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IF P = { X,87,0000,8,

n F Fleeeee T ) is @&

n

preggntaticn-of a group G with comuutator quotient g#oup,

G/é”f infinité gyclic then G.is.céiléd a kn@tflike group

Zm13:7 IE g ia-finitely §enerétéd ffee then its rank

is equal to the dcgret of the A!oxander poiynomlal of

G éflo ?7The £Qllow1ng quoqtlon'iﬁ asked in ZmJO :Gilven

an 1ntcgral MODLF polynom1ai CP(x of degjee d satisfying

Cp((ﬂ = 4 1, C?{l) = i_l how many xqomo;phl clasées

Qf'knotuliké'groupé G are tﬁe:¥ whoﬁé Alexandel polynomial
C?ix) and G is fr én of rénk é 7 If ¢ is the cardinality

of the family of isomorphism classes then its lowexr and

idd




upper bbuﬁds a;é:detexmined.These isomorphism classes are
shown to be in ohé to one‘éorrespondence with the conjugacy
classes of the admissible automorphisms ( cf; definitién
2.l,page 1% )_ofrthé.group of automorphisms of the frée
gtqup'bf fank d.'My'c6njécturé is that. c = 1 in case of
one;relator”knét;like grbﬁps.l waé'abie‘ﬁé prove { theorem
5.1‘)'£hét éf= 1 iﬁ_gasé of oneéreiaﬁor'kﬁotwlike'gxoups
modulo thélsééohd comﬁutétor subgréﬁp°-ArnecéS$axy and |
'suffiéient coﬁditioﬁ for-é.knqt—likegroﬁp £Q bé‘a oné-
rélatof grbup;'i;eaia.groﬁp-haviﬁgjé ohewxelatdr
preéentation,modulo the seqoﬁd commutator subgioup is
detérminéd'iﬁ'Theorem5,2n In the seqﬁei I.have given a
'new:simplé prodf_of the well knowgﬁfaét that the Alexander
poliﬁomial'égk(x)_of a knotwliﬁé group G satisfies the

N : G .
.cohditioh:ZSE(l): + 1 (theoiém 3ﬁlrj and deté;mined a
Strddturé theoreﬁ (-theéreﬁi3.4 ) fér the cqmmutator
subgroﬁp of'a'Oneurelato:'knot_like group. The proofs
are cémbiﬁatoriai eXceﬁt for certain number theorétic

results.
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ITRODUCTION

The definition of groups in terms of genor-
ators and . relators became important when H.polncaré
discovered the fun&émental group of a pathwlise connacted
topologlical space.In mest cases these fFundamental groups
can be defined ecasily 1ln terms of generators and relators
but not Gtherwise in a purely group theoretical manner
without reference to the underlying topologlical objeat.

This way of defining a group is called presenting the

group.

We shall mean by an ordered paiv (& ; 2 ),
the ﬁresentation-of a group with generators the elements
of the set 8 and relators R,a collection of "words" on the
elem@nts-of 5 and théir inversesaBy the group G presenied
by { 8 ;3 R ) we mean the quotient group of the free group
on & by the nérmal closure of the words in R.We usually
call P = ( S ; R) a presentation of the group G.

Obviously there i1s more than one presentation
of & group €.A group lz sald to be finitely genevated if

it has a presentation P = ( 8 ; R ) in which § is finite,

and finitely presentable 1f it has one in which both &




and R are finite.Beiﬁg génerated by a finlte set of
elements or having a finlte presentation is an algebraic
property of éroupé, IF P= (8 ; R) is a finite
presentation then the cardinality of the set & minus the
gardinality of ﬁherset R is called the deficiency of the
presentation P.

The fundamental group of the complement of

the homeomerphic image of a circle in the three sphere

is called a knot group.If the homeomorphic image is the

unlion of a finite number of closed straight line segments
then that knot group is finitely présentedoA finltely
presentable knot group has two important properties =
(i)iﬁ has at least one presentatioﬁ whose defilclency is
one,and (ii)its commutator quotient group ig infinite
cyclianowéver,thereiare many finitely presented groups
having these £wo properties that are not knot groups .
This leads to the following definition Zﬁl&j7a

Definition 1.1 A finitely presented group éatisfying

two conditions (1) and {(iil) above is a knot-like group.
If a knot~like group ¢ is finitely presentable,

then a polynomial is assoclated with G and this polynomial

is called the Alexander Polynomial of G and is denoted




by ZEG(X)ZTEQ7,IE G is a knot group then KXQ(X) satisfies

the conditions - (i) 42%(i) = 4+ 1, {4il) Z& (x) is
\ ; t

o

‘ . o . g
reciprocal polynomlal,é Lﬁ/ i.e. if ﬁhb(x):cdx Fa o obayRbCy
then cixcd;i,izo,l,.,e,d,This second condition forcaes d

to be a multiple of two.As a matter of fact these two

o

conditioné characterize fhe Alexzander Polynomial of
knot group,called the knot polynonial.But in case of a
knot-1like group the second condition need not be true .
However, the first condition 1s a necessary condition
for any integral polynomlal to be the Alexander Polynomial
of a knot-1like group.We shall give é very short and gsimple
pfoof of this fact in Section 3.Though in general this
condition is not sufficient for a group to be knot~like
we show in Theorem 3.2 that it is sufficlent in case of
a‘one—rélator knot~like presentation.

There is a very close relationship between
the structure of the commutator subgroup G' of a knot-~
like group G and lts Alexander Polynomial Aﬁb(x)o 1f

CoCgq = + 1 then ¢'/6" 1s free abelian of rank d 1f

LY}

4 1 then G'/G" is not finitely genaxatedtéled7o

"

Cocd
Thus a necessary condition foxr G' to be finltely

s 1

generated is that c,ycg = & l.Further, if G' is finitely




generated ﬁhenrit is free of rank 4, provided_d is a
¥not group [7__7¢But in case of a knot~like group G we
only know that if G' is finitely generated free then its
rank is 4 Zm11;7.lp either case for G' of a knot-like
group G to be free of rank d it i8 necessary that the
Alexander Polynomial ébh(x) of G should satisfy + h e
condition Colg = + 1.We shall prove { Theorem 3.4 )} a
necessary and sufficient condition for the commutator
subgroup of a-onemrelator knot~like group to be free of
rank d in Sectlon 3. - 7 -

Thus given an integral monic polynomiél
a-1 .

ceewet CyX + oo  satisfying Poy=t 1,

P = = + g yx .

and (?(1) = + 1 itknatural to expect the existence of a

knot~like group G such that G' is free group of rank d

and 45 () =(?(x).lndéed such a knot~-like group is gilven
G
by the pIesentation

P = ( x,a : §a-xzal,mob,§adm?xma

L a
Ot 4 d""l ! e}

I

a1

?cdml'wcdhg Cq

X admlx =a, 4 Bg o eefg ).

Then naturally the guestion axiges,which was asked in
/ 10 7+ Given an integral monic polynomial (P(x) of

degree d, satisfyingd?(o) m-iﬂl,(?(l) = 4 1 ,how many
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isomorphism classes of krot-like groups are théxe whose
commutator subgroups are all free of rank d and whose
Alexander Polynomials are all equal to C?(x) 7
- We prove several theorems regaxding this
problem iﬁ Sections 4 and 5.Since this problem 1s tied
up with many unsolved problems such ag the isomorphism g
problem of groups, the conjugacy pxobiem of the group of
automorphisms of a free group or a free abeliaﬁ group of
finite rank g%eater than one,and the determination of

class number of algebraic extensions,we conclude that a

complete solution to this problem is possible at present

only under well-chosen restrictions. .




SROTTON 2

NOTATTON AND SUMMARY OF RESULTS

2.1 IRTRODUCTION,

In this section we shall prepare our setting

and outline most of the background material that will be

used from now on.fn article 2.2 we shall list all the
notation that can be explained at this stage and leave

the rest to be explained as the material unfolds.AllL

othex terms and notation used in the seque; withoﬁt
definition or reference may be found in Za7eln article 2.4
we list the summary of our results.

2.2  NOTATION.

We fix the follwing notation once for all.
x= % ,inverse of an element x.

