficiently large
r, and we fix R so that R > 2 diam(D).

For each & € I' we have a continuous function dg : Ay -
R by dg (x) = d(x,8(x)) on the compact set AR,'SD that d
must agsume its minimum value. But since T acts properly
discontinuously on X, for the compact set AR there are only
finitely many & € T for which 8(Ay) N Ay # §, say § =
{61,;... s 6n} = {6 €T / 6(QRJ n AR # #}. Now for all

6 € T -5, min ds(x) > dlam(D), and excluding the identity

X&eD
element 1 = 8., min d, (x) = min (diam(D), m,, «.. , Mm_) =
1 YED & , 2 n
1A48€T

€ > 0, where m, = min da(x) > 0 since & 1s fixed point free,
X€D

6 £ 1.
Now let x € X be arbitrary. Since D is a fundamental
domain for T acting on X, we may find p € T, ¥y € D so that

'x% = p(y). But since T acts by isometries, d(x, 8(x)) =
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-1 .
d(p(y), 8(p(y))) =d(y,p ~8p(y)), so that nin a(x, d(x))
1A£8€ET

- min d(y,p Tep(y)) = min a(y, 8 (y)) = € > 0, (since T <

yE€D ve€D

1ABET 1A61€T
normalizer (T)), which was to be shown.

Corollary: Let M = T\X as in our theorem, and suppose

% = ¥t1x KRS with X' o g™°¢

contractible. For x = (x',y),

x € X, x* € X' and y € BR, suppose that 8(x) = 6((x',y)) =

(X",y); with x" € X' for all & € T (i.e., T acts trivially
on Bk). suppose further that T\X' is compact, then thas

a metric so that the asumption of our theorem is satisfied.

Proof: On X! take the metric d as in the previous
proposition, onr(mk take the Fuclidean metric dE, and on X
take the product metric & X dp. Then for 'x = (x',y) with
k€ X1, y €RE, min 4 x dg(x,6(x)) = min d(x',8(x')) = € >0

x€X xT€EX!

LABET ~ 1£6€T
by the previous propoéitipn, where & (x') denotes the restriction
of the action of to X',

These two results will be sufficient for the examples
considered in this'thesis. We remark that Sato's fbeory of
pre-~homogeneous vecltor spaces is a source for our examples
(see Sato-Shintani [6], or Kimura {2]). A pre-homogeneous
vector gpace 1s a triple (G, p, V), where G is a complex

(algebraic) Lie group and p denotes the action of G on a

complex vector V, say V = gn, wlth an open G-orbit. We
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consider the real points GER of G, VR of V and induced action
QR of %R on VR' We pick a connected %Ruorbit in V., denote
it X, and use 1t ag indicated above, One of our examples
1s of this type. Other examples are provided by simply
connected nilpotent or solvable Tie groups. Chapters 3 and
4 will be concerned with computations in these cases.

We also remark that our theorem holds for other "“special"
sheaves on a local affine manifold M arising ag a quotient
M = T\X as above. When we use other sheaves, we Will merely
note the appropriate T -mcdule, as for our caseg an identical
proof applies.

While we could discuss Hecke operators at this polnt,
we prefer to present our examples first., The reader may wish

to refer to our appendix on the Hochschild-Serre spectral

sequence for usge in Chapters 3 and 4.



Chapter 3: The Quadratic Form Case

(I) Statement of Example, T Acting Linearly

et X = {(?g) / pogsitive definite}, then we have X CiEB

as a contractible open set. As in the theory of gquadratic

forms, we have an action of GLEGR) on X by x = tﬁ x6 whenever
x € X, 8 € GLE(R). This action is affine (in the varlables

x,y,z), and in fact, is linear, so we have GL.(R) < Aut(X).

2
We consider T < G-Lg(ﬁ),d‘tiscretec Actually, the matrix -I =
("émg) acts trivially on X, so we should take GLE(B) / (+1).

Since T acts 1inearly'on X, the coordinate transformations
¢50$&1 for the quotient M = MX are linear (see page 6). In
this case we take the sheaf p(m) to be gilven by local sections

- (., -1,
PU) =(f: U= ¢/ fog " :®
of deg = k). We let P_(R")

a tnu,) - # is a polynomial

{polynomial of deg = m} with

I' -module structure by f(x) - f(éul(x)). As remarked at the

end of Chapter 2, our theorem remaing valid in this case by

an identical proof. In the Ffollowing section (V), we obtain

results for the original sheaf p(m) considered in Chapiler 2.
We now consider T''s conbained in GLE(M), for which the

assumpbtions of our theorem hold as remarked Iin our proposition

and its corollary in Chapter 2,

(II) Structure of Discrete Subgroups T GL;(B).

For T © GL;(R), consider (1) =T N 8SLy(R) and T'1 =

1) o

T(l) / (+1). Also let X(qy = X N SL,(R) be the upper half

1)

7.
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plane. We assume that the guotient " \ X(l) is a compact

- Riemann surface, so that T" must not be golvable.

Now consider the natural action of T on[RE. End T(Rg,mg)
- (A € Mo(R) / 6 A(v) = A(8(v)) for all v € Bg} is a division
algebra and coincides with the centralizer of T, By the

2,IRQ) must be R

classification of division algebras, End FGR
or g, since the quaternions are not a subalgebra of Mg(mj.
But since £ is a maximal commubative subalgebra of M, (IR)

its centralizer is again f. On the other hand, by definition,

Q,RE) = R, since otherwise T would be abellan,

Thus End o (IR
contradicting the fact that T is not solvable.

Since center (T') < centralizer (Tj = R = [(gg)/ A € R}
is discrete, we have two cases. First the quotient T\X may
be compact, in which case center (T') = {(Egnegn) /€ = + 1,

1#a>0,n€z}=zor (+1} X 2. Second the quotient may

be non-compact, in which case center (') = {1} or {(+1}. We
.refer to these as the compact and non-compact caées and deal
with these in sectilons (III) and (IV), respectively.

Further structure on T may be obtained by considering
the determinant map det: T = R, This provides an exact
-+ 1.

sequence 1 - T( - T/ T(

1) 1)
Proposition: This sequence splits as a direct product.

Proof: Since T T is a discrefte subgroup of B+,
— (1) :

~which is of dimension 1, H~(T / T(1)» =) = 0 so that the

T centralizes its centraliker, so if centralizer (T) = g, T g

L4
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extension splits and any x € T may be written as s = (xl,det(x))
L
with xq :-Iangij'X € T(l)' Now for x,y € T, X.y = (13§ET§7§)‘XY’
1
det(x \j’) I‘d‘—ﬁ—(‘—) ° m).y, det(X).det(y))
(xl, det(x))-(yl, det(y)), where the final multiplication is
direct.

In the following, we shall be concerned with the sequence
1~ center {(T)~» T ~>T' = 1, and the coefficients P
{f(x,y,2) / deg £ = m}. Note that examples of the above types

of T arise from quaternlon-algebras.

(111) The Compact Case _ -

Theorem: When T is a discrete group in GL (R) as above
acting on the space X of 2 X 2 symmetric matrices, and center
(T) = Zor {+1} ¥ Zso that the quotient M = I\X is compact,

the cohomoclogy Hl(T,Pm) = 0, for all i, unless m = O,

Proof: Since center (T') = {€a an) /€ =+.1, 1 #a> 0]}
2n. _.2n i
Ea Xy €alt 0 8r K 8n
acts on X by ( ) ( egn) X (yz) ( o ean) = (aEny 5207 ) 5 .

its action on f(x,y,z) € P, is by f(x,y,2) = f(aznx,agny,aenz).

The only polynomials invarient under this action are the
constants, so Ho(center(r), Pm) =0, m > Q, Picking a

generator o for A, i (center(T), Pm) may be identified with

P/ (o—id)Pm(Maclane i5], pg. 189), but for the above action,

(o -—id)Pm‘E P, m>0, 8o Hl(center(T), P, } = 0, m > 0, Now

mJ

Z acts freely without fixed points on R, which is contractible
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of dimension 1, so Hi(center(T),—) =0, 1> 1.

If we now consider the Hochschild-Serre spectral sequence
associated to L » center(T) » T ~»T' = 1, all Eg’q = 0, since
Hq(center(r),Pm) = 0, m » 0, for all g, so Hi(T,Pm) = O for
8ll 1, m > O,

For the cagse m = 0, the T -action is trivial, From the
Proposigion of section (il), the sequence 1 - center (T) / (+1)
» T/ (+1) » T' = 1 also splits as a direct product and since
cur coefficients are ﬁrivial, we may apply the Kunneth formula.

Proposition: For m = O, HO(T,QJ = HS(T,Q) = g Hl(T,g)

g(r,gj = 5,(T") @ §5TT“J O ¢ Hi(T,ﬁ) = 0, i > 3, where

SE(T"} is the space of cusp forms of weight 2 for the Riemann

surface T”\X( 1) and i TT}) is its complex congugatlon.

Proof: For T' C PGLE(R), we have T = r” < PSL,(R).
Since the Riemann surface T”\X(l) is compact and withoub cuspse,

the Eichler cohomplogy ("parabolic"), H;(T", -)= oH(r™,-). 8o

by Eichler's theorem, Hi(T','ﬂ) = Hi(T”,g) = H;(T",ﬁ) =g, i =0,

sg(r") @ §ETT“), i =13 0, i > 2, where sg(r“), szrf”) are as
above,

Now by Kunneth (our groups and coefficlilents have no

tor81on), O(r, #) (Tr,¢) ® HO(center(T) / (+1),£),
T/ (+1), g Otri,¢) ® Hl(center (TY) / (+1), £) ©
H (ri,g) center(T) / (1), £, (T / (+1),8) =
HH(T1,¢) @ H (center(T) / (+1),¢) © H° (T',ﬁ) ® |
Ho(center(T) / (i;),ﬂ), since center(T) / (+1) = Z and
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Hi@Z, -~ ) =0, 1> 1. Since the action of ZZ ig trivial on

Z, Hi(Z,g) =, 1 =0, 1, using the identifications of Hi( s =)
as in the proof 6f the above theorem. BEvaluating the above
tensor products, Hi(T / (#1), #) has the values prescribed in
our Proposition,

If center(T) =%, we are done, since T' / (il) = I'v When
center (T) = (+I) x %, we have an exact sequence 1 = (4I) =
I'-»T/{(+I) » I. But since (1) is a finite group, and the
coefficients ¢ are divisible without finite elements,

-

HY((£1), #) = 0, 1 > 0 (Maclane [5], pe. 117 ), and since -T

acts trivially on ¢, HO((iI), £) =¢. Thus Hi(T, Z) = Hi(r / {41},

HO((iJ),-ﬁ)) = Hi(T / (+I), &), and we are done.

