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Let 0 ¢ ¢ U {®}] be an open domain of finite connectivity:

m z 2, Suppose also that nOne'of-its boundary components
reduces to a point. Represent 0 as U/T; where U is the uﬁper
halfl plane, and T is a Fuchsian group of the second kind
w1thout elliptic elements.‘ We denote by T#(T) the reduced
Teichmliller space of‘T. It is known that T#(T) carries a
canonical real analytic structure and a canonlcal embedding
as a domain in Euc11dean space (Ahlfors, Bers, Earle).

The group T acts properly discontinuously on T#(T) x U,
~and V#(T) = T#(T) x UT is 'a real analytic manifold. V#(F)
is a fiber space over T#(T). The fiber over T € T#(T) is a
Rlemann surface QT, a quasiconformal 1mage of Q. We define
locally a map F : V#(T) - ¢ as follows: Given R T#(T),

F(T,+) is the classical circular slit map of Q. (properly

‘normalized). Real analyticity of F is proven. The map F




induces a (locally defined) real analytic map Zg :'T#(T) - m3m“6

(m = 3), %y(T) being the parameters determining the circular
s1lit domain corresponding to Q%. Using variational formulas
(Rauch, Ahlfors} we compute the differentiél of the map Zy.
This turns out to be non singular. Thuse ZO provides real
‘analytic local coordinates for T#(T),'with an explicit
geometrical interpretation in terms of classical conformal
mappings. |

The variation of Green's function due to uasiconformal
q

.dlstortlon of the domain is studled. A variational formula
in terms ol the Beltrami coefflclent of the quaglconformal
map is derived. To obtain this result, the Fuchsian group
representation,,Poincaréfs series and well knoﬁn variétional

formulas for‘quasiconfdrmal mappings are used. : o !
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O. JInteruction

'The classical theory of moduli of Riemann surfaces began
ﬁith the work of Riemann. He observed that the conformal
type of a compact Riemann surface of genus g > 1, depends on
3g-3 Cbmplex parameters (moduli). His remérks were far from
“being a saﬁisfactory éﬁswer to-the problem, which in fact
was vaguely Formulated.. One would like to construct numerical
parameters associaﬁed with each surface; inrorder that'twb
surfaces be conformally equivalent, these parémeters should
coincide. | _
| Fundamental work of Teichmiller (1940) showed that the
problem becomes simﬁlef ir conformal equivalence is replaced by
é strongér-'equivalence'relation. Teichmuller'intrqduced a
metric on this set of equivalence classes (Teichmliller SpaCe).
He proved that with this metric it 1s homeomorphic to Euclidean
space of real dimension 6g~6, This result was alreédy ,
contained in the.work of Fricke (1920'5),'wh9 used a Qﬁite
different approach.

Therexistence of & natural complex strucﬁure on Teich-

miller space was first proven by Ahlfors (about 1960). He

as‘strongly influenced by Teichmliller's ideas, and he used
auch's construction (1955) of local coordinates around
fﬁints which are not hyperelliptic.surfaces. Other proofs
ere given Shortlj after'Ahlfors by Bérs; Kodaira and |

pencer, and Weil.
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Earler(mid_1960’s).developed the theory of reduced
Teichﬁuller sPace, generalizing TeichmBller space to include
nénucompact‘surfaces. The reduced Teichmliller space carries
a natural real analytic,structufe, and it is finite dimen-
siqpallfor Riemann surfaces with finite douﬁle. A different
generalization of Teichﬁullef space to open surlaces is due
tc RBers. | |
In this thesié, we consider the particﬁlar‘case of a

plane domain of . finite connectivity. Our firét result 1is
the construction of local real analytic coordinates for the
’réduced'Teichmuller space. These coordinates are defined
geometrically by meéns‘of the claééical‘conformal represent-
étion of a multiple connected plane domain, onto a circular
slit domain. Our second resull concerns the variation of
Green's function, due to a quasiconformal distortion of the
domain. We obtaiﬁed an expliéit variational fofmula in
terms of the Belﬁrami coefficient of the quasiconformai

map. | |

Chapter 1 contains a description of the ciassical

.circular slit map, In particular we observe that the
'endpoints of the slits correspond tO'zeros'of_a holomorphié
differential. Also a review of Green's Tfunction definition
and elementary properties is given. InVChapter 2 we recall
some basic Facts about Téiqhmullef spaces. In the last

section, we prove some non-standard properties ol Iiber
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spacés over reduced Teichmiiller space. Chapter 3 is devoted
to the constfuétibn of the local coordinates for the reduced
TeiChmﬁller space,.from the circular slit representation of
multiple connected planar surfaces. Pinally, in Chapter 4
We,derive the formula ror'the‘quasiconformai variation of
.Green'slfunption. At the end of the chapter, we use some

recent work of Gardiner to obtain the classical Schiffer's

variation of Green's function as a special case.




1. Conformal Mappings of Plane Domains

1.1 Let @ €€ U {=] be an open set of finite connectivity
m = 2, we can assume without loss ol generality {see Ahlfors
[2] p. 244 for details) that © is bounded by analytic curves
Cl;”"cm’ and that none o the connected components of the
complement of Q reduces to a p01nt.

We-denote by wi’ i= l,.;:,m;‘the harmonic measure of C
i.é.,wi is the soiution to the Dirichlet problem in &, with
'.boundary values 1 on Ci and 0 on the other boundary cﬁrves.

' Observe that Wy can be continuedAacfoss_the boundary accord-
ing to the reflettion pfinciple; | |

Consider the function u = Aq oy +.,;+ A1 %1 where

the scalars ll,;..,km_l are chosen so that

”, J

=1
(1.1). [ #qu =40 s J=2y..0,m-1 .
C. -

1 —2,j =m

In fact, let A denote the (m—l) X (m—l) matrix w1th entries
6; 5 = Ici*dwj, 1,5 = 1yeee,m=l, it is well-known that A is
symmetric and non—singular. Let A be the column vector Wlth
components Ao 1= 1,.0.,m-1, and e the (m~1) column vector
with components 1,0,...,0, then X is the solutlon to the |
_ystem of linear equatnons AN = Zﬁe, ‘the equatlon (1.1) for

= m being a consequence of the former ones.



Define ™
(1.2) £(z) = [ du+ i*du + u(zy), 25 € 0
I is well defined up to periods *2mi along Cl and Cm' The

function F(z) ='ef(z) is then single—valued.

Theorem., The function F effects a one to one conformal

M

‘minus m—2

mapping of § onto the annulus 1 < lwl < e
concentric arcs situated on the circles lwi = e l,
i=2y...,m1., TFor a given choice of Gl and Cm the map

is uniguely determined up to a.rotaﬁion.