Py = ( Bpsevess By i ) ,free group of rank d.
. - 3
agy = 5 a; xd = 3? , 1=1,2, 000,350,312, a0

bi= b oxt o= b A= 0,41 ,42, 00000, N0te the difference

between ay and bﬁn
\ d d-1
(x) = = Cgn® Foveeonoaot C.X b . ,an integral

1 O

DMenic polynomial in x i.e. a polynomizal in x with integral



coefficlents and leading coefficient one,satisfyingé%0)=i;,

d)( 1)=+1.

d = deg{?(x) = degree of the polynimialcy(x),

(P (%) Ca-1 Co g _a-d-1 Sa-1_g-1 %
ai = aidaidplmﬁoeoodiozz X aix b4 ai X c.o&mxaj‘ o
(?(x)_ . bcdwl bclbco 3 —db d md—lb d~1 bCO F
b = by dwl:v.°,u. 1 Py T X bx x X o X .Fox
example 2.4 o . _9

b T b,bib, = 52 15 x%2 ¥ box b = ¥bxblxb .
2 .y 2 '

) ) w2541 +1~-2 -2 -2

Note that b ® # % L-2x since blbo# b,b; unless of

course the bi commute.

L{w) = the length of the element w = w ({ By oeeceiBy ) of

Fd;defined as the sum of the absolute values of the

exponents of the generators appearing in w.L(1) = 0.
G' = the commutatoxr subgroup of the group G.
%Z = the ring of integers.

Zﬂ§3= the ring of polynomials in x with integer coefficlents.
X = Fl(g),the free group generated by X.

7ZX = Integral group ring of £he group X,i.€¢. the r i n g

of meolyﬂomials in .

<i§?(x) = {|-he ideal generated by CP(X) in.quﬂ,
)

ZSG(X = Alexander Polynomial of the group G.

Aut G = the group of automorphiswsof the group G.




¢ = the cardinality of tﬁe family of isomorphism classes
of knot-like groups G for which degZ&G(x) = d aner'g Fo-
¢'= the cardinality of. the family of isomorphism classes
of knot-like groups for which degéig(x) = d and G'¥F /Fj.
Unless otherwise mentioned small Greek letters denote
hﬁmomorphisms,iSomor?hisms,or automorphisms.

Unless otherﬁise mentioned G,Gi,Gd}GF,.O,.,denote knot—~
like groups.Also by a group we shall mean a knot-like
group.

B(n) = the partition of the integer n.

B( Npsesees Ny ) = the partition of the multipartite

numbexr { Ny seeees, Ny ) defined as follows:Suppose we

~

have'niobjects of the ith kind, i z'l,.ﬁe,k;n=nl+coa.+n

and we have r identical cells.Let Br be the numbex of
ways all these n objects can be distributed among r cells

such that each cell has at least one object.Then

li

n
B ( Dyresess Oy ) > Br.There ig no explicit formula

r=1
for this 4?&;1
2.3 BACKGROUND,
Yet P = ( X,8_,000ce,8 i Eqreveee, X ) (1)

i§

be a presentation of a knot-like group G.Without any

]

loss . of generality we may assume that aiEG',l = 1,ee.,n;




€;

that rj has the form aj Qi,i = 1,000 ,n, %& = + 1, for

some element QiéﬁG'iéf6;7;and_that G/G' 1s generated by
B . \ : v
the coset containing x.Then.{x E’r = 0,+t1l,.....,f0xrms a

Schreier representative system for G medulo G'.Then a

presentation for ' is given by

'

Pto= aij : Rj’ i=1,.ceem,j =0, +1,....) (2)

where Rj is the rewrite(cf,-page 153 ZT%M7?) of the set
sJ

of words or 1.e. %r

(S’

We assume all the words ri are reduced and

L™

i

eycllcally reduced ; and suppose mirand Miare integers

ik if k <I‘£lial‘1d a-,

chh that Ro contains a. My

imy

but not a

it

script occuring in the rewrite of

but not a if tj>Mi,Let 8 be the smallest second sub-

rl,régardless of the

first subscripts;then the rewrite of Esrlxs contains

for scome i but no negative subscripts.Replacing «r

250 1

by Esrlxs and prdceeding gsimilaly with the rest of the

relators makes my non-negative for each i1.If now m, 70,

1

m -
hy = la bs 1every where in the relator

then replacing a 1

1

set we get my = 0 in R, .This gives ue a new presentation

lgomorphic to P.2imilarly we can assume every m, = 0 in

v

R, .Thus {2) now reduces by Tietze transformatlons




i=l:°~'°:nr j:-':O"!‘l,.,‘,) (3)

LTS

prespntation { aij ; Rj .

with 0, = 0 for all i.
Let M'= Mi+.....HM . This M varies with the

presentation Zf13;7080 let us choose that presentation

(1) of a knét;like-group for which M is least possible.

| On the ofher hand 1f ¢ is a knot-like group
such that G'-g Fd = 8140000 ,8g > )} ang G/G' E Fl(x)

then a presentation of G may be obtained from t h e
presentation of G' by adjoining a generator x and relations
§aix =c((ai), i=1,....,d,where X isasu;table automo-

rphism of G' induced by the element x.This is because of

the fact that we may look at G as an extension of F

g oY

Fl(x),such that G' = Fd‘ and since Fl(x) ig free, the
extension i1s a split extension and conscequently eguivalent

to a semidirect product of F, by Fl(x) with a suitable

d
homomorphism of F (x) into Aut Fd Zfil;7ﬂrhus G has a
' 1
presentation
' x X ,
%i = { X,8q e0en, 8y § alﬂcx(al),.o..,adzci(gd)) (4)
The automorphism ¢ uniquely determines this

presentation and therefore we shall denote this presentation

by %i with the subscript of and the knot-likes group it

defines by G, .This suggests that glven a free group F

ol

’

10




we can manufacture presentations Q& for suitable autom-

orphisms ol of F which would define knot~like qroup“ Gy

dl‘

such that ¢', % LIt is clear that not all automorphisms

= - Fg
of Fd will give a presentation RX whlch defines a knot-

like group.So we make the following

»

Definition 2.1 An automorphism of Wd for which t he

presentation (4) is a knot-like group, is called a n

admissible auLomorphlgm oi Pd

For example,o! defined by (jjal)x az,c((a?)xa3

-3 2
c{(aB) = g3 a, a, is an adnissible automorphlsm of ¥

2 1 3¢

because of defines a presentation Py which is an extension

of FS by Fl(x),On the other hand the automorphism £

defined by /5{al) = a,, /8(a2) = a,, /S(a = a,a, i

not an admissible automorphism of PS

X - 3 > ,
By By ,845 A,84 ) is

?5 = ( X,81,89,84 1 83F 87, 8,
not a knot-like group since its commutator qguotient group

is not infinite cyclic.

Thus for a given natural numberﬂd,and for
édgh adnissible automorphdsm c{ of Fd we have é unigue
presentation (4) of a knot-like group G, with G% R

and coversely.This fact will be useful in Section 4.

If the elements of G' are allowed to comuute,




that is if the second commutator subgroup G" of G is
factored out then in the presentation (4)

_— s X-— ® = -
PO{ - ( xralr"°°°°lad ’ al"oé(al)rve*’“rad O((‘:‘d) )r

becomes an admissible automorphism of Fd/Fé,In thig case
: X % oli1 Cﬁid
the relations a, mc((ai) take the form 3y T a;  aee By

i=l,.c.e.,d,where the CX;j are integers and < is unlguely

determined by the matrix

O(ij \ ¢ :L"j mlfzfﬂﬂﬁﬂﬂdn '\:’\Ie

shall denote the matrix Cﬁ&j by |ofll,the matxix of the
automorphism o .We have a new presentation

_ x ol Déd,f_ i
PO( - ( }L’al,ao.na,ad r ai - al oeuﬂ.n ad r.l."‘.‘]-na-d ) (:))

ot lons

We shall use the same notation P, for both the presex
(4) and (5) for obhvious reasons and it will be clear form
the context whether of iz an admissible automorphism of

Fq oxr Fd/Fd .