These results are somewhat trivial, but are included
for completeness. Results for the non-compact case are more
interesting : Hi(T\X,p(m) # 0 for nom-constant p(m) and
Hl(T,ij invoives cusp forms of higher weight,

(IV) The Non-compact Case

For the non-compact case, ﬁe have center(I') = I or (+1).

As remarked at the beginning of (I), -I acts trivially on X,

S0 we have only to compute Hl(T',Pm(X, Vs 2)}. Set s the

k-":
k- th symetric tensor representation, and dj = the representation

(det)j,'both of GLQ(E).

Proposition: Pm(x, ys %), consldered as a GL,-

representation may be decomposed into the irreducible components



Sop & [(det) ® SEm—M] @ ... 8 [(qget)"C SQe]’ where ¢ = O,.
when m 1s even, e + 1 when m is odd. (We have refrained
from our usual Young diagram notation for ease of typlng).

Proof: By the classical theory of representations of
GLQ(R), we have that the 8y @ dj are irreducible, and every
irreducible representation is of this form. Also, our
representation is determined by it's trace, so it suffices
to check that the highest weights agree. WNote that the
representation Pm(x, ys #z) of GL, 1s the composition of the
2,.2 3

{(R™) R™, with Py the

13

representation B of GL2 on S

representation of' GL, on Sm(BS).

Por weights a, b of GLE, with a >-b, the representation
®d, is given by weights (afT pd, gkHi-lgel
), and for weights u, v, w of (the maximal torus of'}

GLB’ with u > v > w, the repregentation P is gilven by weights

m um-lv m-1 um-~2

m-2 2
s U W, u wo,

m- m-2
VW, ces 5, NV l, uv W

3 seo 3
m-1 m m-1
W v v W

m-1 m
k) 3 Jw)

u 3 eee 5 VW « S0 the representation

P (x, v, 2) = P, © 8, of GL, 1s given by the above weights

m
with u = 2%, v = ab, and w = b°. It is easily checked that

these weights agree with the weights of S0 ) [Semuu ® dEJ ©

cee B lspg ® dpel | |

Now since T = P(l) = I' N1 SLE(R), and dj = (det)! is trivial
on SLE(R), we have H™(T, dj ® 5, ) = 1 (r, 8,). Also for the
case center(T) = (+I), T' =T / (+I), and we have

Hi(r, 5

2k) = Hl(fi, HO((iI), Spp)) = (T, Sy )s since -I
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acts trivially for even degrees (for a basis xfyg, f+g-=
2K, xfyg » (~x) ( y)® = Kfyg). I we again recall that

T =I" c PSLE(R), and that T'"\X is compact so that

11’
= H (T" ) we have for k > 0, by Eichler's

i L
Hp (rH, Sk
i . .
Theorem that H (i1, 8,) =0, 1 = 0; Sk+2\(T”) ® 5,0 (TT), i =

(ry

e

0, i1 =23 and 0, 1 > 2, where, as before Sk+2

is the space of cusp forms of weight k+2 for the compact
Riemann surface T”\X(lJ, and 85, » (T") is it's complex
conjugation.

Theorem: When T"\X( ls compact, while M = I\X is non-

% 2(

1)
compact, then if m is even H
1 n " n ’ n
BT By) = S (M) @ 8o 5TTT) @8, o(Th) & L.l @ 5,(1")
® §5(T7); while for m odd, Hl(I‘,Pm) e (T") @ ... ®

S4QT”); and Hi(T, Pm) = 0, 1 # 1. |

Proof: Everything follows from the above, with the remark

I,p ) =H r,p) = 75 and

2042

ri(r, ® ...0[d __®s = ui(r, ® ... ®

Bon 2e]) SQm)

(T, d _o ® 8,,), and the note that the T representation

on P extends to a GLg(R) representation,

(V) PFurther Remarks

While polnomials of degrec m provide a natural_? -module
in view of the linear action of T, results may also be obtained
for polynomials of degree = m, as considered in Chapter 2,
For the purposes of this section, let I (R ) {(f(x,y,2) / T

‘18 a polynomial of deg = m} and Pm(R3) = {f(x,y,z) / T is a
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polynomial of deg € m}. Results for Hl(r,Pm) follow from the

previous results for Hl(T,Hm) from the observation that the
m
‘direct sum P, = ® H

Kk is preserved by the T-action.
k=0

For the non-compact case, the decomposition of Hm into
irreducible components given in section (IV) provides a
decomposition for Pm, which we state as a corcllary.

Corollary: Let s d, and s, ® dj be the irreducible

kK g k

GLQ(R) representations as before, and 1d be the btrivial
repreéentation of GL2 on #. Suppose T C SL2(R) as in the non-
compact case, so that S1c ® dj is equivalent to By ON ' Let

. m be even, m = 2m', then the I representation on Py is

equivalent to the representation (m'+1)id ® m's, @ m'84 S

2
(mt-L)sg ® (m'-1)sg ® oo ® 28y ) ® 5y o ® 5y ,. Form

odd, m = 2m' 4+ 1, the corresponding representatlon is

(m'+1}id & (m'+l)s2 ®m'sy, ® .,. ® 28 oo @B O oS0

and the subscripts to the degree of the representation.
Proof: Apply inductlon to m' using the proposition of
section (IV). For example, if the decomposition is known for

ms= 2(m'-1) + 1, then Popr = Py, ©H H has the effect

m 2m!’ T2m!

of adding Sl and increasing by one the multiplicify of id,
8)s +e. 5 and sy, 5, by the Proposition of section (v).

From this result Hl(T,Pm) may be easily determined for
m .
P =. & H_in the non-compact case. Asg before Hl(

T,P ) may
k=0 = m

where coeflfliclents refer to the multiplicity of the representation
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be expressed in terms of cusp forms, where the representation
sk corresponds to the cusp forms, S, ., (T"), of weight k+2,
occuring with the same multiplicity as By {considering id = SO).
For the compact case, again consider the sequence

1~ center(l’) » ' = I't » 1, S8ince for every m, P

{f(x,y,2) / deg £ = m} contains the constants, Hl(center(T),

P ) =g, i=20,1; 0, 1> 1 as in Section-(III). However, the
ccoefficlients are non-trivial go we apply Hochschild-Serre.

We compute the Eg’q terms by the techniques of gsection (IIT)

to be the following: Eg’q =@ for p=0Cor 2and q = 0 or 1;
and Eé’q = 8,(") @ EEETW) for ¢ = 0 or 1; and Eg’q = 0,p » 2

or g > 1. From this we may conclude Hi(F,Pm) = 0, 1> 3 and
;Hi(r,Pm) = 8,(r") 8 5;(T") @ ¢, 1 =1 or 2, if d, = 0 or
HNT,P ) = 8,(T") @8 S,T™) if dy, £ 0, 1 =1 or 2,

Preliminary computations indicate that d2 = O, For this
‘we consider the sequence 1 - T(l) » =T/ T(l) - 1., As a

linear space, Hq(T Pm) may be computed as in the non-compact

(1)’

_ | e ar N
case, however, the dj factor of H*(T (1) dJ Q 8y ) g4 (T(l),sk)

must not be lgnored in determining the T/T( actlon on
0
(

Hq(r(l),sk)u For example, H r(l)’dj ® s ) # for j = 0,1, ...

buti /T, acts trivially on HO(T(l), id) and non-trivially
on HO(T

(1)* 95 ® %0/

of S,(I'") & 5,(T™) occuring in Hl(T(l), P, ), only the one

for j > 0. Likewise, of the (m'+l) copies

Corresponding to the trivial representation dO @ 84 nas trivial

P/T(l) action.

2
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This analysis leads Go the conclusicn that for the sedquence
1> Ty » T~ r/ r(l) - 1, the Hochschild-Serre spectral
sequence has Eg’q terms, E%’O = ¢ and Eg’l = SE(T”) @ EETTW).
Since T/T(l) = 77, d2 is automatically O for this sequence,

S0 Hl(T,Pm) = S2(T”) ® EETTW) ® ¢. From this it follows that

d, = 0 also holds for the sequence 1 - center(¥) » T = T't » 1,

2
The reader may be interested to note the similarity of this
compubtation tolthe computation used for the Helsenberg group
in the following Chapter 4, Note that two spectral sequences
sequences are comparead, Dné of which has readlily computable
Eg’q ~terms, but does not determine dg, while for the other

d., = O, but the action of the quotient group on the

2
cohomology -of the subgroup is complicated.

(IV) Other Sheaves

As we have previously remarked, X may be considefed as
a connected component of the open orbit of the prehomogeneous
vector space (GLQ(R), 1o BS) with the action p as above on mg
viewed ag 2 x 2 symmetric matriceé. For a prehomogencous
vector space (G, p, V), the polynomials on V relatively
invarient under the actlon of G are generated by a single
polynomial X. In this case X = (det) = (Xz—yg), and the
relative invarients are (det)m, in view of this, we consider

as in Chapter 1 a sheaf p(gm) / (det)™ of local rational

functions on the quotient M = T\X whose numerator is a
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polynomial of degree 2m and denominator is (xz—yg)m. This
sheaf 1s well defined since (det)m is a relative invarient
under the T' -action (hence under coordinate transformations
mB O w&l by the definition cof the local affine structure
taken on T\X as in Chapter 2).

| The corresponding T -module is Pgm/(det)m =
{(t{x,y,2) / (xz—yg)m such that deg f = 2m}, which is given
as a GLE(R) representation by P, o (52 ® d—m)° Again we
have HT (M, p(ng / (det)") = Hi(T,PEm / (det)™) by the proof
of our theorem in Chapter 1,

Propogition: In the compact case, i.e., center(l) = %

or (+1) x7%, the evaluation of 5 (T, Pgm/(det)md also involves
cusp forms of higher weight.
Proof: To see this we consider the sequence 1 - center(l)

5> T = T1 - 1, Note that center(l') acts trivially on Pém/(det)m, N

a0
Oa

for example, HO(Center(T), Pgm/(det)m) - Pgm/(det)m. Now for

the corresponding spectral sequence, the E%’O -term,'which S

1,0
survives regardless of d,: Eg’l %_Eg’o, is given by EQ’ =5

ol

{(a factor of aqm cancels for the generator (.. )), so that,

H (T, Pgm/(det)m) where T' acts by the coefficient action
since it acts trivially on center(T).

For m > 0, the decomposition of P, o (s, ® dp&) involves

s, ® d . with kK > 0. Thus Hl(T‘, P m/(detf% involves terms
k -J 2
Hl(T', 81 ® duj). Since T'' < PGL,, the d_jnfactor is trivial,
and we have as before, Hl(T‘, 5, @ d—j) = Hl(T*, Sk) = Hl(T", Sk) =

. Ve e,
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" (T") & §k+2 [T™), and with k » 0, the space of cusp forms

- (T") have weight kt+2 > 2.

Having extablished our point, we refraln from & precise
etermination of the BD’%-terms and d,. Note that for the
on-compact case, we have T/(+1) = I'", and by the preceding
'aragraph,-Hi(T, P2m /(det)m) also involves cusp forms of

relght > 2.