This theorem is classical, for a proofl see €.8.

Ahlfors [21 p. 24L7.

1,2 To the domain © we associate a compact Riemann surface -
ad of genus g = mrl,'calledfthe double ova. The surface

ad is obtained by taking a copy ¥ of 0 and identifying
corresponding points on the boundary. If 7y € 0 we take

as local coordinate the identity mép zy if 2y € % we let %

_be a local parameter. For a point 70 € o), let h map a

= 0 and the_boundary'corresponding to Im w = 0, the

h(z) -z‘G 0

Ty sed

neighborhood of z, in 0 conformally onto { W‘lWl < 1,Im W = 0},
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It is clear that 0% carries a canonical aﬁticonformal involu-
tion, the imagé of a point p ¢ a% under this map will be
denoted by S. |
Given a meromorphic q—différential (g 20) win Qd, the
anticoﬁformal involutién induées a meromorphicrq—differential
¥ in 09, IT =g € 0% and # is a local coordinate in a neigh—
borhood of () % is givenrby W =.ET§7dzq, where f is such
that w = f(w)dwq for w= 2 if 20 € 30 and w = = if ZQ ? Bﬁ.
A g-differential ® in 0% is called symmetric if w = W.
v;A g—-differential w is said ﬁo be real on 0Q, if for every |
pdint Zd € 00 and every local coordinate 7 neaf Zq such thét
z = z corresponds to 30 w ='f(z)diq with T real for z = Z.
Note that the definition 1s independent of the-local*coofdinw
ate chosen., It is not hard to see that a g-differential in

d s symmetric if and only if it is.real on °Q,

Q
A simple computation shows that if ® is a meromorphic

differential in Qd, and Y a path no passing through poles

m-1 for g =1 mz 2,
1 for q 22 m= 2,
(2g=1)(m~2) for




| ' 7.
Proof, The compleXification of the gpace isrthe space of
all holomorphic q—differentials.
- We define cycles agseees8y g9 Dysecesby g on 04 as

:follows:r'ai = ai“gi’ where «; 1s a curve in Q joining C,
to Gy and b; is the curve Cj propérly oriented, 1 = 1,...,m~1.
These cycles determine a canonical homology basis :on ad,

It is easy to see that the holomorphic differentials
%(dwj - i*dwj) oﬁ Q, are purely imaginary on o{ and there—
fore can be extended by reflestion to holomorphic differentials

. on Qd, J=1l,...ym such that $. = Further, a compu€a~ 

J J J°
tion shows
' B 1. X '
(ll)-l:) : Ia Cpk = 6jk 9 ‘rb tpk = "é‘lakj ¢ k’J = l,.-.,m"l.
Jj . 7]

Thus {wl,...,wm_l} is the basis for the space of holomorphic
differentiais dual to the canonical homology basis determined-
by al’l."am_l’ bl’l‘-,bm.—.l' . V

The holomorphic differential du + i*du on Q, defined in
1.1, can also be extended by refleskion to a holomorphic |
differential © on Qd'and the circular slit map F can be
written

1.5)  F(z) = exp(fz_m+u(z0)), zg € Q.

3y considering in (1.5) z € Q we have an extension of F to
this extension is one to one when restricted to Q and

Wo to one on 3(, The path of integration is taken to be



" contained in Q.

Proposition. The endpoints of the m—2 arcs in the image of

Q under F correspond to the zeros of the differential ®@.

Therefore”w has simple zeros located by pairé in the boundary -

curves 02"“’Cm%l'

Proof. The endpoints ol the arcs correspond to critical

points of f; P, @ Eer’ j'= 2,000 m=1. In fact,for z € Cj

Arg F(Z)m}(fz P+ ‘Zo) )})attalns a meximum and a minimum. Leb :.

be a crltlcal point of I v, z € Cj’ choose a local
%0

a9
coordidate w = utiv in a nelghborhood of aq such that

w(ao) = 0 and near aO,Gj corresponds to v =0, then

: —l )
4 oew () o ‘
%y IZ cplu_____o = 1£(0)
here ® = I{w)dw. Therefore agy is a zero of . - To complete

he proof it is enough to observe that since Qd has genus

”?l, ¢ has exactly 2m—4 zeros:

3 Let § € Q, we denote by Gg¥ the unique abelian dlffer—
'tlal of third kind with simple poles at & and ¥ and re81dues

and 1 respectlvely, and, with purely 1mag1nary periods

y the canonical system of cycles al""’am—l’ bl""’bm—l

d defined in 1.2. Agsume Further that & ¢ a4 J

:Next defTine

G(z,E) XZ Oy 2 € Q,

ol
M2

1’ L -,Hl"'l.
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where the path of integration is chosen to be antisymmetric
and not passing through § or %; except when z = & (see

Schiffer and Spencer [19] p. 93).
We observe that o g + &gg = 0. Indeed, the differential

apy-+ (1 ¥ is holomorphlc, by (1.3) and the normalization in

the definition of agg.we have
J ol +‘E€E = | g | Tl = 0, J = 1y..com-1.
“b. ‘ b. b, _ \
o Jd J J :
. Therefore G + &gg = 0, Now,

n

- —— VT S N
2y = 2y == [y = (%
Jo g2 I| ot I7 gy = o O
thus g o is real.
Iz g%r

The definition of G(z,%) is independent of the choice
of (éntisymmetric) path of integration. To prove this claim,
suppose Yl,Y; are antisymmetric pathé from z to z. Let c be
a small 01rcle around &. The closed path Y{Y 21 is homologous
d _

where nj,k., j= l,...,m-l, and t %ore integers. Now,

fy Oy ~ I agg X Y”l §E = nlf &%E Fueok nm—lj qg%
i Y1¥2 21 fm-1

wigf gy ket agy A ey 4 B, g
b i . b c 'l
1 m-_-l :
& right hand side is purely imaginary, but the left hand side

real, ‘therefore, both are zero.




10.

The following properties.of the Function G(-,&) are
easily verified: | | '

1) @6(z,8) is real harmoﬁic in 0-{ &}, continuous oﬁ?iw{g}

2) G(z,8) - log |z-€] is harmonic in Q

- 3)_ G(z,E) = O for z € oQ

‘Therefore G(*,5) is the Gfeen's function of @ with singularity

at §.

Remark. In our definition, the Green's function is negative.




2 Teichmliller Spaces

2.1 Let U be the upper half plane, and T be a Fuchsian Broup.
l.e€esa discréte‘subgroup ol the group Mt!'b[R of conformal self-
maps of U. The limit set.A(T) is the set of points of aceumu-—

lations of ofbits, AT ;_R u {=1. W? assume that I is

non_4ﬂenentépv, that is A(T) contains more than two points.