Definition 2.2 The-aid square matrix“ch with integex
entries and det“gﬁuﬂ + 1,is called an admissible matrix
if the automoxphisnlc(is an admissible avtomorphlsm  of
Fd/F&. ”

It 1s known that a sguare matrix is always
gsimilar to a diagonal bleock matrix,called the Joxdan

Canonlcal From, if the entries are from a field 4 3_/ .

By gimilarity of two square matrices A and B over a ring




we wean that there exists an invertible matrix C with

R . — l
entries from the ring such that CAC = B.By the Joxdan
Canonical form we mean a matrix which has block matrices
along the dlagonal and each block matrix is the companion
matrix of some monlc integral polynomial which is a

factor of the characteristic polynomial of the whole

matrix.The companion matrix of the polynomial

n n-1

4 @ X v oneatd., K - (i
X anmlx kai b a, 1
o 1 0 ... 0
O 0 1 ... ¢
o o 0o ... 1
- =3 . = e es =H
2,74y b n-1L

But-it is an unsolved problem to decide whether an integer
square matrix is similar to a matrix iﬁ the Jordan
Canonical Form over ZZ4 .Since we ghall be dealing with
integral matrices ovei Z . we make the following

Definition 2.3 An integer sguare matrix A is called a

Jordan Matrix if there exists an invertible integral
gsgquare matrix C such that C A c ié in Jordan Canonical
From. |

Note the difference bhetwaen ngdan Canontaal

From and Jordan matrix.Also note that our Jordan Canonical

Form ig different from the usual Jordan Canonical Form.
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given in Zfﬁ?ﬁNamely; in:the usual Joxrdan Canonical Form
the characteristic polynomial of any block matrix on the
diagonal.divides the characteristic polynomial of the
block matrix preceeding to or following the above bhlock
matrix.But in our deéan Cancnical From we donot require
any relationﬁhip among the characteristlc polynomials of
the block maﬁrices on the diagonal.

The det { nc{” - T x ) is the Alexander
Polynomial of the knot-like group defined.by (5) .We shall
dlscuss the Alexander Polynomial of a knanlike group in
Section 3.
2.4 SUMMARY OF RESULTS.

The results obtained in the present work are
as follows:
1.7 P = ( x,b ; R) ds a one-relatox présentation of a
group then it is @& knot-like group & 1f and only if

FANSY

2.LE P

+ 1,(Theorem 3.2).

i

({ x,b ; R ) is a one-relator presentation of a

knot-like group G, then G' 1s free of finite rank d if

[

and only 1f R can be rewritten in the form bow(bl’°°“'bd)

as well as in the form bdv(bofﬁaaﬁ,bd_l)f(Theo;em73v4).

. Y n
. I, . .
2.¢ivenr a polynomial (}(x) :dﬁ“(x;,.,.@a(?kk(x) of degree




d,satisfying C?(O) =+ 1, (}(l) = + 1, each(ji(x) distinct
and ilrrreducible over % ,and ths ny are positive integers,

there exlst at least B ( n_,....,nk ) lsomoxphism classes

1
of knot-like gfeups Gwhose Alexander polynomlal is (ﬁ(x}
and G' % Fd,(Theorem 4,1 ).

4.Gy & GF if and only if Q{andfﬁare conjugates in Aut Fd,
(Theorem 4;2).

5.1f C}(x) is lrreducible then the cardinality-of the

family of isomorphism classes of knot-like groups modulo

the second commutator subgroup is at most. equal to the

5ﬁﬁﬂ :
class number of the £ileld ==
' X ., {(Theorem 4.4 ).
| R
6.,1f d = 2, then there is exactly one ilsomorphism clags

module the second commutator subgroup,(Corollary 4.3.1).
7.Every knot-like group G for which g = 2 and G' F2
has a one-relator ptésgntation,(Corollary 4.3.2 ).

8.If ¢ and G*are'two one-relator knot-like groups with
the same Alexander Eolynqmial and commutator subgroup Fd
then G = G* modulo the second commutator sﬁbgroup,

( Theorem 5.1 ). |

9.A necassary and sufficient condition for a knot-like

group G having a presentation (5) to have a one-relator

presentation is thatHO(Hbe éonjugate to the companion

i5




lo

matrix of the Alexandexr Polynomial of G over ZZ,(Theorem
5.2 ).

10.A cojecture:Given an integral monlc polynomial (?(x)
of degree d, satlsfying (1) = + l,(?(O) = + 1, there

exists exactly one one-relator knot-like group G for

which 45%(x) = (p(x),and G! de

i




THE ALEXANDER POLYNOMIAL AND THE COMMULATOR SUBGROUDR

3.1 INTRODUCTION .

Tn this sectlon we shall gilve a simple proof

of the fact that the Alexander Polynomial Z>5(x) of a
G

knot-~like group ¢ satisfles the conditlon Abb(l) = 4+ 1,
This was proved by various authors for knot groups.fither
the proof uses topological results,which are available
bécause of the knot ZWZ;7,or 1engthj algebraic methods
4rﬁh7:In article 3.3 we shall prove a structure theérem
for the commutator subgroup of a ohe—relator knotmlike

group.The article 3.4 deals with some examples illustra-

ting Theorem 3.4 ,and we conclude this section with a

remark in the article 3.5 regarding oux main problem.

3.2 THE ALEXANDER POLYHNOMIAL .

The free calculus Aﬁémj7i$ the principal
mathematical tool in the construction of useful invariants
of group presentation types.Consider a group presentatilon

P o= Ky ¥y eeacs 7 X] Tnpennes ) .8uppose thig presentation

17
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»

defines a group G, not necessarily a knot-like Jroup

F=7 X 6%y yowsen) Lot @iF——3 G be the canonical

/

homomorphism and #’: G- G/G' be the abelianizer.These

two homomorphisms possess unlque extensions to homomoi -

phisms of thelr respective group rings.We shall denote
these extended homomorphisms by the same gymbols .We thus

have the CQFPODLLiQn
C

e Ly me ’L,; 7 (6/6") where o is

| %]
deflned as follows s
: €. €,
Oxs e . e W ='§%'xf ceoa X
'7§X% “gij ( Kronecker delta )} and if 3, =
ST S
i an element of F, Ow = C%g‘hi X2 ... E = +1 ]
0x5 k=1 Tk 1 32 3k |
and  { wy + Wyl dwy 'évh c
= 1 e w.ow, € F.
W} ' = . . ! l £ 2
%y ij ij _

Definition 3.1 The Alexander matrix of P is the matrix

L 753*’5 |

The BAlexander Matrices of the finitely genera-

ted presentations of a finitely generated group G all

belong to a single equvalence class over Z (G/a') 4?2;7;

Thus it makes sense if we say the ALex mnder Matvilx of

group.
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Definition 2.2 The Alexandax Polynomial of a group G

ig the g.c.d., if it exists, of the minor determinants

of all (n-1) x (nml)_submatxices of the Alexander Matrixr
of ¢ , where n is the number of columns of the Alexander
Matrix.This is denoted hy é}h(x)u

For knot-like groups 2 { G/G' ) is particularly
gimple and is a g.c.d. domain.Thus the Alexander Polynomial
of a knot-like group always exists . We obtain the Alexandex
Polynomial of a knot-~like group by another gimple Way .

Let us consider the presentation (1) on page
8 d,e. P = (.x,al,unen,an ; rl,h.uﬂg,xn } of knot-like
group G.If we rewrlte the relators in terms of the
conjugates aij and then allow the aij to commute then

each‘ri will have the form

pPig{x) p () p; (%)
£,= ay a, ceance an : e b= l,0e.,nn , {6}

~where the p (x)'a:e integral polynomialg in x.

(W

i
| d
Definition 3.3 IFf p(x) m‘xq(co+ Cpx teoeee +oogx ),

Co # 0, ig the determinant of the n x n matrix ‘pi,(x)

then /N (x) = Cut CyE F ovena g2 is the Alexander
G -

Polynomial of G.