. We also remark that Hi(T”, 5,%) = Hi(T”, sm)*, so that
results for the module Dy = D=2 ail, eoe 3 ik.S%E- "°§E%m /
order (D) =k} =P _ 0 (52*) (or, sheaf 8, of local =
_ifferential operators) follow directly from the computations
of sections (Ir1) and (IV). Results for polyno@ial coefflcient Sl
differential operators are someﬁhat more compllcated since

in the decomposition of the corresponding representation,

both Hl(T", Sm)* and Hl( " g ) may occur, resulting in

)
"eollapsing" Hi(f", s,)% @ Hi(T",.Sm) = ¢, This complication
is not expected to cause essential difficulties,

We note that HO(M,pQ) # 0, for p8 = sheaf of local
?Dlynomial coefficient differential operators (in contrast
%o'the usual situation for affine manifolds), since ﬁe have

: 2 2
_ 2
for Al = (x g% +y g% 47 g%) and A2 = (xz-y )(BiaZ ~4‘22y ) s

El, AE € HO(M,pﬂ). We have computed the eilgen-polynomials of

Al’ and found that they have elgenvalues 2m+2, 2m=2, cee >

2e42, with e = 0, when m i1s even and e = 1, when n 1s odd
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(we are consldering Al as an operator on Hi(M,p(m))). This

ig highly suggestive as an explanation for the results iﬁ

the guadratic férm cagse, in view of the fact that in certain
circumstances the elgenspaces of D € Hi(M,pB) are representation

spaces for the Hecke operators. Note also that we have expliclt

eigenvalue information here.



Chapter 4: The Heisenberg Group

(1) Preliminaries

In the following, the space X is B3 conslidered as the
3undér1ying manifold of the Heisenberg group H (for the
;definition see below), the dlscrete group is the subgroup N
of integral points in H acting on X by left translation,

and the relevant N-module is the space P = {f(x,y,2z)/f is a
polynomial with complex coefficients of deg = m}, the
variables x,y,z being viewed as coordinates on X = BS, and
—l(

N acting by n(f(x,y,z)) = £(n " (x,y,2)). TFurther, the group

Hl(N,Pm) will be considered as a module for a group I of affine
automorphiéms of X preserving N, having fhe effect that our
Tresults must be coﬁpatible with automorphisms. Our main

result is that a part of the cohomology group HJ(T,Hi(N,Pm))

¥may be expressed 1n térms of automorphic forms Lor SL2 (2 ).

From our theory of Hecke Dperatbrs in the category of affine
manifolds, we obtain the Dirichlet series derived from the

action of the classical Hecke ring acting on automorphic

formg,

We take the following definition for the multiplication

in the Helsenberg group H : (X,¥,2) " (u,v,w) = (X+u,y+V, ztwtyu-xv),
.The.sﬁbgroup N of integral points may be described by the
ifollowing exact sequences: (A) O~ Z~ N ~» ZZE = 03 and

2

5(B) 0> Z"“"=>N=->2%Z - 0, Tor (A), the subgroup Z =

_[(0,0,k)/ k € Z )} may be identified with the center of N, as

30,
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Zmay be readily checked from the above multiplication law,
hence (A) is preserved by automorphisms. For (B), the sub-
group Zfz = {(O,m,k)/ m,k € % }. We use the Hochschild-S8erre
spectral sequence for (A) to calculate Hi(N,Pm), where d,
1s determined by a dimension estimate from the corresponding
(trivial) spectral sequence for (B).

We shall need the result, as well as the resolutlion used

in the proof, of the followlng standard result on the

2
cohomology of Z .

-

Proposltion 1: Iet tx’ t_ be generators for the group

¥y

G = EZE, ahd A be a 22 -module, then HO(G,A) = AG5

HN(0,A) = ((F,8) € Ax A/ 0F=bgl/ (A8, AL)/e0 €a);
o

H(G,A)

A/ {b,8 - Ayf / £,8 € A} ; and, oY (G,A) = 0, For

i > 2, where Ax = (tx -~ id), A = (ty - id), and AG are the

y
G-invarients.

Proof: The standard proof may be found in MacLane, [5],

ch. 4., We use the following special resolution: O %'ZZ[G] eq ® f1

S miele, ®f,0zcle @t dmcle, 2,5z o,

where 9 (¢, ® f) =Ae ®f =b8ye ®f, 3 (e &L, =

o (eO ® fl) = Ay e, ® £, and € = augmentation.

X 70 o’ 0
This is a resolution by the Kunneth formula; and the fact that

e with the boundary operator o (el) = AX provides

1> %o’ o’
a resolution for the subgroup generated by tx5 and fl’ fo,

with the corresponding boundary operator, provides a resolubion

for the subgroup generated by ty.
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i A . .
H*(N,m) = 0, 1 > 2, follows from our resolution, since

the chain groups are O in these dimenslons. For 1 = 0, the
esult 1s true for any group, so we omit verification. In
‘general, we have 7t {h: C; » m /8 h =0, algg) = g°hix),
%for all g € Z [G], x € Ci}, B.:L w2 @i - m / h =056 h, where
h': C,_q @ m, and h, h' satisfy the inverience condition},
where the C, are the appropriate chain groups, and may define
Bt - Zj‘/'Bie By the invarience condition h(gx) = g'h(x),

we may speclfy cocycles by giving their values on (% {G] - )

generators €y & fo, ¢ @ fo, eq @ fl’ and e @ fl for the
chailn groups CO’ Cl, and 02. ’
For 1 = 2, 22 = A, gince 03 = 0, and B2 = {(h;: 02 -2 A/h =

dh', for h, h' invarient}, so h(e, @ £.) = (bh') (e, ® £.) =

1

ht (9 (el ®f.)) = h'(AX e, ® 7 ~ Ay e, @ f,) = éXh'(eO & £.) -

Ayh'(g, & £y). Since h'(eo ® £)) =g and h'(el ® r,) = I may

be specified arbitrarily in A, we have our resullt for i = 2.

1

Minally, 27 = {h: C;, » A / 8 h = 0}, so 0 = (8h)(e

1 1 l)

h(a(el ® ) = h(&xeo ® £ - Ayel ® £,) = éXh(eO ® f) -~

Ayh(e1 ® fo) (again, using invarience). Also, B~ =

@

. —_— ‘ _— —
{h: ¢, ?A. /I =8h'}, so h(el®fo) = Bdh! (el®fO) =

1

hi (3 (e ® £))) = h' (e, ® 1) = hhi{e, ® £ ), and similarly,
h(eo ® fl) = Ayh'(eo ® £)). Setting h(el ® f,) = 1, h(eo ® )
g, and h'(eo ® fo) = ', and noting that £' may be chosen

arbitrarily, we obtain our result for i = 1, and complete our

'proof of proposition 1.
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(II) The Sequence (A): O~ Z - N - 222 > 0

Next, we compute the approximations to Hl(N,Pm) provided

fby Hochschild -Serre applied to the sequence (A). The spectral

‘sequence associated to the exact sequence {(A) will be denoted
-D,q p,q

by B2 (A), or E L

Lemma 1: As linear spaces, we obtain the following

.

diagram for Eg’q = Eg’q(A) = Hp(ﬁg,Hq(EZ, Pm))'

GEV“

bri#l LJusd,

(Tj

P iy

C
2

___‘d:i__m“;

&

o
o)

Proof: Since we are considering the variables x,y,z as
coordinates, we may take the action of a generator for %Z to

be f{x,y,z) » f(x,y,z+1). We obtain HO(ZZ,P ) = Pm(x,y);

Hl(ZZ,Pm) = ( ,y,z)/P -1 (x,y,2); and Hq(ZZ P } =0, for q =2 2,
noting that for a generator tZ of Z, Hl(Z, A) = A/AZA, where

AZ': (tz “id)o

Now, results for 8020, %20 g0l ona 521

proposition 1. TFor example, 5220 - H2(222 s Pm(x,y)), where

follow from

since % = center(N), the 72 -action 1s the coeficient action:
we may choose a generator tx to act by {(x,y,z) - (x+1,y,z-y),

and a generator ty to act by (x,y,z) 2 (x,y+1l,z+x}. By
2( 2

proposition 1, O (&~, Pm(x,y)) = Pm('x,y)/ {Axg = Ayf/f,g € Pm(x,y')jz
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Pm(x,y)/Pm_l(X,y) = ¢m+l° The same action applies for Eo’l,

01 _ %z, Po(sys2) /P (x,5.2)) = (B (x,5) +

Py (x0y:2))/B, o (xoysm) = P (x,)/B (%,5) NP (x,y,2)
) = gl

and E = H

L4

P (% y)/By o (x,y

1,0 1,1
( gt

Proposition 1 applies to E A) and b A), but ig

insufficient to determine the dimensions in guestion. We
resort to the exact sequence 0 = Z%r - Zfz -7 Z%{ - 0, where
iZy_ is the subgroup Z%[ = {{o,m)/ m € Z3, noting that the

assoclated spectral sequence will not be preserved by

l,O( 12

. o 0 1/
automorphisms. E A) = HIN(Z27, Pm(x,y)) = H (7%, H (éiy,Pm(le)) @

1 O(ZEJ P (x,y,))) = HO(Zga Pm(x,y)/Pm_l(x,y)) ©

e P (x)), where, since Z° is abelian, Z_- acts trivially

I

Z. , I

XJ

uly

on Z%ﬂ and so by coeficlent action on Hq(ZL Pm(x,y))° Thue,

: . Q-
we obtain H'(Z,, P (x,¥)/P, _(x,y)) = b (x,y)/P _,(x¥) =
ﬁm+l

1 ,
, and H (Z&me(xJ) = Pm(x)/Pmul(x) = ¢, We remark that

the cceceficient action of Zfz of the preceeding paragraph applies
equally well here, and we have used it in the above. We have
established : dim(El’O) = (m+l) + 1 = m+2. The compﬁtation

El,l

for is similar, and we congider our lemma as established.

For the above gpectral sequence {associated to the exact

sequence'(A)), dg:Ep’eq > Ep+2éq'1 is O unless p = 0, q = 1,
. p+2,q-1 - :

since L 5 0 for all other p,q. Our next two lemmas

show that d,: EOél - Egéo Ls an isomorphism,

Temmna 2: dé i1s either 0, or an isomorphism (for p = O,

g = 1).
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Proof': The complete proof will be defered until we have

discussed the automorphisms of N. 1In the proof of Lemma 1,

_we have shown bthat Eo’l'(or EE,O) may be identified with

ij(x,y)/Pm_l(x,y). We will show that ST,(Z) is contained
~in the automorphism group of N. Since the sequence (1) is
‘preserved by automorphisms, SLE(ZZ) acts on the spectral

:sequence in guestion. We will show that SLB(zﬂ acts

0,1 2,0

Cirreducibly on E {or E )« Our lemma is then an application

of Shure's lemma,

(ITI) A Dimension FEstimate for Hl(

(

N, P )
Iemma 3: dim H N,Pm < 2m + 3.