T is said to be of Ffirst kind if MT) = R U {®}, otherwise

A(T) is a perfect'nowhere dense subset of R U fo} and T is

- called of second kind.

Let Lo{T) be the space of Beltrami differentials for

T. Lu(T) consists of all M € L,(U,C) such that
(2.1) (Mev)y' /¥yt =y, for all v € T,

We denote by M(T') the open unit ball in Lo(T), 1 € M(T) is

called a Beltrami coefficient for the group T.

A homeomorphism w of U UR U {®} into € is sald to be

derivatives satisfying the Beltrami equation

6 say that w is normalized if it fixes 0,1,®. Given d € M(T")

here is a unique normalized p-conformal homeomorphism WH;
p?ing U onto itself (see Ahlforé—Befs-[h]).

From now on, we will assume that 0,1,® € A(T), unless

’ :l.lu

U-conformal provided it has locally integrable distributional
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otherwise -~ explicitely stated. 'We'say that the Beltrami

‘coefficients M and V are R-eguivalent if and only if W, = vy,

on R. The Teichmﬁller'space T(T') is the set of ﬁ~equivaience

classes in M(T'). Two Beltrami coefficients K and V are

v Vv
Teichmliller space T#(T) is the set of equivalence classes in

M(T). Note that if T is of the Tirst kind T(T) = TH(T).
Tt is not hard to see that if u € M(T) then
: -1 - ' ' -1 . '
ovVo e 7T B e — ovo
w,°Y ) MbqR for all v and u m»yu W, Y , 1slan

“isomorphism of T onto another Fuchsian group PH = wurwu .

Furthermore, two Beltraml coefficients W and Vv are equivalent

if and only if © 9

T
 We denote by Q#(T)’the space of gymmetric integrable

holomorphic quadratic differentialsg; i.e.,Q#(T) consists of
holomorphic functions £ in U Y (R-A(T)) such that |
1) £ is real on R-A(T) |

2)  (£ov)(v')? = f, for all v € T,

3) el =3 [ le(z)azndz] <

| T

sre is a natural real pairing between L,(I') and Q#(r)

(r1) = 3 Re | r(adu(z)ldsndsl,
u/r |

r e AT, 1€ LoD,

fu € Qw(r)l(f,p) = 0, for all f € Q#(F)}.

called eguivalent if and only if w, = w,, on A(T). The reduced
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Theorem., (Ahlfors, Bers, Earle); T#(F) has a natural real
- ' _ canonical # ' # '
analytic structure so that theamap o7+ M(T) - T"(T) is
real analytic. The tangent spéce to T#(T) at ¢#(O) is
‘canonically isomorphic to Lm(Tl/N#(P). The pairing (2.2)
gives a canonical isomorphism between LW(F)/N#(T) and the

(real) conjugate space of_Q#(T).
For a proof-éee Ahlrors [3], Bers [6]1; Barle [10] [11].

Remarks. _
1} M(T) is an opeh set in the Banach space %m(r)-:
Ltherefofé has a natural analytic structure.

'2) - IF T is of the Tirst kind the theorem also holds
hen we feplace real analytic by complex analytic, and dis-

Tégard Re in the pairing (2.2).

Let O(T') be the component of the complemeﬁt‘of A(T)
ch contains the lower half plane L. T') is L when T
I the first kind and the complement of A(T) when I' is

he second kind. (T) is invariant under T" and we can

oducethePoincaré metric A with curvature -4, which

(rev)|v'] = A, for all vy € T

[16], Chapter IT).

__anach space B#(T) of gsymmetric bounded holomorphic

differentials on L for I is the set of functions @




hdlomorphiC”ih L U (R-A(T)) such that
1) @ is real on B—A(T);l |
2)  (pey)(¥')? = ®, for all y € T,
3) el = suplle(z) | M(2)7?; 2 € 1} < o

Théo:gg, (Ahlfrors, Befsy Earle). There is an analytic
bijection j, mapping T#(T) onto an open bounded domain in
#(r). ‘Every ¢ in BH(T) with llell < 2 is of the form

30F(1)) where u(z) = - S(EIN(E) 2.

For a'prodf see Ahlfors [3], Bers [6]1, Barle [11].
;Egmark;',In'the theorem the'ﬁijection is complex or real
analytic according I' is of the first or second kind,

There is a real pairing between_B#(P) and Q#(T), given

by the Petersson scalar prdduct

(£,9) = 3re [ _r(a)o(B)A(3) 2ldznazl,
T2ty |
€ ghr), v e BHT).

hrough this pairing we have an ilsomorphism between B#(T)
the (real) conjugate space to Q#(T). For T of the

st kind, if we disregard Re in (2.4), the pairing becomes

ven € M(T) we define a map (known as right translation)
M(Pp) - M(T) by ru(K) = Vv if and only if w, = w,°w,. A

tation shows that the map is biholomorphic. Suppose
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ll,lz_s M(Pu) are equivalent, then wkl = wlz'on A(T ) but
_ | ow = W A(T

A(FH) wp(h(?)), therefore wllfwu 7 le Wp on A( ) .

r (ll) is equivalent to r (lz). Since the projection from

:Beltraml coefficlents to reduced Teichmiiller space is real

induced

analytlc it fo]lows that theAmap r, : T#(Tu) - T#(T) is a

real analytic bijection, taking the class é#(O) to the class

O ().

2.3 We suppose, in this section, that I' is of the second
kind. Let p : U~ QT) be a universal covering map such
that ped = p where Jz = ~z. Define a group G '

G ={g¢€ M&bRIThere is v € T" such that peg = vopi,
and let H be the covering group of pj; i.e.,

{h € MBbg|peh = ol

Hoth G and H are Fuchsian groups of the first kind. We have

an exact sequence

(1} —> 13 ¢ 251 — {1},

ere i the inclusion map and p*(g) = Y where y'e T' is the
ique element of T' such that p°g = Yep. We have Q(T') = U/H
d o(T)/T = U/G.

We define M' (&) to be the unit ball in the real Banach
ce L;(G) = {u € 1,(G)|ued = B} and denoté by T'(G) the

ge of M'(G) under the canonical projection b : M(Gg) » T(G).



We call T'(Gj-thé_symmetric part of T(G).

_ ' . : g A -
Theorem (Earle). Define a map M(T) = M'(G) by n b U = K°p p' /ot
where we extendad v to O(T) by setting w(z) = (zi. This map -

is a b13ectlon which induces a real analytic embedding

ohry - 1e(e) = 20y wien 0F(w) + OCR).