1

For example P = { x,b ;s ¥ b pox b ox? )




20

presents a knot~like group G.If we rewrite the relator

in terms of the conjugates bi# #'p %' then we have
' 3 2
RBR 2 bab = ( ¥Bx) (2%0x) (£2Bx2) =5, b3B,= b ¥ g0 this becomes
XSWX'Z“‘X ’ : 3.9
b 1f we factored out G". Thus p(x)=x~-x“-x

i

2 i
% { x"-x-1 ).Hence the Alexander Polynomial of ¢ is
I\ (%) = %2 -x~1.
G
The Alexandex Polynowmial of a group ils an
dinvariant of the group Zﬁ?;?.
The following theorem is a short new proof

of the known fact that /\ (1)= + L for a knot-lilke

group G.In order to prove this we need the following
Lemma 3.1 For a knot-like group 6, G/(G",x) is the trivial
group.

Proof, G has a presentation P=(X,8q,c..,8, 7 Tyseoe,Ty)

in which the exponent sum of x in each riis zero.There-

fore letting »x commute with the a; amounts to dropping

the x-symbols from the xigmext letting also the ay

commute with one another amounts to taking rlgonaoqen,rn

T ¢ i) e e i = o o
module .4 ,where 1n+l'( 8y pvoooe B 3 ) Now

AL b s 3 - ol an T
G/G ( XoBgpeves B 7 Fyreaewa, 80 0 )‘ Il(x)fThat is

o1 i Il +
modulo Fn+l'ri"°‘°°'rn

generate al,s,o.,anﬁﬂut since




modulo G" the a, commute with one another, it follows

that ¢/(¢",x) is trivial.This proves the lemma.

Theorem 3.1 For any knot-like group G,/\ (1) = + 1,
G

Proof: sSince /\ (=x) =‘£>\/(§) we may consider G/G" only.
5 G

pil(X)_hpiz(X) | Py (x)

Th‘ilS l‘i":‘: 'dl &t st eveones O 2z :;"z]'lzyooocpnr S0 :L-E

2 n

we set x = 1, then

il(l) Piz(l) Py, (1)
ry= a a csecessce & , L= 1,2,...,n0 {(7)

7 1 2 n
are the defining relators of G/(G",x).

It follows from Lemma 3.1 that (7) is a set
of genexators of the free abelian group on the ai,i?lpb
sese,n.Thus the determinant of the matrix npij(lﬂ‘ hag
to be +l.Hence Ahﬁ(l) = -+1.This proves the theorem.

Any polynédmial (?(x) satisfying (p(l) = 4+ ]
is the Alexander Polyhomial of some knot-like group G ,

| | _ O,
for instance, the group presented by ( x,b; b ) Yet
not every group with such a polynomial is knot-like.Fox

— 2 '
example ( =x,b ; xz,xbx:b ) defines a group G.Since
, .

G/G' = {( x ; x), ¢ 18 not a knot-~like group.

. t
“'he homomorphism Y : & —> G/G' maps b on

to 1 and % on to 1.The Alexander Matrix of G is

21




1.e,
0 X o~ 2 ' 0 1l -~ 2x

Then the Alexander Polynomial of G is the
g.c.d., of the determinant of all 1 x 1 submatrices of
this matrix.Thus theIAlexander Polynomial ZS%(X) of G is
one.,

However, in case of a one%relator,two gene-—
rator pregentation,which does not necessaiily daefine a

knot-like group,we prove the following

Theorem 3.2 A presentation p = {2, ; R') on two

generators,and one relator defines a knot-like group G

1f and only if its Alexander Polynomial /\ (x) satisfics
: G

the condition /N (1) = + 1.

Frogf: If G is a knot-llke group then A\ (1)= + 1 by

G
Theorem 3.1.

-Conversely,suppose Alh(l) = +1 and we shall
show that ¢/¢' = Fl(x)ﬁ

Let Q;(R) be the exponent sum of,x‘in R and
QT%(R) the exponent sum of‘b in R.Then ¢/G' = By if and

only if (Q’;{(R) , O;(R) y = 1.

'

Now the fact that fhe Alexander Polynonial

I\ (%) of ¢ involves only one variable shows that G/G°
G’ - .

22
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has one generator,for,otherwise the mapping 3&:'8——§Q/G‘
would not be surjective.
This generator is a free generator because
| Py Y
‘OR 3{/ - OR
R} = | g - and B} = [z ;where
TR 5 O (R) = (5

OR ' A
OR s
zpqmﬁszmQ=m£m»ms 'ywﬂzmﬂy)mmmwr
L - .

where ©t = X ox b .

' { _*C\
Since A\ (x) = OR ]i , BR\ F) N (1) =1
ob / ¢

G ‘ax
- 0??’ oyﬂf
gives 1= ( (ORY [ OR}T ) = (guR), TR ).
Hence G/G' = F_(x) and then *the theorem follows.

L

The Alexander Polynomial of a knot-like group

G delermines the structure of G'.

3.3 THE STRUCTURE OF THE COMMUTATOR SUBGROUP OF A KNOT-

LIKE GROUP.

IE /N (%) = cé+ C1X Foooaot cdxd is t he
G

Alexander Polynomlal of the knot-like group G and CCg#l
then G' is not Ffinltely generated / 10_/.on the other

hand if ¢' is finitely gencrated free then its rank is

)

aqual to the degree of the Alexander PoljnomiaL&w1Q47e

‘
)
1
]
|
i
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However, if d=M,where M ( cf. pagé 10 ) is the least
posslible forlall presentations P = ( KeBygeew,d g Il'°ﬁ'frn)
of G then G' is finitely generated if andonly if it is

free 4?13;7m

For knot groups,however,we always have d
g ¢ ] .

i

M.,
The above result is true for knot gfoupsogiﬁce the only : i
proof available at present is'topological‘4“i47 it does |
not need the assumption M = d.In case of knot groups d
turns out to be twice the genus of the knot.

For one-relator presentatioha‘of knot~like
‘groups G; M turns out to be an invariant_of G an& 1f Gt
is fiﬁitely genérated then d = M éﬁ13“7iThe followiné
theoieﬁ is proved in / 13 /.

Theorem 3.3 If G is a one-relator knot-like group then

any one bf the first two statements of the following
implies the rest.{i)¢' is finitely generxated,(ii)c' is
free,(lii)the degree of the Alexander polynomial is M,

Now we shall state and prﬁve a combinatoxial
version of the above theorem 3.3 ,which provideé an effective
test of whether the commutator subgroup of a one;xelator

knot-like group is finitely generated and gives the rank

immediately if it is finitely generated.
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Theorem 3,4 If P=( x,b 1 R ) is a one-relator presentatlon

g

of a knot-like group G,then G' ls free of rank d 1f and
) . - ® = 4
only Lf R can bhe expressed as bw {( b , b ,ecece, b ]
d : ' da-1l
> .

Vb , b ,ee0c0c,y b ) ,where d = deg /\ (x).
' G

and b
Proofi: “If P = ( u,b ; R ) dls a presentation of G then
by the Reldemelster-Schreler rewriting process,as ls well

known ,a presentation for GY is given by

Pl= (””,,b__lgbo,b],”” ; Ri ;o= 0,41, ..00), where
. ~1, i
Ry ls the rewrite of x R x .
L v 52 - a
Then Db w ( b , b ,eccueca, ) becomes
- w9 X xd-1
bow ( bi,boseesee,by } and b v ( bh,b ,eece.,b }
becomes bdv { bé,bl,,aﬁvq,bdql)ﬂ
Now suppose R can be expressed as
- X X2 xd V ; ——Xd 37 Xd""l
bw{b . ,b ,eoca,p ) and b v { b, ,.....,b ) orn

equﬁaléntiy R can be rewritten in texms of the bg as
bow(bl,hz,tp.n,bd‘) and Bﬂv(bozbl;a,am*,bdwl ), then by
Tietze transformations P' can be reduced to

byreeees s Ry i=0,1,.0.. ) ,which furthex reduces
Tietze transformations to (bo,bl,aﬂnrﬁ,bdml s )

Since this presentation is obtained from p°



by Tietze transformations,they define isomorphic groups
and hence G' % Fyo )

Conversely,if R cannot be expressed asg

I - o d o La-1
b w(b ,b",.....,b" ) and/or b" v(b,b yeseee,b ) then

we shall show that G' is not finitely generxated.

Without any loss of generality we may assume

@ . LA=1
that R cannot be expressed as b v { b,b ,.0ee.,b )
, 2 d _
- X . X X
but can be expressed as bw(b ,b ,.....,b ) de.e. in termg

- of the bi’R cannct be rewritten as b,v(b

d_ bl'-eao,b )

oFf d~1

but can be rewritten as Eow(blf“”..,bd } .