Corollary: dim Hl(N,Pm) =m + 2,

Proof (of Cor.): By lemmas 1 and 2, either dim Hl(N) =
om + 3 or dim(H'(N)) = m + 2.

Proof (of lemma): We consider the exact sequence (B).
The spectral sequence associated to the exact sequence (B) is
denoted by Eg’q(B) or Eg’q. Since Eg’q(B) = 0, for p= 2

(we may find a resolution for Z, as refered to in the proof
of Prop. 1 using €4s€7> for which thelchain groups Ci vanish

for 1 2 2), d, =dy = ... =d_ =0, and 80, H'(N) = E%’O &
Eg’l. Now HO(ZFi Pm(x,y,z)) o= Pm(x) (cannonially), and

1 1
50 g (Z%H Pm(x)) = Pm(X)/?m~l(X) = ¢, so our lemma may

: . .1

be reformulated as dim EO (B) < emte,

' 1,2
(

By Prop. 1, W (%", B (x,y,2)) = {{f,g)/ & 1 = A.gl/
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{b_ T, Azf')}. Also, using a spectral seqguence associated to

0= & = Z@ —>EZy -+ 0, where the subscripts refer to the

generator t acting by (x,¥,2) ® (%,y,2+1) and the generator

;ty acting by (x,y,z) = (x,y+1,z-x). We have determined

1% (%_, P_) at the begining of the proof 'of Lemma 1, and again

z° m)

{note that ty acts trivially on Z%f so that we may compute
! P (x,y,2)/

1 — , o~ AL 0

Wz, By (xy)) = By (xy)/Py o () = g7 and H (%, P
éPm_l(X.&y:Z)) = (Pm(XJY) + thl(x,y,z))/Pm_l(x,y,z) =
;Pm(x,y)/Pm_l(X,y) 2= ﬁm+l, and conclude dim Hl(ﬁ?, Pm(x,y,z)) =
2n + 2,

: . 0y, 1,..2

To prove our lemma, we must show dim H (%, B (% > P)) <

2m +2, and by the preceeding paragraph,Ait suffices to find

2

‘one cocycle (f,g) € Hl(ZZ, P,) not invarient under the action

of t,. However, our btask is complicated by the fact that Z.,
. (]
cts non-trivially on Z“., By our proof of Proposition 1,

we may determine the action of Z%C on a cocycle (f,g) from an

: . . 2 .
‘action on our resolution of Z°. For such an action to

determlne an action on cohomelogy, it must commute with the

2 -operator. We shall show that picking g = ym"lz provides

“the required cocycle.

For the generator €5 ® fo, ahd a generator tx of:EX,
® =
fo)

set tx(e ® fo) =ae, ®F

- 2 .
o o 0 & € Z[Z"], then 9 Lx(eO

€(a), where € ig the augmentation map, likewise, t_°'0 (eo ® £o)

X
ftx(l) = 1, so we need € (a) = 1, and may take a = 1, For the

0 0

generator ey ® £y, set tX(eO ® fl) =ce;, ®f, +de,® £y
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;then o “t (e, ® fl) = (co &y +d° b Je, @ £y and to. O (eo ® ) =

:tX(AZe ® f,) = tX(AZ)'tX(eO ® £,) by the prececed-

(t

= L\.Zeo ® fo,

= tthZOtxﬂl = tZB

0

ing sentance and the fact that tX Z)

Therefore, we may take ¢ = 0, d = 1, so that
1) =89 ® Iy
In a similar fashlon we can solve for the action on e, @ fo

(*): t (e, @1

and ey @ fl in a compatible marmmer. The resulting formula
are more complicated, but these wiil not be relevant in the
following.

By general principles, the action of tX on cohomology

2

. ~1L
is t i h - tx(h)’ where tx(h)c = bt h(t "(c)), for c € Cl(Z sP) s

where the outside action lg the ceocefficient action and the
ingide action is the acltion on the resolutlion of Zfz as above.
, ml(

Applylng t;l to both sides of (*), b (e ] f e, ® f .

0 1) =8 1L
Now, recall that the cocyele h has been identified with it's
values on generators, [ = h(el'® fo) and g = h(eO ® fl)'
Under the action of &, on cocyles, (f,g) = (f',g!'), where
1 1

( (eq ® £y)).

Assuming that (- ,g) defines a cocycle, the tx—action

£ o= tX:h(tX' e; ® £,)), and g' = b, bt
. ° v "'l
is ( - ,8) > ( - ,6,.78), since & (eo ® ) =e, ® . Now

m-1

set g = y 2z (we will verify that g occurs for a pair (f,g)

defining a cocycle later, pagelNJ. Since the t -action is
the coefficlent action, tx(gJ = ym"l(z—y) = ymHlZ -y, To
have { - ,g) = ( - ,txg) {mod Bl), there must exist, by

Prop. 1, f' € Pm(x,y,z) so that g - tx(g) = ym = AZ ', Bub
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;AZ lowers degrees by 1 (we have used this fact repeatedly
in the above), so that deg Azf' < deg f' = m, and this is
impossible, completing the proof of lemma 3.

As remarked in the corollary of lemma 3, we have dim,H’(N,Pﬁ)

=m+ 2. In fact, returning to the exact seduence

Ay, HY( 1,0 g 50,1« 51,0 122, 59
3 3 3
12

77, Pm(x,y)), and similiarly, H

i = H

2(

N,Dpy) = 8 %, P)) =

1( 2

H N,P ) = HO(Z7, Pm/Pm_l)°

We now restrict our attention to Hl(N).

(IV) ®urther Remarks on Hl(N)

We now have the following special case of Proposition 1,

which is helpful in determining the module structure on Hl(N)
under the action of automorphisms.

x,y), and suppose that the

Proposition 2: Iet A = Pm(
generators tx’ ty of Zfz act by tX'f(x,y) = f(x+1,y) and

tyif(x,y) = f(x,y+1l). Then we have an explicit isomorphism

Y(z®, P, (7)) = By (6,7)/Py(xy).

Remark 1: Our contention that a certaliln cohomology group

31

may be expressed in terms of automorphlc forms will follow
upon showing that Hl(N,Pm) is an irreducible SLé(ZU -module.,
We will show that the above isomorphism holds as SL?(ZE)—moduleS,

where SL,(Z) acts on the right hand side by the dual of the

2
(m+1)§Easymmetric power of the natural representation on RBG

Proof (of Prop.): By Proposition 1, we have Hl = Zl/Bl,

1 1 .
where 77 = {(f,g)/ Ayf = Axg}: B” = {(A.Xf1) Ayfl)}: with
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f,g,f' € Pm(x,y). We intend to show that when (f,g) satisfies
our condition for cocycles, there exists G € Pm+l(x,y) 50
that QXG = £ and AyG = g. Since Ax and,éy both lower degrees

by 1, the induced map from P

1
m+l(x,y) to H- has kernel Pm(x,y),

yeilding our result.

The desired polynomial G is given by G(x,y) = Sg(g(x,y)) +

(f(x,0)) + xf(o0,0), where Sg(g(x,y)) and Sg(f(x,o)) are

" of which the definition is given

"Bernoulli integration,’

below. We refrain from further verifications, and consider

the proof complete.
Fof a l-varible polynomial f(x) of degree m, the

polynomial solution F(x) of the difference eqﬁation F(X+l) -

F(x) = £(x) with initial condition ¥(0) = 0, is denoted by

FP(x) = ng(x) and called the Bernoculli integral of f(x).

"F(x) is uniquely debtermined and deg F(x) = m + 1. Moreover

for f(x) = a, + aiX + oeee amxm, the coefficients Cy of

0
F(X) = CO -+ Clx S I Cm+lxm+l are lineary functipns of' the

m

a,'s: ¢c, = Z A Qa
i

5 5 ., Lo=1, ... , n+l, with rational

j=0  *

coefficlents ki, which are expressible in term of Bernoulldl
m

numbers. Or we can express F(x) = 2 a, (g, .(x)/i+l), where
1=0 LYTi4+ _

‘ 2 3 2
Polx) =1, gi(x) = x, Zolx) = x7 - x, #a(x) + x7 - (3/2)x° +
(L/2)x, etc., are Bernoulli polynomials; i.e., ﬁi are defined

o n
by t(eXt -1)/(et 1) = X (ﬁn(x)/nl)x )
n=0
For a two variable polynomial g(x,y) =

Mo

ai(x)yi =

i=1




Lo,

m k
2 bk(y)x , we define Sgg(x,y) =
k=0 i
X m '
and Sog(x,y) = 3 bk(y)(ﬁk+l(x)/(k+l)). For polynomials of
k=0

ag (2)(F 4, (1)/(341))

N ™Mp

1

more varlables, we may define Bernoulli integrals similarly

Remark 2: 1In the proof of lemma 3, we have. left the

assertion that g = ym”lz. occurs for a palr (f,g) satisfying

the cocycle condition, i.e., there exists f sgo that
= A o m-—1
Ayf LB =Y

. The required f is £ = Sg(ym"l) = (L/m)y™ +
(lower degree terms). -

Remark 3: If the geherators tx’ t_ acts differently on

y
Pm(x,y) from the assumptions of Proposition 2, the method of
method of Proposition 2 does not apply. For éxample if
tx(f(x,y)) = f(x+1,x+y) and ty acts as before, AX no longer
lowers degrees. It is roughly this difficulty that prevents
applying the method of Proposition 2 to HE(N).
(V) Automorphisms

We now have all the machinery and technical results to
begin the computation of Hj(r,Hl(N)). We first determine the
structure of Aut(X) and conclude the structure of Aut(¥,N) =
{s € Aut(X)/ s(N) = N}. Note that by Aut(X) we mean bLhe
(continuous) Lie group automorphilsms of X = H., Our method
1s similar to that of A. Well [10], using the sequence 1 -
center(X) - X » X/center » 1, Here, checking our multiplication

law, center(X) = R and X/center = mg. Letting w € 82, z € R,
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and writing elements of X as (w,z), an automorphism s may be

written s{w,z) = (0 w, f(w) + S(0,z)), where ¢ € Aut(x/center) =

GL,(R) and f: R” » R is a continuous homorphism {we have nob

assumed s to be trivial on center(x)). For ¢ = (23) € GLE(R);

we set & (o) (x,y,2) = (ax+by, ecx+dy, (ad-bc)z). The ‘

multiplication on X, with X = H, the Helsenberg group, has

been chosen so that & {(¢) i1s an automorphism. We obtain an

exact seguence 0 - Rg* - Aut(X) -~ GLg(R) » 1, where BQ* is

the dual of Bg, from the sequencé 0 - Cont(ﬁg,ﬁ) ~» Aut(X) -

Aut(X)/center) and from the splitting & GLQ(&) -~ Aut (X).