For a proof see Earle [10].

The tangent space to T(G) at $(0). is canonically isomor-—

phic t0 L.(G)/N(G) where

N(G) = {p € Lo(@)] (1) = 0, for all T € SACNT

Note that since G is of the first kind, Q#(G) is a complex

_linear space. Here the pairing is the complex version of

(2.2). (See remark in section 2.1. )
The tangent space to T'(G) at (o) is canonlcallj iso—

morphic £0 Lw(G)/N'(G) where

W8 = [ € LU (£,1) = 0, for all £ € Q'(E)}

]

{r € o(a)lres = Fl.

I

Q' (G)
The maps M(T) — M'(G) - M(G) induce maps

Lo(D)NH(T) - LL(G)/N'(G)'» Lo(G)/N(G) ;
| and the segbnd given by the

e Tirst given by u P wep p'/p’
G Y
clusion Lo(G) ~ Lo(G). Recalling the pairing (2.4) we have




the equivalent maps

BH(r) ~ B'(a) ~ BH(G)
where | |
BY(G) = [ € B7(a)|wos = &,
The first map is ¢ b (p2p)(p*)? and the second the inélusion
map. B'(G) is a real linear subspace of B#(G), actually B#(G)
is the complexification of B'(G). In fact every ¢ 6IB#(G)

can be written as Py 4+ i, with @q,9, € B'(G), explicitly

P = —%(cp' + CP°J') 4 i -%f(cp - qooJ).r

2.4 Let Sorbe a Riemann surfaée. A marked Riemann surface
with res?ect to 5y is a surface S together with a gquasi~
conformal homeom&rphism T 383~ 5. Two mafked Riemann
surfaces (So;fi,sl) and (SO,fZ,Sz) are called equivalent if

‘there is a conformal map h : 5, =3, such that f51°h°fl is

homotopic to the identity map. The reduced Teichmiiller

pace T#(SO) is the set of equivalence classes, For the

eichmllller space T(SO) we require the homotopy to be rela—

ive to the boundary curves.
Let T' be a Fuchsian groupji;then the orbit'space U/l is

L a natural way a Riemahn surface.

eorem. There is a canonical isomorphism between T#(P) and
UR/T), where Up is the upper halfl plane With all Tixed

nts of elliptic elements of T removed.
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Ir T coﬁtains no elliptic trénsformationé see proof in
Earle [11],7for the general case see Bers and Greenberg [9].
‘A Riemann surface S is said to be finite if there is
‘a holomorphlc embedding T : S = S,where 5 is a compact

Riemann surface and 5- f(S) is a finite set of points.

Theorem. Leb T’ be a Fuchsian group, QO(?) the set of points
in Q(T) which are not rixed poiﬂts of nontrivial elements of
- T's The following are equivalent
1) T#(T) hag finite dimension.
2)  Qy(T)/T is a finite Riemann surface.

3} T is a Tinitely generated group.
Proof in Earle [11].

2.5 Let W € M(T), we recall that w, maps U UR U [=} onto itself

and Tixes 0,1,%. The map W, can be extended to ¢ U {®} by

etting wp(z) = ;;rﬁj for z € 1L, this extension is U-conformal

n ¢ where u(z) = u(z) for z € L.

Theorem. Let K € € be a compact set. There exists a constant

depending on K and Hu” such that

|wu(zl)-wucz2)l < Mlz-zpl %, Loty = Ml (o ), (2)1%,

ere o = “}J-D/(l + lwll

See Ahlfors [3] p. 51 for a proof.

Let [21,22] denote the spherical distance. The rfollowing
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result is proveﬁ in Ahlfors and Bers [4].
Theorem. There exists a constant ¢ such that

*

[y 2) ()] = cllu-

It p G‘M(T) dépends analytically on real parameters, so
does w“(z)'for every zs (Ahlfors and Bers [4]); in particular,

let v € L (T) - and denote by Wg[v](z) the directional deriva-

6ive 3= Wy, oy(8)] . We have
(2.6)  w [vI(z) = - % 1 VEIRG (0D, () () (6)) Pauar,
' b o= utiv,

where we extended V to € by reflexion and

(2.7)  R(t,2) = gl

These formulas can be found in Ahlfors [3].

Given M € M(T) there is a unique normalized homeomor—
hism w? of € Urfw} onto-itself which is M—conformal in U
nd conformal in L. I W dpends analytically on complex
arameters, so does wu(é) for every z (see Ahlfors and

rs [41). S | -

6 Let G:be a Fuchsian group of the first kind. Let
M(G) then the domain w (U) depends only on the Teich-

er class §(0). The Bers fiber space is
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F(E) = (B(2),2)|8(0) € T(G), 5 € (W)}

This space is an open subset of 7(g) x © (Bers [7]), there—
fore a complex manifold. '

We have a_map‘

Lo: T(G) X U - F(G)

given by &(@(U),z) = (¢(G),hﬁ(2))‘wheré hy = wﬁ°w;1, £ is a

real analytic Bijection‘(Bers [7],,Earlé [123).

Now let T’ and G be as in section 2.3} Further we assume
that F,is-finitely generated without elliptic elements.
;Therefére s0 ig G. For W € M(T), W, Q(T) - Q(Tu);_here the

map is supposed extended to L by reflexion. Let Py be

QT Yo T,)

AV4

Te, as before, G = (Hep)p' /o',

sition. The map pu.is-holomorphic and depends only on
class‘¢#(M).

Py = w,opewh, let s =‘p(t), t = wh (z)
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‘(p;)g(Z) = (wu)S(S)p"'.(t')(wal)-z—(Z) + (w )g(S)pF(t)'(le)g(Z)

-

(wp)e(t) ——-(-— i ]
- -(w EN (t)—"l“'lz)""‘)“'— + (w ) 5(s) (t()t)

where J(t) = ,(Wu)t(t)l? - l(wu)g(t)rgy
oy e e)ere)w) (o) (wp)g(e) (WU)S(S) L)

(.pLJ.).E(-Z[) = - J(t) 7 [- (Wf\) (t) (WLL)S(S) p'(tfja
e e)(e)
WA £ t W g '(t A - t__ |
*'(wg)t(t)f (WJJS) Sru? = - B(e) + pls) %?%'{}2 0.

Therefore, (p )— = 0.

Now, ®#(u) = $#(v) if and only if w, o= W;;lowv commutes
: with T. In this case wp commutes with G and w op = poW%_.
E(Earle [10]; Lemma 6).:A‘computation shows that wA = wﬁlowg,
Therefore we have'waloﬁvop = powﬁlowg which implies |

o ~1 1 |
P, = Wvopqwl\\) = WU-OPOWG- = pu .