Because of this assumption the presentation
P' can be reduced by Tietze transformations to
( by 3 Ri y L= 0,1, 00000)
- From this presentaticn we form presentations
of certain groupé of the form

Hy® ( ByoBlieeeeeeBy 8 RooRp,eneee R 2 ) npd.

| Using Tiletze transformations as ﬁefore.these
reduce to free bresentations of free groups on d generators

n“'(jf‘l ;ooceamsw,bnn - N

Lgt Gpe M ~mm§=ﬁn+l denote homomorphisms

26
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defined by b = bi if i=n-a+2,....,n and

bn"“d"l"l_—d w( bn_d_{"z f* 0o v oo 'b ) -

n+l

Since bhoth Hn and Gn(H') are free groups of

n
rank d,the homomorphisms 6, are isomorphisms.
& Since G° Is the dilrect limit of the sequence
%4 Say1 g2 |
,»Hd+1~ﬂ~%ﬁaﬂd+2“m_w¢men.».n.,of groups and isom-
orphisms,either ¢' is not finitely generated or almost
all the isomorphisms Gn are surjective 47@,p.53“;a
But in the latter case all the isomorphisms

have to be surjective,for,all the isomorphisms Qn are

defined in the same way.Then G' = Hg,ond we claim that

it

this is not possible.Indeed,if G Hg then the automorphism

of G' defined by bi{lF—né% bi’i = O,i;}iZ,nea.»,induces

. . s T foi ] —
the automorphism %705 Hd for which bd“m%bdml'bdml 7 bd—2’

..,,nw.,bz—mmé*bl,blmmw}w(bl,ﬂ....,bd),Slnce Hy is freely

generated by b b2'°f°°'“°’bd; (F(Hd) contains b..That is

1’ d

bdml,maonu,bl,w(bl,....,ba) generate freely bd,Thls implies

w contalns bd only once. This contradicts our assumption

that R cannot be rewritten as b.v(b_,b. ,.ce..,b Y.
o d o' d-1

Hence bdml,..oosa,bl,w dg not generate Hd,i,e, ggiﬁ not

an auvtomerphism and consequently G' is not isomorphic to

Hd,ﬂence G' is not finitely generated.Q.E.D.
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This theorem will now be extended to the
case when G 1ls the free product of a finlte number of
one~relator knot-like groups with amalgamation of certain

free cyclic groups.

Theorem 3.5 Let P = (‘x,al,noﬁn.,a P X{cesecoes,X )

n n

define a knot-like group G which is the free product of
one-~relator knot-like groups Gi having a presentation

IRCTRR AT y,i = 1,2,.0..,n with amalgamation of the

free cyclic group on the x;.Then G' is a free group if

and only if each Gi has rank di (and-thén‘its rank is

n
d=">d, ).
. i:l a -
Proof:Since P = (xl,al : rl) Faeooo o (x a1 o)

(xmxlﬁxz) .(anlzxn)
and the automorphi;m whiéh the element x in P induces in
G' 1s the product of the automorphisms extended to G°

indgge in Gi, 1= 1,i0u0e,n

which the elements X, in P,
we conclude that G' is the free product of the Gi.Then

theorem 3.5 follows from theorem 3.4,
3.4 EXAMPLES .

We shall give below two examples to illustrate

’

theorem 3.4,




ln'P‘m (x,b ; gszgxb) is a preseﬁtation of thé trefolil
knot group G. _ _ _ -
In this presentation the relator R = iszgxb
rewiitten ih térms ofthe“conjugates is R = (ﬁszg)(iﬁx)bs
80 R,= bybybg. |
Then R= 1 can be expreésed as b2=£obl and
as b_= bigzoﬂence by theorem 3.4 G' ié a finitely gene-
‘ratéd free group of rank 2 and one pair of generators is

bopbla

Also we can compute G' directly,for, by the

Reldemeister-Schreler rewriting process a presentstion

¢ b, b

l-.;.z i- ::-O';t.-l;.ﬁoonon)

of G' is given by ( b, 1+1P1

which reduces by Tietze transformations to

(_bi ; bi+2£i+lbifi = 0,1,0.... ) which further reduces

by Tietze transformation to ( bé,bl ;o ).Thus G' = Foe

2, P= (.x,b ; Egbxzﬁz) is a'presentation

of a knot-llke group G ,which is not a knot group.

Slnce its Alexander polynomial is 32»2, its

G' is not finitely generated¢£M1Q;7n

On the other hand,the relator R = R

'

this presentation rewritten in terms of the conjugates

29




is Ro=b2bo ;which agaln can be stated as bzmbo but not

as boz,w(bl,bz).ﬂence by theoxem 3.4 the commutator

subgroup G' is not finitely generated.
3.5 A PROBLEM .

We know that whenever the commatator subgroup
of a knot-like group G is free of finite rank then this
rank is eqgual to the degree of 4§E(x),1ﬁ ig now natural
£o ask the guestion: given an integral monic polynomial

C?(x)iof deg?ee d ,satisfying CP(l)mil, CP(O) = i},hoﬁ
'many isoﬁorphism classes of knot-like groups G are there
for which éé%(xj'==cr(xj aﬁd.G' = F_? This question is

d

discussed in the next two sections.




SECTION 4

CIASSIFICATION PROBLEM : GENERAL CASE

4.1 INTRODUCTION .

The question fjust posed_is a very difficult
one as pointed out in arficle l,leb We'shall go as far
as our present state of knowledge wili pexmit'us,Throught
the rest of our discussion we ghall assume that the

d d-1

monic integral polynomial CP(X) = X+ tooooto wte,

7 “a-1% L
satisfying ,Cﬁ(l} = +1, (?(0) = A 1,4is given.Let < be

the caxdinality of the family of ilgomorphism classes of

Fa ahd.&lh(x) = CP(X)G In

this sectlon we shall determine the lower and upper

e

knot-like groups G with G

bounds of c,we shall show that ¢ is the cardinality of
the family of cdnjugaéy classes of admissible automorphisms
of the group of aﬁtomorphisms of Fq and give certain

other results modulo G".
4.2 A LOWER ROUND .

Definition 4.1 Consider a matrix A over an

7 arbitrary non-negative

-

arbitrary commutative ring and a

*

_:nteger t.The ideal generated by the minor determinants
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of A of order n-t where n is'the humber of columns, ls
calied_thé ¢ th elementary ideal é%{A) of A.
It is to be undérstood that E%(A) = (i) for
£>»n,and that.é%(A) = (0) if A 5a$ fewer than n-t rows.
Cleaxiy -EQJAJ ané%ﬁl(ﬁ),thus to each matrix
A there is associated ité chain of élemeﬁtary ideals

QB(A)S;; El(A}Egz ceeeec. .The equivalent matrices have

thé.same chain of elementary ideals 4Té“7,

Definition 4a2 The smallest integer t forx which.é%(A)z(l)

is called the length of the chain of elementary ideals.

Definiti@p'4,3 The tth elementary ideal of a presentation
| : , th .
= (& : R) dls the t elementary ildeal of zn Alexander
matrix of P.
Since the isomorphic presentations have
equivalent Alexandei‘matrices,the chain of elementary

ideals is an invariant of the group.

The following thecrem gives a lower bound for

Ce

- 0 .

. A : 1 n n
rorem 4., ] ¥ =2 2 k

Theorem 4.1 If C?(X) 1 (%) C?Z (3) avoca Cﬁ{ (%) ,=uch

that the (ﬁ{(x) are all distinct,irreducible over 77 ,
. i :

antd the ng are positive integers, then ¢ is at least
B(nl,¢@n@n,nk),



L
[V

Proof:  First we shall prove this theorem for the case
e =y = = = R 4 e R --__- Dy
when Ny=NoS .o, pk 1.In this case we have (?(x) Ol(x)w@

,,nqoo(ji(Y) Let us consider the presentation

o ) 0,060 Q%)
P o= %, al,,ooee,am Poay ;a3 reosean A ) (8)

where Ql(x) is the product of some of tha é?(x),Qq(x)
is the product of some of the remaining d}(xj etd. and

Ql(x)aaw,.,an(x)==(T‘(x),o,nﬁo,cpk(x), m& k.