We note that for (u,v) € EE*, the corresponding automorphism

1s the inner automorphism given by conjugation by (-v, u, 0).

Note that s € Aut(X) acts by affine isomorphisms on X so that

Aut(X) is cotained in the group of all affine lsomorphisms,

the latter group having been denoted by Aut(xf in Chapter 2.
From the above exact sequence for Aut(X), we obtain an

exact sequence O ﬁiﬂg* < Aub (X,N) - GLQ(ZQ - 1 for Aut{X,N).

We denote by T' any subgroup of Aut (X,N), and may consider

HJ(T,Hi(N,Pm)). For the reﬁainder of thls Chapter, we take

T = %2 x SL,(Z) , which s a subgroup because of the splitting

§, and is the largest subgroup of Aut(X,N) trivial on center(X).,

We denote by (C) the sequence O %zzg

¥ » I = SLE(Zﬂ - 1.
It remains to determine 1 (T, -}, for which we use a
spectral. sequence on I'. We are particularly interested in the

case J = 1, i = 1. One term that occurs in the spectral
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sequence is B0 = H(s1, (%), EO(Z", w'(N))). Since Z°
consists of inner automorphisms of N, it acts trivially on
1,0

BN, ), s0 B2 O = mh(sny(z), wtan).

" 4 - * l o
Proposition 3: The isomorphism H™(N,P ) = Pm+l(x,y)/Pm(x,y)

of Proposition 2 holds as SLE(ZH ~-modules, where SLQ(ZU acts
on the right by the dual of the (m+l)§3 symmetric tensor
representation.

Proof: We first note that for a cocycle in Hl(N), whilch

1(2225 Pm(X:Y))

we have identified with a cocycle h € H
(compatibly with the SL,-action!) by the proof of Lemma i
and the result of Lemma 3, v € SL,(Z) acts by ¢ (h)c =

cth(U"l(c)), whe re é € C GZQ). Since h(c‘l(c)) € Pm(x,y,z)

1
is a polynomial, where the variables x,y,2 are to be viewed

ags coordinates on the group X, and the coordinates are elements
of the dual space of X (= RS), the outslide action of ¢ is the

dual acticn to the action of ¢ on X, i.e., 0 (f)(x,y,2z) =
t -1
(767" (x,¥,2)). |
1 a
To show H (N} = Pm+1(x,y)/Pm(x,y) as an SL

11
0l

these generate SLQ(Z)). By Proposition 1, and our initial

2(?&) ~-module,

we consider the action of the elements (7)) and (%g) (in fact

remarks, we may identify the relevant cocycle h with the pair

of polynomials (f,g), where f = h(el ® £,) and g = h(eo ®f).
1
We now consider ¢ = (_1).
01 |
By the method used to determine the equation (*) in Temma 3,
-1 L -1 _
we find that o (e1 ® f;) =e; @ f, and © (eO ® fl) =
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- -1 N .
e, ® Iy -yx ey ® f,. Thus, {(f,e) = (0 .h(e
i

o ‘h(e, ® £y) - ¢ (yx™

1 & fO),

). ¢ hley ® £5)) = (o £, o g -y ©£),
where ¢ acts by the outside decscribed above, and y, as the
generator of the group %Sr acts by fl{x,y) = (x,y+1l).

Now let G{x,y) & Pm+l(xﬁy) be a polynomial of degree

< mtl, and (f,g) be the corresponding cocycle with £ =

AXG, g = AyG. Our claim for the sctlion of ¢ is that
s o b yG ~ ye 0°A LO) = (A . O G A yﬁ G), where the

action of ¢ on ¢ is the dual of the natural action and the

right hand side of the eguabtion is the cocycle corresponding
G -1 10

o :r(-—11)5
for a polynomial £(x,v), (o £){xz,y) = f(x-y,y}. © A L& = AXG G

{9

to ¢ G. TFor the dual action, we have so that

follows since these operators commute by -the calculabion

o & G(x,y) =0 [G(x+l,y) - G(x.¥)] = G(x-y+L,y) - G(x-y,y) =

8  [G(x-y,¥y) )] =& ¢ G. The operators ¢ and éy fail to

commute by precisely the term -~y ¢ AK arising from the action

‘of 0 on our resolution for the cohomology of ZF& -The calculation

is as follows: 0 A& yG(x,y) - y- 0 b6 G =0 [G(x,y+1) ~G(x,y)] -

y [G{x-y+1,y) - G(x-y,¥y)] = G(x~-y,y+l) - G(x,-y,y) -

G(x-(y+1)4+1,y+1) + G{x-{y+1),y+1l} = G(x~-(y+1),y+1) - G(x-y,y) =
Ay [G(x-y,y)] = Ay o G(x,¥}. )
we have 7 (eo & fl) = € @ £, and

=1 . . .
O) = e ® £, - %y e, ® f,. Therefore the actlon

of T on a cocycle (f,g) is 7 (£,8) = (7€ - x T g, Tg). A

10
For 7 = (11),

-1
T (el ® f

computation similar to the one above establishes that T and
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Ay commute, while &X TG =7 A XG - KT AyG, so that the
l( 2

actbion of 7 on Z27(Z7, P_(x,Y)) agrees with the prescribed

m
action on Pm_l_l(x,y)a

Now since ¢, T generate SLQ(ZU, the SLE(ZU action on
zl(zfi Pm(x,y)) agrees with the dual action on Pm+l(x,y).'
But SLQ(ZZ) preserves degrees in Pm+l(x,y), so we have that

the dual action of SL,(Z) on Pm+l(x,y)/Pm(x,y) agrees with

the action of SLQ(ZU on Hl(zfi Pm(X,Y)) arising from the

action of SLZ(ZU ags automorphisms on the manlfold N\X.

Theorem: The E%’O(C] term for the gpectral sequence

associated to the exact sequence (C)} is given by El’o(

Hl(SL

C) =
% 5 o 11856
o S%+l)’ where S*m+l is the dual of the (m+1)

symmetric power of the natural representation, Thus El’o(

(Z),
C)
may be expregsed in terms of automorphic forms.
1 . .
Proof: For the subgroup HP(SLE(ZZ),S$+1) of "parabolic"
classes in Hl(SLQ(ZZ),n), we have Dby Eichler's theorem

L . . 1. :

o (8T ()5 8% 4) = Ho(8ip(Z), sp40)% = (85 (sL,(Z)) @
Spra  GL(Z)])* = STy 3 (BL(Z]) @ 8Ly,4 (SLQ(Z)), where
843 () is the space of cusp forms of weight (m+3) on the

(compactified) Riemann surface SLz(Zi)\ (upper half plane)
and EE;IET—T is its complex conjugabion. (Shirmurﬁ (71).
By results of I. Kra [3], the remainder of Hl(SLg(ZU, ~) may
be expressed in terms of Eilsendteln series, completing our
proof.

Having established that SLQ(ZZ) acts as automorphisms on
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N, we may easily prove Lemma 2. By our previous remarks we

0,1

need only establish that L2 18 an irreduclble SL,(Z)-module,

o
Proof (of Lemma 2): For the spectral sequence in question,

0,1 0/,,2 ;1 O/, e

E2 = H (%", 5 ( (z*, (-X y,x)/ -1 (%,v,2))

where Hl(ZL Pm(x,y,z)) is as previously computed in section

77 Pm(x,y,z)) = H

-~

(IT), and since Z is the center of N, 7Z°  acts by the natural

coefflcient action on P, (x,y.,2 / X,¥,2). Since HO(Zfi -)
may be cannonically identified with the ZZ sinvarients,

Qe .
HY(Z", Pm(K:Y,Z)/Pm_l(X5Y:Z)) = Pm(X:Y)/Pmml(X:Y) (see section

(IL)). Note that the induced action of 8L, (7Z) on the factor

group Zgz = N/center(N) is natural, while the coefficient

action on Pm(x,y,z)/Pm_l(x,y,z) induces the dual of the m'l

symmetric power of the natural representation Pm(x,y)/Pmml(x,y),

2

Now since the identification of HQ(ZE, ~) 1ig canonical, SLQ(zU

acts on EO2t = ,y)/P 1 (x,y) by the dual of the P
symmetric power of the natural representation, hence ilrreducibly.
We observe that the comparative difficulty of the proof

of Proposition 3 results from the fact that our identification

of Hl(zfi -~} is not canonical: We have picked generators
e, ® £, and e, ® £, for the chain group Cl( ) as in
Proposition 1 of section (L). A similar difficulty arises

2 to

for the bar resolution: We must pick generators for 7
identify Hl(Zfﬁ . If we pick generators t  and ty as in
Proposition 2, a similar result follows upon identifying a

(inhomogeneocus) cocycle with its values f = h(tx), g = h(ty).
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However, these generators are not prescrved by non-trivial

elements of SLQ(ZU.

0, L
2

degcribed in our theorem actually occurs in the resulting

We also note that the E (C)-term for HJ(T s =)
cohomology, since this sequence degenerates at the E2 ~-term.
This remark follows from the observation that SLE(ZH has a
free subgroup of finite index (the commutator subgroup)

and the fact our coefficients are without torsion., We have
not yet computed the other Eg’q terms for Ej(f,Hl(N)).

Also we have HO(N) e HS(Nj = ¢, 80 HJ(T,Hi(N)) provides
trivial results for these i, The case 1 = 2 also remalns

to be determined. Note that these cohomology'groups may

be considered as Eg’q terms for a group.G described by a
sequence.l - N-» ¢g-= T~ 1, This G may be considered as the
fundamental group of a certain (-dimensional manifold,

whose cohomology is of interest for our proposed analogue

of the Sato-Shintani zeta function.




Chapter 5: Hecke Operabtors

(I) The Local Affine Hecke Ring ¥(M)
Fix a local affine manifold M. Ict M!' be any other local
affine manifold for which we may select two local affine

covering maps f,g: M! » M of finite degree. We comsider a

category = (M) whose objects are such triples (M', £, g),

where a morphism between triples (M!, £ gl) and ML, T, 85)
is a local affine map o Mi - Mé so that fl w2 f2 0 & and

gl:ggocp'

-

On the objects of = (M), we define an equivalence

relation by (Mi, £, gl) (M4 f5s g,) if and only if there
exists a morphism o Mi -? Mé so that © is a local ilsomorphism.
We congider the quotient of the objects of = (M) by this
equivalence relation, and obtain a set which we denote

(= (M)/~). TFrom the set (= (M)/~) we form an abelian group
. k
Z(= (M)/~) consisting of finite formal sums I meA; with
Jel '
m; € 7, Ay € (= (M)/~) with addition performed formally

under the provision that (mlA) + (mph) = (m.

7t mg)A for a

fixed A € (= (M)/~) and my, m, € Z.