Proposition. The map h : (¢(ﬁ),z) - pu(z) from T'(G) x U

into € U {*} is real analytic.

*foof. Let M(T,Q(T)) be the space of Beltrami coefficients
for T supportad in T); i.e., the elements of the unit ball

) 1L (Q(T) ¢) satlsfylng (2.1). The map pw» u extends natur—
;Ty to a bijection M(F,Q(T)) ~» M(G). Define oM by the
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here, w“'is,fhe-unique.normalized M—conformal map of ¢ U {m}
onto itself, ™ is the Kleinian group'w“T(wu)_l and, as

before, w" M

is conformal in L. The map p depends only on
:the-class @(Q) (see e.g. Kra [17]) and k : (¢(ﬁ),z) ﬁrpg(z)
is.a,holbmorphic map F(G) » € U {~} (zee Earle and Kra [13]).

We have a commutative diagram

TH(G) X U ke T(6) X U ~Lms B(G)

k
Sy ¢ U {p:}

_Indeed, k°&(¢(u),z) = k(¢(u),w“°wﬂ (z)) = w“Opo(w“) 1ow“owA (2)
|"”"FJ°W/\ (z) = p (z), since ¢(H) € T*(G) 1mp11es W = W,
It Tollows that h is real dnalytlc.

The domain Q(TM) = wp(Q(P)) depends only on the class

H), we define then
r#(r) - (®#(u),?)l¢#(u) ¢ T#(r), 2 € (T )1,

te thas THT) x U = FH(T).
Define B : T*(G) x U - F#(r) by B(S(D),z) =_(3?u),puz).

position. The map B is a real analytic surjective local

omorphism,

It is clear from the proposition above and theorem

ction 2.3 that B is real analytic, it is obviéusly
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A compﬁtation {see Earle and Kra {13]) shows that the

differential of B at ($(0),2) is given by .

(9,8) » (v,80v1(p(2)) = o' (2)[01(a) + p*(z)2).

since v € N#(T)Aif and onlj if\@ 5 N'(G), it follows that the
differential isrinjeCtivet By use of the right translation

maps (section 2.2),we'c0nclude-that the differentialrof B is
everywhere nonsingular.

The group G acts properly discontinuously on F(G) by
g(¢@ﬁ),z) =(¢(0),gG(Z)); g7= W6°g°(wc)Hl (Bers [7])- AlSO'-
e acts on T(G) x U vy g{d(9), z) = (@(G),gg(z)), g,= wc°g°wcl.'
It is easy to see that these actlons commute with 4, hence
G acts properly discontinuously on T{G) X U as well.
Obviously the acfion on T(G) X U induces a properly discon-
tinuous actién on T*(G) x U. Similarly we have an action

of T in F#(T);

roposition. T acts properly discontinuously on F#(T)¢

“gﬁgg. An easy computation shows that Bog = pX(g)oB. GiVen
arbitrary point in F#(T), choose an open set

- T'(G) X U over it such that

1) Bl? is injective.

2) glv)y NV =0, ror al1 g € G.

pose there is Y—G ' such that vB(V) N B(V) # b. Tet

such that p*(g) = v. Then B(g(V)) N B(V) # 9, so

are (O(1),2), (H(8),w) € V so that 8g(d(f),z) =
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= B0, 1)s 302 800(R),g0(2)) = BO(D), ), ehis tmplies
(fb#(u) ouE(2) = 3,00, sheresore oueh(=) = a,(),

so there exists h € H such that ga(z) = ha(‘M)QWthh implies
1.

Il

Athat'g = h. Then y = p¥(g) = p*(h)

| Theorem._ V(I‘) = F#(T)/I‘ and V#(T) = T#(T‘) x U/T are real
analytic manliolds with real analytlc projections V{I') - T#(T),
# - # = d
y7(T) » T7(I'). The tibers over 07(u) are Q(Tu)/ru = (Q/ru)

and U/fu respectively.

Proof. It follows from the propositions above.




3. Local Coordinates for Reduced Teichmflller Space

3.1 Let Qe €U} beasin 1.1, it is well-known

that O is conformally equivalent to Q/T; where T is a

finitely generated. normallzed FUCh81an group of the second )

klnd without elllptln elements. We are assuming that m 2 3.
In (U/I‘)d we have a canonlcal,homology basis

Aprese s, 79 bl,.e.,b _1 S© that bl,...,b 1 correspond

to boundary curves in Q/T (see 1.2).  For every ¢#(H) €

f#(r),'we have the Riemann surface'(Q/I‘u)d with a canonical

homology bas%; al(u),.:,,am_l(u),.bl(p),.:.,bm_l(u) deter—
mined by the isomorphism eu : T - Tu, therefore depending

only on Q#(p).
On (Q/T ) we can .construct an abelian dlfferentlal

“

f the flrst kind @(u) as it was done in sections 1.1 and

2. Thus, we have a function f : F#(T) -» € such that
(Y(‘D(u)yZ))Y‘(Z) fctp#(u),z)

r0position. The differential m(p) depends real analytlcally

n;@#(u) € T#(T);i.e., fis real analytic;

oof, olu) = 2 Ei M) o ( u),. where oy(p)yeserq (1)
he. canonical basis for the space of abelian differen-
ls-of thé first kind dualhto al(u),...,am_l(u),
.),...,bm_l(u). The'coefficients M)y eeeyn, (1)

olutions of P\ = mie, where P(Q) is the period matrix

25 -
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of thé normalized basis @l(p),...,wm;l(u),'(See‘l.l aﬁd - ‘
1.2). Thus, it suffices to study the dependence of wk(p)
k.: 1,ee0,m=1, On b#(u). Again; we use the notation of
2.3. () can be lifted to £ : F(T) > ¢ such that
fk(y(¢#(u),z))§&(z) = fk(®#(g),z). Define : ‘
Bos (@ xu- ¢ by B00),2) = 07,0 (2))pl(a), ‘
It is easily seen that %k(g(¢(ﬁ),2))gg(z) =‘%k(¢(ﬁ),z)o

, u :

Now; %k can be exténded to T(G) x U in the obvious way,
denote the exténsion by the same symbol, |
The functlon % is the pull back of P : F(G) » €
via 4 : T(G) x U - F(G), ie6e, %k($(u),z) = pk($(p) h (z))h (Z)

(see 2.6). Bers [8] proved that P 1s holomorphic, it

follows that %k is real analytic énd hence so is f.