' -l i m |
For each m there aLemw-JEL (~1Y " | i Y (m=i)
ml_

such pregentations and in this case there are

B(1,1,....,1) = j§; e > (=1} ( - ) {m-1) presentation
e ] m. .L._,_O 1

We claim that thesé presenﬁations define non-
isomorphic knot~like groups G; for which 25‘(x) E'CP(X),
% ‘
and G' £ p .
That these presentations define knot~like
groups of Alexander polfnomiél C?(x) is clear.
That theée présemt&tions define knot-—like

groups whose commutator subgroups are free of rank d

follows from theorem 3.5 and the fact that the presenta-—

tion (8) can be written ag _ ' T




0, (x) ‘ - 0 ()
a. * terecvere ¥ (X ,a 3 a }
| L (x::};l.;xz) (Xmmlmxmsn m m

P=( xl,al ;

in which each . factor Pi has a commutator subgroup free

: m
} o ==p
of vank equal to the degree of Qi(x) and-dﬁggi deg Qi(X)n
Now we shall show that all these presentations

are non-isomoxphic.

Clearly,presentations corresponding to diff-
erent values of m define nonwisomorpﬁic gpoups,forpthe
lengths of the chains of elementany idealg of the Alex-

‘andexr matrices of thesé presentatlons are different z”ag7.
The'length of the chain of eiementary ideals of the
presentation (8) is mtl.

Next,let us consider any two presentations
correspohding to the same value of m.Suppose in addition
to the presentation (8) we have another presentation

% , 7 _ Qg (x) L op(x)
P = ( x,al,n;.os,am PR yesecesnae,dy ) (2)

where the Qi(x) satisfy the same conditions as the Qt(x)

5

and at least one (hence two ) of the Qi(x) is differen

from the Qj(x)"

'

Let us denote by A and A' the Alexander




matrices of the preséntations (8) and (9) respectively.
Then these two matrices are not equivalent because the
mth eleﬁentary ideals of these two matrices are.different
Zfé;?iFor,'the mth elementary ideal EQ(A) of A is

( Ql(x)yo;,,,,gm(x) Y and the mth'elemenéary idealigm(A‘)
of A' is ( Qi(x),nv.cn,e,Q$(x) )@These are different
ideals in the group ring ZZX, because:of- the assumptioné
on the Qi(x) andron the Qi(x)c

Hence the presentations (8) and (9) define
non~isomorphic knot~like groups éma;7,

Now,the proof in all other cases follows from
the above,by properly defining the polynomials Q4 (%)
becguse of the fact that B(k)sg B(nl,;,.,nk)égB(l,ﬁog,l).
This completes the proof of the theorem.

| Though iﬁ geﬁeralAthere ig no explicif formula
for ﬁ(ni,..on.,nk), in specific cases it can be computed
4r3m7:When Cp(x) is irreducible then clearly there is at
least one such group,namely,the one defined by

@CX))

p=(x,b;:b .

When (p{x)m(ﬁ%(x)cp?{x), both (%) irredu-
-1 2 . i

¢ible,then there are at least two such groups defined Ty
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o '1
the presentations Biﬂ { x,2a ¢ a (x) ) and
C}l(X) , CP (x)
P={(x,a,b ; a , b ).

4.3 CONJUGACY THEOREM .

We have remarked before that for a given
natural number d and for each admissible automorphism
O of F4 there is a presentation

X ol ' 7 .
PO( ( Xal,ncooe,ad K al—‘lO\,(dl)'qrsauo,ad“{)\(ﬁd) ) Of

rats

a knot~-like group Gy with G = FdoGiﬁen'a polynomial(j)(x)

of degree d there may be another admissible autonoxphlom

. ” : x_ s
Fof— F. wit 5/’3 = { x’al"”“’ad Poay (dl)'””’ad‘ﬁ(a‘ﬂ) )
A

such that Gy % F & ﬁé and [x‘(x) (P x)ﬁék (%) .Then the
n(

ndtural guestion is:Are G04 and G, always lsomorphic ? : P
i

The answer is in the negative;for example:

2
Take dg(x) =(x m33+1)(x —-x+1)= 4_Ax3+%x =431 .-

X X X

X - 4 :
By =(x,a, o eB3i8, A, ,87FA,, 8,84 ,8,78_a12,8. ) and 3
X G1efpe8378, T ,a1FAy A=Ay, 8, L2

P *(- sa=g Fea,.  atw=s 8
F TUHBL 880, B 58 a2y 28T g

P ()
)

=(0), €, (g,)=( ;:4~4x3+5x2m4><:—5‘-71. ). €, () =(1),

) and the chain of elementary ideals

o

B
)
Om
9]
R
i

02 3] 2y 1

.
while p, o< (x,ao,al Poag ‘ = ). and the




chain of elementary ideals is & (GF):‘

4 3 .
< (G )=(x -dx +Sx ~4x+1 ), ZUBX-'!'J_,X;}-”X*P.I ) .

Lp 2

G;/é) (1) .Since the lenth of the chain of clcmcntary

ideals is an invariant of.the group and for Py this
length is 2, for .P/3 this length is 3, we see that
G, &G
o

2

isomorphic ? The following theorem answers this guestion

Next the gquestion is:When are G, and Gp

ot

and transfers the burden on to another unsolved probiemu

N &
Theorem 4.2 Gy G[bif and only if TLT x[i for some

iR

automorphism T of Fa

Proof: We may look. at C-}t>< and GF as extensions of Fd by

e

= _GF then let 6 be this isomorphism

F'l such that C‘

and we have the following commuitative diagram

<,

1 > F g > G -3 Fy > 0
J/’C 1 \/@ \l/ .
l > Fd ’. \;}G >Fl 7' ¢
in which both rows are exact and C= 91 ythe restriction
Gl

of & to Gd\ =Fd.

Now for any element z€F 4

’

Since o{(z)({@c; so  6(cd(z )ML(C‘{\(Z ).

we have 0 o(z)=pT(x)

37
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_— : |
If T(z) =y then z = T (y),so that

8 z) F‘Z’“(z —:}@(m )) */5(’?(2))-“3}?(0{(2))3 ( T(z))
“‘7’2‘0{?‘ (v). | |
Thus TTQ/T‘ /B ‘HeHCec<and/%conjugates,

Conversely,let us suppose there exists an
-1 _
automoxrphismCof F, such that TAT =f , and we shall

‘X ﬁ> g .1

TXT Q( T ‘:/5 “}faf ﬂf%s"ﬁ‘,for

every integer 5.

show that ¢

Since Gm/@& = Fl(x) is free,G, 1s a split
extension and hence is equivalent to a semidirect product i

'x o t & i o
of Gy = Fg ?y G&/qi Fl(x) with a homomorphism

?:Fl(x) mm#»¥¥> Aut F defined by ?(x) =0 i.e.
o{(a,) = Q(x)(ay) =a; , i=1,.....,d /11,p.250 7. |

Then the elements of 6 will have the form

r ' .
xra,where ps GZFl(x) for some integer x, aGEFd and the

S s
composition law is given-by(xra)(xsa')ﬂ(xr S)( o (a).a')

for all integers r,s and some a, a'€F,.
Similarly, we may look at G, as the seml-~

e

direct product of G¢' & F, by %ﬁ/é'

F

.

¢ _(x) with a

P 1

homomorphism ﬁg: Fl(xj wmwmw§aAut Fd defined hy ?ﬂ(x):f%,




i.e. (ai) = ?'(x)(ai) mlaf, i=1,....,d.

Then the elements of G, will have the form
x"a with xré Fl(x),aé.Fd and the law of compositibn is
given by (x%a)(x"a') = (xr+s)(/%s(a)ua')o

Now we define a mapping 8: G, wmm?
B(x"a) = xr’C(a), ' , /%

Since T is an automorphism of P_,this mapp-

q’
ing 6 is a bijection.Therefore we have to c¢heck only that
© is actually a homomorphism. |

Indeed, 0 [(xr (x%a )] =_9[ix?+s(cg(a)ua’)]
=(x""%) (Ble{(a).a')) = (xF) (e d(a) . T(a"))

=(x ‘“”)(/a"c (2).T(a")) = (x%(a)) (x"T(a*)) =0 (x¥a) .0(x"a") .