Let A,B € (= (M)/~) be represented by triples (M,, f

1
1o T 89)

and (Mé, fss &), respectively. We define another addition

A + B by letting A + B be the eguivalence class of the triple

(my oy, £ % £y, 8 % g,), where Mi % M) is the disjoint

. 1 s 1 LI o) Py . F . n 'Y =
un;on of M{ and M} witi f, ig(m.) fi(mi) and g, gg(mi)

gi(mi) whenever m! € M!. In the abelian group % (= (M)/~) we

b,
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form the subgroup S generated by elements of the form

(A + B) - 1(A) -1(B) where A and B range over all elements
of (= (M)/~). Finally, we consider the quotient group ¥ (M)
= (= (M)/~)/S. Note that ¥ (M) is generated by the
equivalence classes of triples (M', f, g) wilth M' connected,
since taking the quotient by the subgroup S has the effect
of identifying a triple having M' disconnected with the

" +

" sum of 1lts connected components with the appropriate

maps .

" We now define the structure of a ring on ¥ (M), We also
denote this ring # (M) and call it the local affine Hecke
ring of M. To define a product on ¥ (M), it éuffices to
define the product of generators A“B} gince for formal sums
s = 2 mA,, t =2 n.B., we get st = 2 m,n.A..B.. For

5 O g d7d 1,3 1J 1
generators A,B given as the cosets of equivalence classges
with representatives MI, fl, gl) and MA, f2, ge) respectively,
we let A'B be the coset of the equivalence class of

(Mi x ML, fl oP., 8 oPF, ), where M! x ML is the

1 2
fibered product of Mi and Mé over M along the maps gl’f2’ and
. 1 . s M s
Pr : Mi X, M4 = Mi and Pr : Mi x Mé > M2 are the canonilcal

projections. We note that this definition is independent of

choices of representatives since we may identify the cosets

A and B with an equivalence class of triples with Mi and Mé
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connected and then equivalences ml and ®s induce an equivalence

¢y xf ¢ 5. Note also that even when Ml and M2 are connected,
81752

their fiber product may not be.

Proposition: For the product defined above, ¥ (M) 1s an

assoclative ring with identity.

Proof: The identity is the coset of the equivalence
class of the triple (M, id, id), i.e., M' = M and T = g = the.
identity map. For representatives, we note that for a triple

(M', f,g), M x M' = M'and that since P, =1, P, =1id

3
5Q=f 1 2 MT

id., o P = id

M v M © f = f, while g o Pr

=g 0 idM' = &, where
o .

idM and idM, are the ldentity maps of M and M!' respectively,
For associativity, 1t suffices to check that for triples
(M1, £15 81)s (Mé, f5, &5) and ML, T4, g4), the fiber products
in the appropriate orders with their maps agree. For this
we note that M! x ML) x M= {[((x,y),2) / (x,y) €
1 g =2
172 &o :
Mt x ML, z € ML and gg(y) = 8, © Prg(x,y) = f3(z)} =
&17To
{(n,y,2) /x €My, y € My, » € My and gy (x) = £5(7), g,(y) =

fg(z)} = {(K: (y:z)) /K € Mi: (y,z) € Mé X Mé, and
go=T7

g1(x) = 1,(y) = £, o Pry(y,2)} = MJ x (ML x M),
g =Tpolr, = g,=fy

where the projections Pri are the canonical maps for the fiber
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products being considered, so that we need only check the maps.
But, observing that these are the appropriate maps to be

1,2 = fl 9] Prl and

g3 0 Fry = gq 0 Py © Pr233, where for the left hand side of

checked, we have fl 0 Prl o Pr

these equation Prl,Prl 5 and Pry are the precjections associated
3

with (M! x ML) x MY, and on the right hand sides,
1 wp 2 o
81540 gean2~f3
Prl, Pr3 and Pr2 5 are the projections assocciated with
3
M x (Mé X Mé)e

gy=fp o Pry = gp=Ty

-

(IT) The Action of ¥ (M) on the Sheaf Cohomology ﬁp(M, p(m))

As a step towards an explanation of the choice of the
term "local affine Hecke rving" for ¥ (M}, we define an action
of ¥ (M) on HF(M, p(m)). Note that our definitions work as
well for sheaves & and &' on M and M! compatible with the
maps T and g. In section (IT1), we restrict to the case where
M = T\X is the quotient of a domain X and considerlspecial
triples (M!', f, g) corresponding to the double cosets I a T
belonging to the classical Hecke ring of T.

We first define an action of (M', £, g) € = (M). Note
that for any local affine covering map g: M! - M,rwe ma.y
define a map g*: HP(M,p(m)) - Hp(M',p(m)) by [g*(w)] (Uf N ...
n Ué) = w(g(Ué) N.,.N g(Ué))og, for Ul, oo Ué open sets in

MY with U5 1 ... D Ué #£ @, where w € Hp(M,p(m)). To define




a "push-forward' f, Hp(M‘,p(m)) - Hp(M,p(m)), for F: M! » M

a local affine covering map cof £inite degree, we first select
a special cover U = {Ua}a ¢ p Of M compatible with the cover-
ing f: M' =» M, |

A set S in M Is called f-copiable 1f there exist a
connected set B € M, with properties: (1)B 24 (2) f—l(B)
is a disjoint union of connected sets Bi:Bos «on s By in M!

such that £ / 5 1s an lsomorphism of B, onto B for each i.
L

In this case, £71(A) = U A, where A, < By, We call A, the
j- - -
"components" of f"l(A). A covering {Uo}a ¢ 5 Of M is called

a I-copiable covering if every finite union Ua U ... U U&
_ : o

Y

is f-copiable when U, N ... 0 Uy FE P
0 J

Lemme.: TLet f£: M' - M be a local affine covering map of
finite degree. Then M has & f~copiable covering U o= {Ua}a € A
Proof: This is a standard result from topology. See,
for example, A.‘Weil [9]. |

Having fixed a cover U = {Ua]a'e 5 OF M as above and
noting that such covers are co-final among all coverings of
M, we consider a non-empty intersection UO N ... N Up with
P € u. By the choicg of the cover ., we may index

1 .
(U-) - UU. « fDI',_] :O’ « e 5 p, 50
J j=1 J2t

UO, LI N 2 U

the inverse images f

that Vo, 1 nu i n ... nNn Up,i # @ for all i and UO,i 0.

1
NU,. N ... NU_ . =g whenever k # 1. We may now define
J,k Pyl
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: HP(M',p(m)) Hp(M,p(m))_by setting

f|
. [fl(w')] (UO .o Up) = )
2w (U, - N oo. DT L) o (F] ) s where w' €
j=1 O Psl Yo,a ¢+r Vp,a” 7
HP(M',p(m)L since f|] ig an isomorphism.
U - n * e nU ) '
0,1 P,

Note that (£ | U n au )*l maps the section

0,4 p,i
(m)
.w‘(UOJi A Up,i) €T '(Uo,i n ... nN Up,i’ p*’) to
T(UO N ... N Up’ p(m)), where T'( ) denotes sections of the

sheaf p(m) on M' and T'( } sections of the sheaf p(m) on M,

We remark that the formulas given for g* and fl hold
for cocycles, and may easily be seen to give well defined
maps on cohomology classes. Finally we may define Che action
of (M', £,8) on BP(,p ™)) by [(u, £, @)] w = £,(g*(w)).

To show that our action is well deflined for the egulvalence
class of (M', £, g) in (= (M)/~), suppose (M', £, g)~(M}, £, &),
i.e., that there exists a 106@1 affine isomorphism ¢ : M!' = M! '
so that £ = £; 0 ¢ and g = g, 0 ®. The caculation‘fl 0 g¥ =

(fl o), o (gl o@)* =1f, 9, 0¥ gl=r" g¥may be easily

!
verified. We note that by our definition, the fact that

0 ' 0 ¥ = identity depends upon @ being an isomorphism, so
that the degree of ¢ is one. Similarly, the formula

(fl n fE)L(gl i go)*% = £11g% shows that the generating elements
1(A £3B) - 1(A) - 1(B) of 8 € & (= (M)/~) act trivially on
Hp(M,p(m)), so we obtain a well defined action of generators

for ¥ (M).
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We now define a map pyi ¥ (M) ~ End(Hp(M,p(ma)'by setting
pZ(Z n;As;) = Zn; pg(Ai), where by the above remarks pg(Ai)
)

is well deflned by the action of a representative (Mi, il g

i’ =i

for the equivalence class defining the coset Ai.

Proposition: The map p,: ¥ (M) = End(Hp(M:P(m)))
2

defining the action of ¥ (M) on Hp(M,p(m)) ig a ring homomorphism.
Proof: Po is additive by definition. To show that Po

is multiplicative, i.e., p,(A+B) = p,(A). 0,(B) whenever

A, B € ¥ (M), we may take representatives (M!, f and

l: l’ gl)

(M hil gg) for A and B regpectively. For representatives

20 To
so chosen, A+*B may be represented by (Mi X Mé, fl 0 Prl, 8, © Prg)
&1=To

(cf, the definition of A«B).

By the definition of p,, we must show (f, o pr o)

1 l)l
(g, 0 Pry)* = (fll o g¥) o (f2£ o g4). We check that this is

the same as [ o Pr o Pr¥% o g% = f o) gi o f o gx. If

1! 1! 2 1t 21
Prl1 o Pr¥ = g¥ 0 f21 we are done., _
Lemma: Let M! x M! be the fiber product of M! and M2
_— i ey A 1 2
8170
over M along the maps gq* Mi - M and f2: Mé » M (df finite
degree}, with the canonical projections Prl: Mi X Mé - Mi

g,=%p

and Pr2: Mi X Mé-% Mé, then Prli 0 Pr% = gi 0 fEL‘
&,=Tp

Proof: We first select coverings of these manifolds

compatibly with their maps. In particular, we require that
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a non-empty intersection of open sets from the covering of
M ( and of Mi) 1ift uniquely to a collection of intersections
of open sets for the covering of M} under f, (and of the

covering of Mi X Ml under Pr as in the definiticn of

g=rp ° =
fEL(Prll)s and that, for all maps, the image of an intersection
of p open sets for -these covers in an intersection of p open
sets for the cover cof the range manifold.