We recall, that the dlfferentlal 1m(p) is symmetrlc '
4 it. has 2m-4 51mple zeros located by pairs in the
undary curves bz(u),.;.,bm_l(p). The harmonic differ—
’fiél Re ¢{p) is exact in Q/Tu and‘Re-m(p) = dulp), where
) is the unique harmonic function in Q/?u with boundary
lues hl(u),.;.,km_l(p) on bl(u),...,bm_l(u) and O on '

. m~th boundary component,

Let ZO(H) denote a real analytic section T#(F) - V#(T).
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- Z ) ) )

(3.1)  FOHW,e) = exp([ wlw) + w(w)(z (1)),
| z,(p) o .

For fixed ﬁ%u) ¢ T#(T), F($#(g),¥) is the circular slit
map of q/ru. It is clear that the map F is real analytic.
3.2. . It follows from the implicit function theorem, that
in a neighborhood of ®#(u) ==z O'there are 2m~4 real analytic
local sections Zg ot T#(T) » V(T)y j = Oyeeos?m=5 so that
ZO(H)’;°"Z2m~5(“) are the geros of ¢(u). Assume that we

have ordered them 50 that

Now, define in a neighborhood Of ¢#(u) =0 a map

7 : THr) 5 RO

(o)
s follows
2) oz (¢#(u)) <p1(u>,..‘,pm 1(u) (W eeeyapy_s(w),
ere |
+3) pj(u)= exp l-(u), J= Llydee,m-l,
2, (1) |
ak(u) =Im [ it M ©{p)s k = 0yeeaym-5.

3.4) the integral is taken over the path in (U/Tu)d
fWe now define. Choose an arbitrary but fixed path
2,(0) to 2, (0) in (U/T)%, to this path we add straight

egments (in some local coordinates) from z,(u) to
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!
to zO(O)‘aqg‘from 2. (0) to 2, (n). This construction is

possible, provided Q(u) is sufficiently close to O,

Proposition. The map Zo is real analytic.

Proof. It follows from the remarks in section 3.1, and the

fact that Zd (3 % 0,.;;,2m—5) is real analytic,
Note that pj(u) = ]F(¢#(u),Z)la'Z € bj(u), J=1ys0.,m-1,

and ak(p) = Arg F(®#(u),zk(u)), kK = Oye..,2m~5, where Arg
is the branch of the argument determiﬂed by the above
choice of integration paths. It is clear then that =5

is the:radius of the outer circle in the corresponding
:circularfslit domain, pz,ei.,pm;1 are the radii of the
circles containing the m-2 s;its, and ao,J;{,azm_5 are
he arguments of the slits endpoints (by the choice of

¥ an = O)o

We collect néw, somé variational formulae due to
uch and Ahlfors. For proofs and det{:iils see Rauch [18]
d Anifors [11. -

Let pij(u) denote the (i;j) entry (1,5 = 1yeee,m=1)

the period matrix P(y) of the normalized basis

APy sLud = - I.U r)dmi(Z)wj(Z)u(z)!azAdEl,

(
L€ L (n(r),c),
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- or _ -

(3.6) dopij[u] = ~2i Re jq/rwi(z)mj(z)u(Z)IdiAdE[,

b€ L(T).

' Formula (3.6)'follOWs from (3.5) since mimj is real on
o(U/r) ana. w(z) = wz) . ;

Now let

' | j
(3.7) (u) = (1)
T5(n Izo(u) ol

-z-(u) - | - - ‘
: |

then

(3.8) aorlul = 35 [ g wils)e(z)u(z)]azrdi],

(u/T) |
W € I—fm( T),e),

where w, is the differential of the third kind which has
0 b—périods and simple poles of residue 1 at zj'and -1 at

_6, the perlods being computed on a system of representative
cycles of the canonical homology basis on (U/T)d chosen

6 that they do not pass through the points ZoyoserZon re
Let w; be the differential of third kind having

¢ same singularities as @j, but purely imaginary periods.

differential wj is symmetric; in fact, W - %j is
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" We can write

_ m—~1. o
(3»9) WJ- = wj -+ k;zl Bkg“’k ’
ﬁhere
(3-10) . BkJ = = Rer IakUJJ °

Now, (3.8) and (3.9) yield

§3.11) a,75ln] = 5= | g J(z)cp(z)p,(z)[dzf\dz]

(u/7)

1 m-1

b By 5 [

" ;(U/T)dwk(ﬁ)m(Z)u(Z)ldzAdgT

6 last integrals in (3.11) are real, thus

d Tm TJLHJ = %% Im j(q/r)dwj(z)@(z)p(z)[dzAdE[,
i) doaj[u] = - % Re fq/riwj(z)m(z)u(z)]dzAdE[,'u € L(T).

:pﬂ H;(Kl(u)’°:‘$1m_1(u)’ al(u),...,démﬂ5(u))

mie, we. have

_é?[u]x +.Pdok[u] =
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Hence

T

do?\[.p.] =~ Pl _pluln,
(3.12) gl = - PH(-2i Re 5o 2E(a) | aana])

To-obtain the latter expression, we used (3.6) and denoted

_y Q(z) the matrix with entries 0; (z)m (z)

The j-th component of the - vector Q(z)) is
me1 o m—L 1

. = . A= Q. > = A7) .
(z)2]; 2 95(2)e(z)n = 9,(2) 2 }kcpk(Z) 7 w5(z)a(z)
en from (3.12) we get
3)  a Myl = Re | iP-l@(z)cb(z)g(z)Idz/\dEI.,
o /T |
8(z) is the vector W1th components wl(z)"“”mm l(z),

that the matrlx iP ~1 has real entrieg.

om (3.11) and (3.13) and the definition of Z we gev
' | 1 |
a2lul = Re [ [iP z)o(z) = wylz)elz),...),
/T
ﬁ%;wzm;5(2)m(2)] u(Z)‘deAdE[

ear that the components of the vector in brackets
re a basis for Q#(F)- From the theorem in section
erizing the tangent space to T#(T) at ¢#(O),

that a o2 1s nonsingular.

ﬁé map ZO provides real analytic coordinates



for T#(T) ;p'a neighborhood of the origin,'

Proof, Inverse function theorem.




L. Variation of the Green's Function.

hel TLet Q c < € U {»} be as before. Represent Q as u/T
where T is a finitely generated Fuchsian group of the

second kind- Assume further that ' ig an ordlnary point

" for' Ty and that —1, 1, O are limit points,
In this chabter, we redefine WM by requiring that it fixes
-1y 1, O, with this definition formula (2.6) is still true

provided we redefine the kernel R by

(1) Rlb,2) = pp{faddalesd)

Consider now the series

Je2) G(2,8) =~ 3 log | Z3

er iy ’rZrEGU'
Y .