Hence Gﬁlg G, . This proves the thecrem,

Note that in the above proef the auvtomorphism
T need ﬁot be an admissible automorphism of Fae

This theorem suggests that the caxrdinality
¢ of the family of isomo;phism classes of knot-like
groups ¢ with ¢' = Fd and AEE(X): (x) is égual to the
cardinality of the family of conjugacy classes of admi-

gsible automorphisms of the group of automorphisms of Fd'

Since the conjugate of an admissible avtomorphism le

again admissible,the set of all pregsentatlons of the




form under consideration is in one-one correspondence
with these automorphisms and their isomorphism classes
correspond to the conjugaéy classes of the latter.
The?efoxe-é is eqgual to the cardinality of the family
of chjugécy clagses of all admissible autoﬁorphiamd of
the group de

Fuxthermore;this theoremralso suggests that
_the solution of our problem isg directly hinged to the
solution-of the conjugacy problem in the group of
avtomorphisms of the free group ?dasinee the solution
to the latter problem is unknowu,if indeed the problem

is not unsolvable,we are forced to weaken our conditions.
4.4 REDUCTION MODULO THE SECOND COMMUTATOR SUBGROUP

The above problem together with the fact
that ¢ and G¢/G" have the same Alexander polynomizl lead

us to Factor out ¢".In the rest of this section a knot~-

like group G wlll mean G/G" and therefore by G' we shall

[avd

understand g'/g" = ¥ _/¥! Then the elements of G' commute
s

and Gy will have a presentation

c{ilc%i2~ elig ‘

X
P :(x,al,,n"“,ﬁ,ad ; aizc<ﬂai)xal a, ',,,,oad ciml, ... ,4)

40




41

similarly for if' a presentation
g

331 Rs - :
Pﬁ =(X 8y, 0000,y ; af-f=/3(c‘vai)='-c">t[l1 aflz”“ua/;ld.iml,,“,d )

withCX'anﬁfbaﬂmissible automorphisme of Fd/FécSo‘now we

o

defined in the article 2.3 on page 12.

can talk of the matrix of the automorphisn o as

In this case theorem 4.2 becomes the following

Theorem 4.3 Gy = G, modulo G" if ana only if the matriceé
”c{” and” ”are conjugate over the integers.

" Thus the cardinality ¢’ of the family of
isomorphism classes of knot-like groups G'modulo G¢" for
which ' & Fd and.ééa(x} = Cb(xj of fixed degree 5; is
equal to the cardinality of the family of qonjugacy
clagses of d x d admiésible matriceé in the group of all
unimodular d x d integer matriéeseThe problem of similarity
of d x d integer méﬁfices over the integers runs into
the theory of numbers and is again an unsolved problem.
Therefore wé cannot go beyond this theorem at the present
state of our knowledge. "

Now,i£ Cb(x) ie lrreducible over the integers

then we have the following theorem regarding the cardi-

nality c*.



Theorem 4.4 'If(ﬁ(x) is ixreducible-thén ¢* is at most

equal to the class numbexﬁflS#?lof the field ;Ei[ﬂ]

spondence Between the is somorphlsm classes of knot-lilke
groups G,satisfying g' ¥ i and 4>a(z) =(?(x), and the
conjugacy classes of admissible matrices with characte~
ristic polynomial (?(x);

On the other hand O.Taussky proved indml;;7
vthat'thefe is a‘one to §ne coxrespondenée between the
conjugacy classes of matrix solutions of Cp(x)=0 and the

ideal classes of the integer ring of %[ x] i.e.

{ (P (x)

the class number of the fLeld 27[h? Jdience the theorem.

TEE)

Since in general there is no'exp11c1t formula
or method to compute the class number of a field, in
practice the aboﬁe tﬂeorem will not help us to find c*,
However , the above theorem gives an upper bound fox c* in
case of an irreducible polynomial.

On the other hand the quadratic fields of

class number one have been compl@tgjy determined Zﬁ1257

80 the wesult in [T%Om/ roqaldlng d=2 is immediately

’

obtained as

42
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Corollary 4.4.1 If a = 2 then o= 1 .

Proof: *If'd = 2 then C?(X) = x4+ X ey, Cb(l) =l

(? (0) = + 1,30 that cg= #1, ¢ = 3,1,0r~1 and in each

case the class number of %[x] ls one 4f12m71Then

s

- > (%)
the corcllary follows from thegéem 4.4,

Corollary ' 4.4.2 The set of all knot-~like groups G, for

which A\ (x)=x2+c]xi; and G' ¥ F, axe isomorphic modulo
G .
G" and have a one-relator presentation modulo G".
rProof;, Let G be such a éroup with G"= 1.Then there exists
an admissible automoxph18nzo(§f Fz/Fé sﬁch that
3 x_ +1-°1

Pc{ = ( x,a,b ; a=Y,b=2a"b )} defines G.

Replacing b by ax and dropping a”= b and Iy,

c
~2 - 1 +1
%K_ reduces to ( x,a ;- X axa xa™ ).

Thus G has a one-~relator presentation.Then
from co#ollary 4.4;1nit follows that 2ll the knot-like
groups<satisfying the hypmthesis are lsomorphic,so they
are all isomorphic to G,hence have one-relator
pregentatlon. |

In the case of onemrelatof knotnlike groups
we can find the exact value of ¢ .As a matter of fact

one~relator knot-like groups turn out to be much more

interxesting than the generél case, The classiflcation |
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problem of these groups is the subject matter of the

i’

sect

next

il0on.




_SECTYON 5

CIASSIFICATION PROBLEM : ONE-RELATOR CASH

5.1 INTRODUCTION .

“ Fromithe definition it follows that a one-
ralator knotmiike group has a presentation P = (x,b ; R )
with two generators and one relatoxr ,where R may always
assumed to be a reduced and cyclically reduced Qord in
x and b such that the exponent sum of g in R is zero and
that of b is"i},In this section we shall show that the

4

'cardinality ¢ of the family of one;relator knot-1like
groups G for which ¢' Fd and £>a(xf QCT(X) is 1,modulo
the second commutator subgroup.Also we shall determine
a necessary and sufficient condltion for a knot-like

group to be a one~-relator group.We conclude this section

with a conjecture.
5.2 THE ISOMORPHISM PROBLEM .

Throughout this section we assume that

%

S
P=(x,b;R)and P> ( x,b ; R ) are two presentations

which define knot-like gtoups G and G* respectively,such

d~1

G' E G ' EFyand A\ (%) = AN ES) :C?(x)mc S HNIE oY +x9
d G o o} d-1

45
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: " _ .
Let Rgpand R, be the rewrites of R and R respectively

/
commutator subgroups are free of ranks= degL}{x) and - |

46

in terms of the conjugates bjswithout any loss of gene~

: Ca-1 Co . ‘
rality we may assume R = bdbdwl .,,..,bo Jpecause modulo
: ‘ c
the second commutaior subgroup R ;m:bdbddllg.,nﬁb {cf.

lemma 5.1).We shall prove that for a glven (P(x) there

is exactly one isomorphism class of one-relator knot-

like groups,modulo the second commutator subgroup,whose

Alexander polynomials are C?(x)nFor this we need the

following
: — * ,
Lemma 5.1 R is obtained from R, by permuting the b,

—

i= O;l,...,?d and 1nsbrting pai.xs b.,

i#0,

'LF
_ ¥ , ‘ - %
Proof: 'RO and R, are words in thg bi,Let-L(RO} and L(Ro)

be theix lengths as biwworas respectively.The proof is

.
by induction on L(R_}.

©
- b ) * r
Since P defines a one~relator group whose
commutator subgroup i1s free of rank d,thecrem 3.4 applies.

' b
Hence bo and bd,must QO in,Ro and each of them must

occur only once { with exponent + 1 ).Furthermore,0,d

-are the minlmum and maximum among the subsdripts of the

e f
by in R ( 1f not it can be made so the way we have done
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*

_ . c B
in article 2.3 ) .Thus R, can be rewritten as hbw(blgoob,bd)

and v(b,,.voee, Pgdbg, €= F1.

o

o2
et

L(R,)= 2 4-z§% ]ci

the Alexander polynomial of G or a”.