Having fixed coverings satlsfying our reguirements we
consider w € Hp(Mé,p(m)) and 8 =T,y 0 ..o N U, # @ an inter-

section of open setls selected from the covering of Mi. Now,

[(Pr), o Brg)w] (2) =3 [(Prg(w)] (5,) o (¢ry | ¢ )7 =
1 1
; W(Prg(sl)) O (Prl I g )_13 and [(gi © le)W] (8) =
L i
(£, (W)) &1(8) = 2 w(Ty) o (£, | T,)7h, where Pr1*(s) = U 5,
i

2
J

and fél(gl(S)) = U TjA are decompositions into disjolnt
J

"components", where "components" are in the sense of the
definitions preceding the definitlon of f,. If we can show
that 1 = J and that [Tl, o ,TJ} = [Prg(sl), vo ,Prg(si)},

we will be done, since for T, = Prz(Sr) we have w(PrE(Sr)) )

-1 ~1 A
(Prqy | Sr) = W(Tj) o (f, | TS) by the commutivity of the
diagram defining the fiber product (gl o Pry = f, o Pr, implies
-1 -1,.
that (f2 | T ) [g(8)] = Pre [(Prl [ g ) T(8)1).
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To establish our remaining claims: that 1 = j and

[Tl, veo ,Tj} = {Prg(sl), e ,Prg(Si)}; we consider the
speclal nature of the projections Prl and Pr2 of the fiber
product. Fix x, € M} and note that deg(Prl) =

# (z € M) Koy erMé / pro(z) = XO] =+ {(x,y) € M! x M} / % = g
and g, (x,) = f(y)) =+ {y € My / fo(y) = a(xy)) =

- o=l
F {y € M} /oy € £
of degree and the fiber precduct, where for a set A, #A

(g(xo))} = deg(f,), by the definitions

denotes the cardinality D? the set A. By our choice of
covers with open sets sufficiently small, we have
1 = deg Pr1 = deg f2 = j. We denote by d2 the degree
d2 = deg Prl = deg f25 and, note that a similar proof
establishes deg (gl) = deg(PrE).
Finally, we note that Pr2 must not collapse the fiber
of Pry. For this we let x € Mi, and z, z, € Pril(x), %y # By
then Prz(zl) # Prg(ze) since we have for Zy = (x, y,) and
Ty = (%550 s Prz(zi) = y; and zl'% z, implies y, %'yg. We

again remark that the same holds for our sufficiently small

open sets. Now for x € 8§ =U, N ... N Up let Priy(x) =

{zl, cos ,zd?}, then for Prg(zi) = y; we have y,; # yy for

1 # k., Since f, is of degree d, and fg(yl) = fg(yg) = see =

2
-1 .
fg(ydp) = gy (x), we have I77(a(x)) = {yy, ... ng}' Apply-
ing this argument to our sufficiently small open sets, we
do . do
have for f"l(g(S)) = U 7. and Prll(S) = U 8. that
i=1 T i=1




(r sy Y= (Pra(8y), ean P

d

(Sd )}. Since this
2

_’ ® € a
1 2

2

was the sole remaining claim necessary to establish our
lemma, we are done with its proofs and, as remarked above,
our lemma suffices Go prove our proposition.
Our proposition establishes that ¥ (M) acﬁs as a ring
of operators on Hp(M,p(m))o In section (IIl), we consider
an action p, of the ring of double cosets T o I' on HP(M,p(m)),
in the case M = T\X, arising from their action on Hp(T,Pm)

and our isomorphism Hp(M,p(m)) = Hp(Tij) in this case.

(ITI) The Relation of ¥ (M) to the Classical Hecke Ring

!

For this section, we assume that M = IM\X is the guotlent
of a domain X & R by a discrete group T without finite
subgroups acting freely and properly discontinuously as in
the theorem of Chapter 1. By our theorem, we have
HP(T\X,p(m)) = P (r, Py e Since we have T < Aut(X), we may
take the commensurator;f of T in Aut(X), and for a'semi—group
A, so that " ¢ 4 « ?, may form the Hecke ring R (T',4) as in
Shirmura [7 ].

We let the ring & (I,4) act on the group cohomology
HP (T, -) in a similar maaner to that used in Kuga [ 4 ], page
1, Vol, II, and obtain a representation
Py R (T,4) - End(Hp(T\X,p(m)). We propose to define a map

P: R (T,4) » ¥ (M), for M = T\X, so that for ' « T € R (T,4),
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polep(T @ T)) = pl(T a 1), where p, is the action defined in
section (II). |

For the definition of pl(T a T), we first define an
action of "o I" € ® (T,4) on a resolution for BP(T,-) of the
form used to prove #Y (T\X, -) = EP(T, -).

For a double coset T"a I" € ® (T,A), we take a left coset
d
decorposition I a T = U

. T Qg s where Oy = 0 gy for distinct

1

coset representatives gq of T/T n a"lP ¢, When ¥ € T we use

our decomposition to deflne Ti(Y) €T as in Kuga [ 4 ], so

that o,y = (v) « 1Y where {lY, 2Y, . ,dY} is a permutation

T,
i
of {1, 2, ... ,4}. ’

We pick a T-invarient metric d on ¥ so that min d(x,v(x)) =

14YET
xE€x

€ > 0; the existence of such metric is proved in Appendix II.
And we define an "index set"™ A, by A = {open sets U in X/

diam U < €, and diam (aiU) <€, L =1, ¢ve. ,d}. The condition:
"diam U < €; diam (asU) < € (L =1, ... ,4)", 1is equivalent

with the condition "diam U < €, and diam (£ U) < € for all

£ €T oI, as we can see caslly. So our condition is T-invarient,

and T acts on the set A. The set A itself is a covering of

X, so we also denote A by U; and an index v € A considered

as an open get in X 1s also denoted by Uv’ i, W=A4 = [v]}

{Uv}v € A’

by U' = fopen sets U' in X | dim U! < €}, We define cocheim

Also we take another covering W' of X, defined
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EToups Cp(if‘,u,}?m), cp(r,ur,Pm), both gives the same HP(r,Pm).
When n € CP(T,U,Pm) is a cocyle, we may define
a
1

[TaT )] U, N ...0 U, = iilai ha, (U )N ... N ai(Up)) by

the above. The proof that this action takes cocycles to
cocycles, and commutes with the coboundary operator 8, so
that it gives a well defined action on cohomology classes,
may be directly copied from the proof on page 14 of Kuga [}]
for the action used there.

We use cover v = {V/ } € T\A of M = T\X, where A is the
index set used for the cover U of X and V = PrM(Ua). Then
the lsomorphlem.§: Hp(M,Pm) - HP(T,Pm) is given by

[¢(w)](UOﬂ e ﬂUp) = w(VOﬂ .,.'DV§) mr|Uon . ﬂUp where

Vj 2 (U U;). Now we define the action p, of Tal € R (T,4)
on 2 (M, P(m)) by the commutativity of the diagram:

HP(M,P(m)) Mwamghmﬂﬁ Hp(r,Pm)
pl(TaT) T'al

w2 (u, p M) ) m_mmﬂme§ B (T, B ) ,
i.e. for a cochain w of HP(M,P(m)), we define, a cochain
pl(rar)w, by (pl(Tar)w)(Voﬂ cos ﬂvp) = (%aih(aivo, cee s aiUp)) o

-1 . ‘
{7 onn con ﬂU ) 7 where Uy, v Up € u, with PrM(Ui) Vi,
un .. ﬂU + $, h = ¢(w). We can show easily that this is

well deflned, l.e., the right side is independent of the

choice of copiles U, of V, with UM ... ﬂUp + ¢.
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For T a T € R (T,A), let M! = T'\X with T' =a I a™% 0 T,

Corresponding to the map a*l: X = X, we have a map a'l:

T\X » o™ (I )\X, where o 2(T1) =T 0 a™X(T1) =T N o™t T .
We define §: R (T,4) » = (M) on generabors T o T by setﬁing
®(T a T) =M', £, g), with M'" = T'\X as above, g = Pr, Where
Pri: M!' =» M is the projection induced by the inclusion

Tt =aT a L AT cl and £ = PrCL 0 a'l, where o™+
1
(

is as
defined above and Pr_ : a"l(M) =a (TT")\X » M is the projection
induced by the inclusion a (T') =T N o™l T « © T, Then the
map @ : ® (T,8) » ¥ (M) is defined by letting ¢ (I" o I') be the

coset determined by the quivalence clasgs of (T a T) =

(T'\X, Pr_ o «™, Pr), and setting (¥ n, Ta T) =

Zn; @ (r a, T) for an arbitrary finite formal sum E n, T oy T

€ R (T,4).

Theorem: Let M = T\X, o: & (T,A) » ¥ (M), and I be

Po
ags above. Then pl(T aT) = pé(¢(r a I')) as operators on
1P (g, p ™)y, |

Proof: Notations are as above. Then we need only to

it

show that: ((F1og") (w) Voh woe M) 0 Pryly oy

D
-1

Z
s L

i
W(Voﬂ e ﬁV?) o Pr

h(aiUO, cee s aiUp). The definition of h = ¢(w), implies

— h(U
p

U

ulyn ..o 0 +re > Up)e

By the definition of o, (i=1, ... , d)}, we have

-1 - -1 -1

£ (PrM(x)) = {PrM,al (X)) woe PrM?aa {x)}, for x € X, So
-1 _a ) A

il (Voﬂ oo ﬂvp)._ iglPrM,(ai(Uoﬂ ce. ﬂUp))} and ; denoting
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...l .
)T oPrylyn o nu

e MU 0 .

i

Pry, © aionﬂ .U 3o we have [(flog%)w] Voﬂ ees ﬂjp

d
-1
= ii [g*(w)](ViOﬂ ces N Vi,p) 0 (ffvi,on cao N vin)
. | . -1
= ? W(g(vO,o) Noeee N g(Vp)i)) og o (f[vijoﬂ . ﬂVi,p)
where vi,j = PTM'(Ui,J) = PrM,(ain)a Now put
P, o= w(g(vljo) N ... N g(Vi’p)) °g o Perla,(U N ey O
170 P
= W(g(vl O) n LIS ﬂ g(vi’p)) O PI‘M’ Oi(UOﬂ oo nU )
= h(O(,iUO, e CI.:L Up).
-1 .
So ? a, h(aiUO, oo 3 aiUp)
«SatF, =3 T ooa
- 1 i i i .
= 5 w(g(vi’o) N oo N g(Vin)) D g o PrM,]ai(UOﬂ . DUP)D oy
' -1
=2 w(alVy o) Moo Dy D)o (fly g oy, )0

i,0 1,p

PrM]U N...nU = [(fzog*)w](voﬂ coe nv?) o PrMIU n... 0o,
0 P ‘ 0 P
as was to be sghown.,
Corollary: & (T',A) and ¥ (M) are compatible as rings
of operators on HP(M,p(m)).
Proof: Let T aT, TBTER (I'A), then we mean that
(@(Tal+TBT)) = pg(m(TaT))X@(TBT))), where TaT.TBT is the product
in R(T,4) and o(Tal )xe(T'pT) is the product in ¥(M). Note that

we may modify the proof of the preceding theorem by taking the




Ol
cover U = {U < X/U i1s an open set with diam U < €, diam

ai(U) < € and dilam BJ(U) < €}, so that the same resolubion

works for both T o T and T B I'. Since 0y ig a ring homomorphism

we have p. (T a T T gl) = pJ(T o T) p. (T B T). Substituting

l( €L
in the result of our theorem to both gldes of this equalbilon,

we have p, @ (T aT "T B T) = p, @ (Tal)op, (T g 1T) =

Po (0 (T aT)xeo (' BT)), where the last equality holds by
the proposition of sectlon (II).
Remark: We state this corollary as a substitute for
asserting that © : ® (T,4) » ¥ (M) is a ring howorphism. In
fact, as presently defined the image of © in ¥ (M) is not
cloged under multiplication: the components'of o (TaT)xeo (B T)
consist of triples (I'M\X, £, g), where I'" < & s AT

-1

for gome 8 € A, but T" # &8 T & ~ N T for any & € A, We

conjecture that upon further identifications in ¥ (M)
(triples (T"\X, £, g) with I'" "redundant" as above are to be E

!

identified with me«(T\X, ¥, 8), where T is a group of the form

5. T 561 NT with 6. € A so that the index [T": 60 T 661 n T

G 0
= m is minimal) ¢ is a homomorphism,
In the next section we mention briefly the result towards

which our efforts have been directed.