A = U be an open disc such that none of the points

i)’ v €T, is in A. Then on A

) T log | Z z_=y(E) | = Re 2 ILog EI-Y-Q—E-)-
. yeT Tz —y(E) YET Z-Y(g)
e Log is the principal branch of the 1ogar1Lhm function,

if 7 € A Jz - y(g)} > 9§ » 0, for all v €Ty, and 51nce
- v(Z)| tends to zero, except for a Tinite

of elements v € T,

~x(€))l =-ILOg(l ~x(8 = Ag£§))| 5 [v(g) - v(¥)]
_ z - y(E -

33
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- If vy = (;' ") then |y(g) - v(E)| <k JZ for gsome constant
. - : ' . c
k. It follows from the theory of Poincaré's series (see

e.g. Ford [ih]) that = |+(E) - Q(E)f converges, and hence
S ver

the series 3 Log E:3-(--_%2-c:omrer-ges uniformly on A, thus
 yE€T z~y(E) o
"its " limit is holomorphic. We conclude from (4.3) that the

series (4.2) converges to a harmonic function on

U - {v(2)|y € T}, and has logarithmic singularities at

the points v(g).
Let 0 €T, @ = (; &), then

'a(Z)—x(§)4'= '(Z~a_l°v(%))/(CZ+d)(ca"lov(§)+d),
alz)=y(E)  (z-a " oy(E))/(cata){ca™ oy( E)+a)

= [Z“@—lov(ﬁ)’ ,
z—0 " oy( E)

is relation shows_that
L) olalz),e) = Glz,E), for all a €T .
S easy t0 see that G(z,E) tends to zero as z tends to
_ fm}) — MT), so we have constructed the Green's
ion for U/T, with singularity at the orbit T% .

Given a section s @ T#(T) A,V#(T), we define

vH(T) » B U {=}

- 62

.#(u),z) = Gu(z,gu) where

- z~y (E )

T =
YE % YH(EU)
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and g is a p01nt in the orbit s(®#(u)) € Q/T . In
other words G (¢#(u), ) is the Green s function for Q/T

With singularity at s(®#(p)).

h‘2 Now, we look at the function y v G—(W'(z) W (%)),
for fixed E E U, 7z € U - TE .

. ' h
(h 7) Gu(wu(z),wu(g)) Ygr Re (Z Eyv)

where

wﬁ( 7 )—Wuov( g)

(o8l 8y) = Log (Etoes

M "
ihere Log is the principal brannh of the logarithm function.
he representation (4.7) is valid for lull small, so that
: (z) € A, with A being a nelghborhood of %z such that
’°Y(§),ﬁ By for all y € T.  That W can be chosen suffi-
iently small to satlsfy these condltlons is a consequence
.the properties nf - quasiconformal mappings stated in
ction 2.5. h | ‘ |
_ Let h [M](z g,y) be the derivative of h (z,,,y) at
M(T) in the direction b, from (4.8) usnng the chain

we get

w Lul(a) = [ul(v(2)) v [ulCe) = Lul(x(E))
w ()= _oy(8) w(2) = oy(E)

B Lul(z,8,y) =

(2.6)
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RO, (8)510,(5))R(w (8) 3w 0( 2))

(4.10) B [ul(z,e,y) = - =
j hY) U- z . Y " j‘ [ | Wv(z)“wvoy(g)

R( Y - ‘ " ov(§ "
) (w (t),w () R(Tv(t) w,, Y(E))](w (t),)2u(t)audv,
w (2)=w ov(E) B

From (4.10) we can compute Re Ev[H](Z:E’Y)- A straight—

forward, but rather long calculation yields

(h11) Re b [u)(z,8,v) = = 5 [ [————= -]
) Re e e = - n(©mren(D) e (E) (D)
e 1 1
x [ - Ww (£) ) Pu(t)dudy .
W) (2) | w ez v e

3 We want to show now, that the series

212) b Re'ﬁv[u](zyé,Y)
veEr ,

verges uniformly in a neighborhood of v = 0. Denote by

(t) the Jacobian of the map W, We have
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From (h.lllfand,(h.lB) we get

Re b [u)(z,5,y)] < & lul b - .
‘. e ! HILZ Y j < 277 l__uvu Ig} Wv(t)..w\)oy(g) WV(t)—W'\)OY(E)’t

L - L (+)aquav,
Wv(t)va(z) w (€)-w (Z) v

by change of integration variable

(L.14) |Re R Hz,e,y)] = A dwl L -
|Re b [y v)| = 5= l"HVH'Imlt“Wv D
1 —] I 1 1 —|dudv .
t—wvov(g) tiwv(z) @-wv(g)

‘Using the triangle inequality, to estimate the integral

n (4.14), we have to look at

be15) I(zy8yy) = [ |——eFome o —— L X Jauay
- TC tmwoy(E) t-w oy(E) tew (2)

d I(z,2,y)s It will be sufficient to study (2,85 y)e

First, note that

16) I(z,8,v) =

dudv___ ) L
@-lt*wvoy(g){ [tawvoy(g)l ft—wv(z)l

w,ov(8)-w ov(8)| |

11l need the following lemmas:

Given ¢ > O then for all ||v]| sufficiently small
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| .
[Won(g)'m’wvoy(E)[ < e, except for a finite number N(e¢)

of elementsry-e Te

_Eiggg. Let r é R such that MT) ¢ [-r,r], 1f n < ¢/2 then
for all [jv]| sufficiently small w ([-r,rIx[-n,nl) =

[-RyR] x [-¢/2, e/2] for some R = r. This follows from the
second thedrem in secﬁion 2.5 noting that on a caompact
set'[zl—zzl < A[Zl,zzj. Now, except for a finite number
N(e) of elements v € 'y, y(€), v(§) € [-r,r] x [~n,n] and
hence won(g); Wv°Y(€) € [-R,R] x E—é/2, ¢/2]. 'the proof

- is completedby observing that Won(E) = Wv°Y(§) .

Lemma. TLet K ¢ € compact then for a,b € K, 0 < Ja-b]|

mall, there exists constants ¢ty B € R such that

[ dudy < q +VB.log l
Klt-a| [t-b] : | a-b]

bqg. Let R be the radius of circle centered at O and

ntaining K. Set t — a = (a-b)s, s = xtiy.

: dudv < I dudv | < dxdy
[e-a] Tt-b] ~Yoigg It-al le=bl oo 2B [s] [st]

| a=b]
dxdy + (const.) I gﬁg%w;a}BLOg S
2 [s| |st1] | 2 <|s|= %‘IJSLI | a=b]
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Lemma, -Lép'K < € compact then

gle) = | _dudy_ ; C € ¢ is contlnuous.
K |t~c]

Proof.  Let c,c' € K then

[lt=c ' =]t=c]] dudv = = J dudyv
B Jt-e] [t—e'] K [t-c||t-c]

lg(’c)--g(c')zl < [

1

) > 0, as ¢ » ¢' .
c—c'|

s [e=c'|(a + B log

dudv
K lt—c]|t~c!]