/

. Cy the coefficients of

}_l-

% : : -
Clearly,L(RO) cannot be less than L(R,},
otherwise the Alexander polynomial of G will be diffevent

* _ ‘ ‘
from C?(x)uThus L(Ro);} L{Ry) «

£ o
Now,let us assume that L(Rg) = L(Rg).R

must be dbtained from R

*
O
o just by permﬁting the by, 1= 0..

«es,d and by inserting no pair of éiementé,that isg

* . '
R, # Ro mod G" and our lemma is true in thils case.

Next let us suppose our lemma is true for

LR

o) = L(R,) + n , for even nz 2.Here n is even because

of the fact that Lit(x) = /\ ,{x).We shall show that the
E G :
lenma is also true for L(R;) = L(R,) + 2 + n.

: * . .
Since n3}»2,R, contains at least one pair

—

b, by , 1 # 0,d more than R .Let us suppose that the paix

is b EloRz cannot contain a pair like bl'bl or by,bsy,

l !’
because in that case /\ (%) # Abh*(x),When we drop this
G .

-‘!‘|
. . % .
palr from R, we obtain R, ' whose length is L(RO) + n,and

hence by our assumption R;' ls obtained from Ry by
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-

permuting b, ,i = 0,1,.....,d and inserting palrs by ,by,

’!: fa
1# 0,d.Now Ro-is a word which is obtained from Ré' by
inserting the pair bl,ﬁl.Thus Rz js a word which can be
obtained from R, by permuting by, 1 = O,l;»,.;,d and

inserting various pairs bi'bi' i # 0,d.Hence our lemma

is proved.

This lemma says that Rg === R, modulo G" . .We

have the following theorem from this lemma.

,Theorém‘S;l For a given Cp(x) thexe is exactly one
isomorphism class of one~relator knot~like groups ,modulo
the second commutaton subgroup,whose commutator subgroups
are free of rank = deg(j’(x) and Alexandex polynomlals
are .CP(X).

Proof: This is immediate from the lemma 5.1,since we
have exactly one preséntation,modulo the second commub- |

ator subgroup,satisfying the hypothesis of the theorem.

Thus we are now faced with a new problem i.e.

which of the groups defined by the presentatiops

- i1 ofin olig

I‘z}<= ( X,al,.uuﬁo;ad ; ai :d(ai‘) = aal az ooonnnaé

|
i= 1,04 ) |

are one-rxelator groups 7 We give a necessary and




sufficient condition for this in terms of the matrix

ol

5.3 A NECESSARY AND SUFFICIENT CONDITION .

Iheorem 5.2 A necessary and sufficient condition for a
knot~like group G given by the above presentation Py to
have a one-relator presentation modulo G" isg that”c{‘lbe
conjugate to the companion matrix of the Alexander
polynomial of G over the integers.

éroof:)This follows immediately from theorem 4.3 and the
fact that the automorphism corresponding to the companidn
matrix of‘ébb(x)'defines a one-relator knot-like graupr
satisfying the hypothesis of the theorem.For, the
companioh matrix of ZAG(X) is

0 1 [ 0

0 0 1 .... 0

'“CEO "’Gl "‘C‘f2.. P

"Ca-1

and the automorphism of Fd/Fé corrésponding to this

’

matrix defines 2 presentation

49
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e

( XKBjrecoe, 8y § X AJX = Agenesa X Bg 1X= ay,

_ _ TCd-17%g-2 o
X 8g¥ = Ag By 4 sev.. 83 )

Cot €qX +Tovonen..t C
:_\J_( xtal H al V ) °
The cenjugacy problem for the group of
automorphisms of Fd/Fé is unsolved,so this is the best

one Zan say at the present state of our knowledge.

Corollary 5.2 If ”c{” is a Jordan matrix then G/G" is

the free product of one-relator knot~likergroups with
amalgamated freehcyclic groups.
Proofs if”c(”is a Jordan matrix (cf. definition 2.3,

page 13 ) then it is similar over @ to a matrix|| ,

2

which is in. the Jordan canonical form.Supposel|| P” is
the direct sum of square matrices Bi of dimension d;x dy,

where By ls the companion matrix of the polynomial(jl(x)

of degree dir L=1,.....k. E

Now corresponding to each polynomial Ca(xl

free group R and matrix B, we have an admissible

d4 :
automorphism Fq on Fdi/Féi,such that l|{fﬂ|~ Ix Im(zg(x}, |

which defines a one-~relator knot-like group Gy given by é




. (P (x) .
the presentation gPi = ( X5,85 7 ay ) .Clearly Gy Fdi'
2N (%) ==Cﬂ(xj , 1 =-l,¢,.°ﬂ,k;Therefore

G . i

l . —
TalFRCE

By theorem 4.3 Edwand Pﬁ define lsomorphic

groups,so G g]l ;) Gi .This proves the corollary.

Note that in the above proof /3=:j%l..n.. K
and this product of automorphisms on the free groups

does not depend on the order in which the f% appear i.e.

= - 1. .n == = : ‘D
/51/83 /E%/ﬁ% bécause Fai Fdj L for i # 5

5.4 A CONJECTURE .

| Theorem 5.1 says that given an ltegral monic
polynomial (?(x) of degree d,satisfying CP(O) =4+ 1 ,
Cﬁ (1) = + 1,there exists exactly one one-relator knot -
liké group G ,modulo the second commutator subgroup, for
which th(x) = C?(X) and ¢' £ Fq-I believe this theorem
can be improved by dropping "modulo the second commutator
subgroup“.The?efore my conjecture ils :Given an integral
monic polynomial (jD(x) of dégree d,satisfying Cﬁ(l) = 41,

C? (0) = + 1,there exists exactly one one-rxelator knot-

’

a-

like group ¢, for which /\ (x) =(:F(x) and G' & F
G .




For instance,let us consider the example of

page 36 together with a new presentation PY as given

below,
B, = - ‘ X X ¥ . X_-—-' 4~5 4
ol =( X,85,89,8,,8, ; ap=ay,a =a,,a, “84,837358,a, aj Y,
X X o= 3 x £ -
ﬁg =( x,ao,al,az,a3 Pag=a,,ay ao a,,8,7a,,8,= a,a, ),
B, = _ , X X_ X “_xu 6 ~3 2 ~2 2.9 )
Y x,ao,al,az,a3 ; aowal,al-az,az—as,aBHal aaza ajaqa, ).

We know that RX is not isomorphic to 3@ .
Similarly we can show that P{ is not isomorphic to 75 .

Pc('P 'PY define knot-like groups Gy /G

P

respsctively, for which Gé< = Gf = G, gF4 and
Alt(x) = /\ (x) = L\ (%) = x4n4x3+5x2—4x + 1.
G G

Also we can gee that

x*ax3isx?oax + 1

o4 o o
2 2
X =-3x + 1  x -x+ 1
P/a o~ ( X,a ,a2 H o N C:l2 )l‘
: ) 3 2
. x4+2x?m2x3+2x + l-2x +3x% -6x )
Ry ~ | X,a, 1 ag : .
Thus %X and PY define one-~relator knot-like

groups where as P, defines a knot-like group which has

no one-relator presentation.For, suppose this is isomo-

rphic to a one-relator presentation then modulo the
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second commutator subgroup,i.e. GF /G" has a one-relator

i

presentation;lf'ﬁfis the automorphism of F4/F& which

defines this presentation thenf‘ff” should be conjugate

to 0 1 0 of  and ” ]l =l o 1 0 of.
0 0 1 o =1 3 0 0
0 0 0 1 0 0 0 1
-1 4 -5 4 0 0 -1 1
But these two matrices are not conjugates.
Hence PF is not lsomorphic to a one-relator presentation.,

By and Py are the same i1f we allow the a, to
commute i.e. 1f we Ffactor out the second goﬁmutator sub~
group.But if we donot factor out thé second commutator
subgroup RX and Ey are two different presentations.My
conjécture Says EX'Z?EY .

If G has a nontrivial centre then my conjecé_
ture can prdbably be proved by similar techniques to

those used in Zrém7iﬁ proof of my conjecture,however,at

this time,seems out of reach.
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