(IV) Sketeh of Associated Dirichlet Serles

Hecke Eichler, and Shimura consildered Dirichlet series

assoclated to Hecke operators; let T be a Fuchsian group defined
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by a guaternion algebrd; and denote by Sm the space of cusp
forms of T'. Theilr Dirichlet series are the matrix valued
Dirichlet series: El (T | 5,(T)) n~° where T,, are "Hecke
operators" of T, |

In general, denote by & (T,A) the Hecke ring, properly
defined for-the Fuchsian group I', and take a representation

module A of ® (T,8), we have a End(A)-valued 3 (T_ | &) n™°,
: n -

Now in our "general" case of local affine manifolds, we have
the Hecke ring ¥ (M), and'representation spaces Hi(M,p(m)),
so we like to find a "generalization" of associated Dirichlet
series. '

For example, if we have some natural sequence {Tn} of
elements in # (M), indexed by positive integers n, we have a
Dirichlet series: ngl (Trl | Hi(M,p(m))) n"%., Or we may use
other formulations., We have ﬁo final formulation, but we like
to discuss here two trials; one is defined for the examples
in Chapter 3, and the other is good for the exémples in
Chapter 4.

In the quadratic form case M = I'\X; where T C SLQ(B) is
& Fuchslan group gilven by a quaternion algebra, then for

Shimura's Hecke ring R (T,4), we have R (T',A) contained in
¥ (M) (as in section (III)), In R (T,A) we have T, (by

Eichler-Shimura) for n relatively prime to the discriminant
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| b g, p (™) 78,

and level of T, So we could define 2 (Tn

n
The compatibility of the actions p,, and p, on Hl(MQP(m)),
and the isomorphism

()5 w0 ™)) = (g

n

o2 ® 82m+2 2m-2 ® ... ® 28+2)’

with e = 1, when m is odd, e = 0, when m is even, and an analysis

S

of the action of T, to both sides; we can prove the actlons

of the Hecke operators T a T on both sides of (*) are compatible
. . 2v . _—

with a twist of (det @) multiplied on S, 5.5 @ S50 oy0

V=0, 1, «o. )3 80 we have X (Tn | Hl(M,p(m))) n~®

n
" -8 Ty =8
2 (T, | 8opue) 07 @2 (1) | Bopp)nT @x (2 | 85 o)
n n n
~{5-2) ~s-mte ) . —n =S =€ )
n ... @ i (Tn | Soerp) B ® i (Tn | Soe4p ) *

The right side i1s a sum of Hecke-Eichler-Shimura Dirichlet

serles § (s-2v, S ) and its "complex conjugationg"
O edb V2

5 (8-2v, Bop nyip)e

For the Heisenberg case: M = N\X {for notation see
Chapter 4}s we consider a group T of automorphisms of M,

instead of the group N. Define T = Aut (M) = Aut(X,N); and

b, = {a € Aut(X)/ o (N) € N}; then Ti c Ay, and &, 1s a seml-

group. For a proper choice of T',4 such that (1)

1

TcT.,, Aca, (2) for all a € A, o7 T a is commensurable

1’ 1
with T in Aut(X), we can define the Hecke ring ® (T,4) as in
Shirmura; which operates naturally on H%(T, HJ(M,p(m)). |

Analizing the actions of ® (T,4), and the isomorphism:




m,p™y = BN (81, (), sf,) = Sm+3(SL2(ZZ)j._-f"

(#): El’O(I‘,Hl(

® {Fisenstein seriecs} 9 S 3 SLo(Z)) (for notation see

Chapter 4), we have that the action of T, € R (SLE(ZZ), M}g(z)) =

agrees on both sides, So we have again 2 (Tn | El’o) n" - e
n :

sum of Hecke-Eichler type Dirichlet series § (Sm+3’ 8),

£ (Eisenstein, 8) and its "complex conjugations" £ (Sm+3’ 8)

g (Sm+SJ g)ﬂ
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Appendix I: The Hochschild -Serre spectral Sequenée.

As the material presented here 1s not part of the auLhorf
original work, and is certalnly known to experts in the
subgect we provide only enough detail “to Justify Lhe_
computations of Chapters 3 and 4. As noteq below the
spectral sequence we use is g specified version of the "usual"
spectral sequence, while one of our applications regquires a
- more general formulation. wWe have found the paper ol

Hochschild-Serre [ 1] to be the most useful reference,

In general, we take é spectral sequence to be g collection
{Ep 9 g }, with indicies p,q,r € Z, where the EP >4 are
groups and the d are maps dr: Ep,q - hp+r q-r+l so that
di = 0 and Ep+% Ker(d,,: Ell'ifq - Eg“’q rhly Im(d,,:
Eg—r,q+r—l > Eg’q). The usual formulation of the Hoschschild -
Serre gpectral sequence as given in Maclane [ 5],
Hochschild-~Serre [ 1] arises from the fact that for a (-module
A and an exact sequence 0 - ¥ - G = G/K » 0 of groups with K
normal in G, G/K has a well defined action on Hq(K,A) determined
by an action of G/K on the bar resolution of .

Theorem {Lyndon, Hochschild-Serre): For a Gemodule A
and an exact sequence 0 » K - G= G/K = 0 as abbve, the action
of G/K on the bar resolution of ¢ provides. s spectral sequence
Eg’q, dr S0 that

(1) BE % = wP(gk, HY(K,A)) 3 and
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(2) B %,n) %E}*;’q,.
where (2) means that the "approximations" Eg’q converge to
P (¢, a) in the sense provided by a filtration on the group
of c¢ochaln for the bar resclution of G.

Proof: See Maclane [ 5], or Hochschild-Serre [ 1]. -

As a corollary we obtain the "specialized" vergion of
the conciusion of the Hochschild-Serre spectral sequence,
that we have used,

Corollaxry: When the G-module A iz a finite dimensional
vector space over a field of characteristic O, we may replace
the conclugion (2) by

(21) w(G,A) = © EP9,
p+a=1

where for sufficiently large r, r = R, we have Eg’q = Eﬁ’q ==

D
ER+1 * & &

Proof: Since vector spaces over a field of characteristic

0 split, the filtration of (2) may be replaced by & .
prge=i

Fbr the required "generallzation", we note that as in
Chapter 1 of Hochschild-Serre, an actlon of G/K on any
resolution of G determines a spectral sequence, wﬁich when
A is a vector space of characteristic O has properties (1)
and (2!'), For the spectral sequence used in Chapter 4, we
note that the actions used there, in particular the action
used to determine equation (*)-on page 37 arise from an actlion
of G/K on a resolution of the full group G = N, although we

have not specified the resolutlon used for N.
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Appendix LI

In the proof of the theorem in Chapter 2 page 10, we
have utilized & metric d on X, satisfying conditions (1), (2):
(1) 4d is T-invariant
(2) min d(x,8(x)) = € > 0.
T 148ET
x€X

Here we shall prove the existence of such a metric d on X

Lemma (A. Weil): Let M-be a (Om— paracompact) manifold ;
and let u = {U'u]OLEA be a locally finite covering of M by
relatively compact open sets U&. Then there exist open sets

Wa and W& for each index o € A, such that

(1) W, cwl, W, cUy

(2) (w ig also a covering of M.and there exists a

G}QEA
Riemann metric ds on M such that
(3) distance of W, to M - W} ig bigger than 1 for all
o € A.
Proof: See A. Weil [9].
Iet M be a mfd, or N £ M be a covering of M. A connected
set A in M is called f-copiable if:
“oay = :
(3) £ (&) =U A; Ay are connected,
i
is a homeomorphism of Ai'with A

Ay

Ai are called copies of A. Also a subset 5 in M is called

f-copiable if there exist a connected set A such that
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(1) SchAcM
(2) A is copiable,
Then, £75(S) 1s a disjoint sum of subsebs s, such that:

(1) £7%s) =y 5., £7T(A) = U A; disjoint sum
i

(2) S; <A

(3) £lq 8, » 8 is a bijection, S, are called components
b .

or copies of 8.

Let X 3 M be the universal covering of M, and T be the
covering transformation gr of X L . By the definition of
covering space, every point P of M has a neighborhood U which
i1s w-copiable. Therefore M has a locally finite covering
U = [Ua}aéA by f-coplable open sets U, Take a system
{wa}aéﬁ, {w&}aEA of open sets in M, and a Riemann metric d52
on M, satisfying conclusions of Weil's lemma.' And take the
pull back d5° of the Riemann metric ds° from M to X. Then
the metric d on X measured by az® satisfies desired condition: i.e.

(1) d(x,y) = d{dx,dy) 8 € T

(2) da(x,dx) =z 1 1f & 4 1,

Proof: (1) is obvious since d§° is the pull back from M,
To see (2), put 7w(x) = P, and take a € A, with W, 2 P. Take
the copies Wa’ W&, U, of W, Wi, U, (respectively), containing
the pt x, Since w(6x) = 7w(x) = P, and since U, is copiable,
8x must lie outside of ﬁ&. So d(x,éx) = d(WesX -~ Wl) = 1, as

was to be shown.
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The metric ds2 on M constructed by Weil is also convienent

to show the Tfollowing statement; A covering U = {Ua} of M

a€A
by open sets U, are called f-copiable irf (1) all U, are copiable

and (2) any finite union U UT, U ...-UU. of U 'g in u
&O al ar a

1s copiable as long as they meet : Ua. N ...nu 4+ 4.
O r

Proposgition: It N £ M is any covering of a (Cm—param

compact) manifold M, M hag a locally finite f-copiable cover-
ing W = [Ua}e
Proof: let u = {Ua}'be a locally finite covering of M
by relatively compact f-copiable open set U . Take [Wa}’
[W&], dsg on M as in Well's lemma. Then as Wé can see easily
any subset 3 © M, with diam (8) <1 is f~copiable. Congider
the covering W = {Wg} of M by all open sets mg With diameter
1

(Wa) < 5. Then U ig a f. Copiable covering of M, since diam

W U .. UW. ) <1 ify Noo.nNw_ 44,
. &O av ao av