If ¢ £ K, or ¢! ﬁ K I is bbunded._

Lemma, = Let Kq, K, = ¢ be disjoint compact sets then there

exist constants @, g € R such that

dudv " o 1
IE lt—a[[t—b[]t c[ @ TPl [a-b|

:§r all ¢ € Ky, and a,b € XK,, O <7|a—bI small,

roof. Take %l’ %2 c ¢ compact sets so that Ki = %i ,' ‘ o

dudv - I* dudv 7 % I dudv ' '3‘
t-a| [t-b]|t-c] m“(klu(ﬁz) lt—al [t-b] [t—c]| ﬁ lt—aHt—th-cf

dudv n qudv,_ qudv
= e Jﬂ?‘fz o-al [o-]




0.

~ = o + 8 log - e
‘ : | a~b|
From (4.16) and the above lemmas we obtain

l V . ?
)*WVOY(E)f

(4.17) 1(z,8,v) 5 |woy(g)=w ov(E)|[(A + B log '
- i . _ . vaoY( g

for all |[vl small and except for a finite number of elements

y €T &

Now, on a compact set and for all ||v| small
(h.lS) ’wv(zl)fwv(zz)l sﬁM]zlmzzla, lzl"ZZI s M]wv(zl);wv(zz)la,

. where a = lZHXH and M is indepeﬁdent of v (see section 2.5).

log — L =z log L - o
Izl—zzl. lev(zl)fwv(zz)]
] 1 1., 1 1 1.
019) lOg = 'a.' log 0, lOg M o

fw () (z5)] i

From (4.17), (4.18), (h.le we get
I(z,8,v) = |v(8)=y(E)|%C + D 1 1
ZyEyv) = [y(8)=y -l _ og WEEWEY

= [v(8)~y(D) %8 y(2)=(B)| %(C + D Log ———t—— ) .
 IvE)(D)]
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(120)  T(z,2,) = K} [0 =k, L,
_ | e

where v = (. ) .

For a given finitely generated Fuchsian group T' of the
second kind withfé-as an ordinary point, there exists

t, < 2 s0 that

b —5;-<;w, for t > to; y = (; ).
veT © | | Y

This is a hard theorem due to Beardon [5]. Therefore, we

can choose in (4.20) ||v|| and & sufficiently small so that

£g(a~6) <'e, YWe have proven that the series (4.12)
C .

b
veT

is uniformly convergent in a neighborhood of v = O,

. 1 1
Lul(z,8) = ~ = = e
S <n ve€T "C t-y(E) ~ t=y(E)

v [ g = ~==Ju(t)dudv.
t-2z
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Now, let u be a fundamental region for T in Q(T) then

GLul(2,8) = ~ = = 3 [ [r—iey - —=——1
Lutz, T ger ay IB(w) t-g) t-y( E)
) [-—-—~—~ - wwlu(t)dudv
' . b= Z
"By a changé of variablé in the integral we get
GLpl(2,8) = = o & [ [ o
" 4T g, yeT Iw s(t)—v(g) B(t)-v(E)
1 1
~ Jues(e)p(t) Rdud
) = B poB IB | 2audy
R o =1y Lop) (1)

B, vET “w v Top(t)-E v ToB(t)~E

. :
(0) B(t)_z 18 (t)u(t)duav

| 1 o, 1
==-5=[L[Z2( - ) '(t)]
2w 1, YET v(t)-§ Y(t) !
x [ = L )8! (t)]u(t)dudv .

peEr  plt)-z s(t)—z

1

Buda,) = - 7= J w(t)o,n(t)u(t)auav ,

'+q#% (w = E,2) denotes the unique abelian differential
rd kind in (Q/T)d with simple poles at w and W and

es -1 and +1 respectively, and, having purely imaginary

By symmetry (4.22) can be written as




(4e23) - ~GLul(z,8) = == Re [ a0 0,
0 EE zg

or from the definition of the Green's function

| . - 30 3G

(2t Bul(z,8) = = ERe [ 3F (5,8) Flo,2)u(e)anav
If we look at the function y - GH(Z,E) for z,t fixed

and ||| small, using (4.24) and the chain rule we get ﬁhe

differential at the origin

(4e25) 4, 0lul(z,8) = - & Re I Li(t,8) 2Ht,2)u(t)dudy

- Re{ $(z, )wlpl(z) + $Hz, )lul(e)} .

Le5 We now use our general variational formula for the
Greeh's function, to obtaiﬁ as a speclal case the Schiffer
variational formula (see Schiffer and Spenéer [19]).

The Schiffer interior variation can be obtained as a
vasiconformal variation as follows, Let ZO'G . and vy
simple, closed, analytic curve bounding a cell which
ﬁtains ZOJ Bylthe Riemanﬁ mapping theorem we can assume
out loss of generality that y is the unit circle and
0. Let r(z) be a function holomorphic in the com-

nent of the open unit disc, then r(z) has a representa-

k3.




Lh.

Define on 2] =1

"0 o)

(4.27) Flz) = = az"+ 3 a_ g ,
o " n=0 ' n=1
F(z) is continuous F(z) = r(z) on |z] = 1, define
| ' z + ¢ r(z) Jz| z1

(4o28) cwlz) =4 '

%+ ¢ F(z) lz] =1 .
The Beltrami coefficient of w is

o |z] = 1
(4.29) ue(z) " Ye¢ Z.a ngi—L-

Il'm IZ, < 1 .
-1

1+e ‘Z'annzn
=1

For sufficiently small ¢, z » z + ¢ r{z) is Schlicht, and

We note that

i
(R}

ul(z)=¢ 2 a nzm L 4 of e) . lal < 1,
€ n=l '

theorem gives




o —~n-1 1 N, /. 1 h
(4.31) jmgl nE® h(t)dudv.-: = fltl:ltnh(t)dt = Ilt]:-l _.5.11}1,.)

for h holomorphic on |t| =< 1.

From,(h.Zh), (4.30) and (L.31) we get, for z, E €N
Zs"gﬁ {t] 'tl = 1, o

ioo‘

Gl 1(3,8) = - £ Re 2% j‘ltlzl('% 8t (6,2)G(8,8)ab + ol )
or
(4e32) &uNz,8) = - Re 28 I O L L R ole) .

This is the Schiffer's variational formula for the Greens'

function,
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