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Abstract

‘Motivated by a corollary to a theorem stated but

proved incompletely by T. Aubin, we declded to study

- the following problem: 1s it-possible to find a stendard
deformation g(t) of a glven metric g  defined on a metric
disk I agreelng with'go in M - D withrpositive first deri-
vative of sectional or Riccel curvature near Bd(D) and to
use this-deformation to uniformly increase the reglon of
positivg,curvature? Computations led to the idea that D
ghould be a. convex metbtrlec ball, and hence_to the study of
"jocal convex deformations’, i.e., 1ocal deformations
with convex support.

We prove some.facts about the space of Riemannian
metrics for a given smooth manifold M. ¥or instance, 1f
a complete metric for a non-compact manlfold is changed
only on a compact set, the resulting metric is complete.

Hence the proof of the Rieccl curvaturé deformation theorem

we glve and our paper on the inJectivity radius functilon

imply that non-negatively Ricci curved complete Riemannian

one end. We show the injectivity radius function and the
convexity radius functlon on the gpace of Riemannlan metrics

manifolds "positively Rlcci curved at infinity" have only
of a compact manifold are locally minorized;'that is given

: <

|

|

a metric g, for M, there exists a 02 neighborhood of 2,

1i1



on which these functions are bounded away from zero.
We study the first derivative of the Riccl curvature

for all possible local convex deformatlons g(t) of a glven

metric g, with support in a metrle disk D.  This then

leads to the standard conformal deformation with which we
prove the Riccl curvature deformation theoresm. For
instance, a compact manlfold admitting a metrie of non-
negative Rlceil curvature and all Ricéi curvatures positive
at a polnt admlts a metric of everywhere posltlve Ricel
curvature.

Next we shéw ﬁhat in general for dim M = 3 there do
not exiét any local convex deformations fér gectional
curvatﬁre that are positive at first order. Essentlally
we revefée the argument for the Riccl curvature. This
_nonmékistence is partly a fesult of the convexity of D
and partly a result of fhe fact that dim M = 3.

Since the dlfficultles already arlse in dlmension 3,
we study global metrlc deformatlons on compact 3-manifolds.
A caleulation shows that

| glven (MB,g) compact wlth non-negative sectional
(*) cufvature and positive Ricel curvature, M admits a
metric with-everywhere positive sectional curvatﬁre°
Following'a.recent philosophy of "pilgidity" in Riemannian

peometry we study how thls result fails 1f non-negative




Ricci curvature is allowed in the hypothesis of (*). This
leads to the sﬁldy of Ricel-productlike metrics and a for-
muls for D*D Ric which shows in this simple case how the
gecond covariant derivative of the curvature tensor 1s
related to the integrability of the conullity alstribu-
tion induced on M3 by the curvature tenscr. Then we
define a notlon of a critical metric for a class of 3-
manifolds modelled on (Sl X Se,g) just as in Befger‘s
result that all non-negative variations at first order

of the standard metric on 82 X 82 vanlsh identically at

first order. If g, 1s a critical metric for M3, then

(Ms,go) ig locally isometrically a product.
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'VJIntroduction

In [2], Aubin stated a theoreﬁ which implied as.a
corollary that if a manifold M admitsra Rlemannian metric
wlth non-negative Riceil curvature and all Riceil curvatures
pogltive at some point, then M admits a metric of every-
where positive Riceil curvature, It appears the proof in
[2] is incomplete and the uniformity of Aubin’'s estimates
even in the compact case are not clear, |

Motivated by what we thought was the general method
suggested by Aubin's paper, we decided to-study the follow-
ing problem: can we find a sténdard deformation g(t)
-defiqed on a metric disk D agreelng with the given metric
go'in M - D to spread positive Riccl aﬁd/or sectlonal
curvature from near the center of D to all of DY Motivated
by [11] and a conversation with J. Simonsg, we considered
a weaker questlon: can we find a deformation g(t) of the
given metric g with K' > O or Ric; > 0 near Bd(D)?

This question led to the study of "local convex
deformations” which we discuss in Chapter 2, along wlth
the mgtivation for studying metric deformations of curva-
ture and some technlcal lemmas used later.
in Chapter 3 we make some observations on the space
.of Riemannian metrics. Firgt we need to make precilse the

‘1dea that for "close" metrics, metric balls centered at




2.

the same polnt are gaimilar. The precise sbatements here
willl be used in proving the Ricel curvature deformation
theorems in.Chapter 5. Second we observe that if a com-
plete metric fof a non-compact manifold is changed only

on a compact set, then the resulting metrilc is.also'
complete., Using thils remark andra Riceci curvature_defor—
mation theorem from Chapter 5, we show that non-negatlvely
Ricel curved complete Riemannian manifolds ”positively
Ricel curved at infinity" are connected at infinity,
generalizing a result of [23], p. 80. Finally, we rewark
that the copvekity radius function and the injectlvity
radius function on the gpace of Rlemannian metrics are
lpcally minorized. | | |

In Chapter U we study Ric' for all local convex

deformations. Since an aribtrary local convex deformation
througn Cl‘L metrics with support in D may be written in D as

3

g(t) =g, + t o
‘where

p = distance to Bd(ﬁ)

is essentially the smoothing func tion which forces g(t) = g,
in M - D we see that all that 1ls needed for RlC‘ > 0 near
Bd(D) is that the "tangentlal projection" of h should be
negative definite near Bd(D). The presence of the smoothing

function p means that in Ric! near Ba(D) the terms in p




3!
wlll domlnate the terms in 92 and p This is precisely

what makes Ric' ~ 0 slnce the tangential projJection of

- h 1is esséntially the leading term in p in Ric'.
Alternatively, we might say that local convex defor-

mations work for the Ricci curvature because Rlcel curva-

ture is the trace of the gectional curvature. The

deformation we use in Chapters !l and 5 hag the property

that
K'(x,Vp) » O 1f  x(p) =0

and

K (x,y) <0 1f  x(p) = ylp) = O,

But the order in p of the contribution to Ric' from the

Mygdlal two-plane" {x,vp)} is lower than the order 1n p

of the sum of the n-2 tangential two-planes {x,y} In Ric'.
Also, since we are essentially taking the trace of K' in

computing Ric', we always have a radial two-plane {x,vp}

contributing a positive lowest order term to Ric'.

Tn Ghapter 5 we use the results of Chapters 3 and b

to prove varlous Riccil curvature deformation theorems. We

emphasize that since g(t) = g, in M - D we only have

an open set, so some care 1s needed to be
o

Rie' > 0 on D,

sure that we can find a t > O such that Ric v) > 0 for

all v near BA(D) simultaneously.

Tn Chapter 6, we show that in general there do not

exist any local convex deformations for sectional curvature




that are positive at first order. Essentially we just

turn the argument of Chapter 4 around. The failure to

find a local convex deformation g(t) of g, with K > 0

near Bd(D) is a consequence of the following two state-

ments.
(1) the convexity of D implies that 8%(dp) < O.

(2) Since dimension M = 3, we have two Tamilles of

two planes, the infinite family of radial two

planes {x,Yp)} with x{(p) = O and the tangential

-  two planes {x,y} with x(p) = 0 and y(p) = 0.

Then XK' (x,Yp) > O forces K'(x,y) < O and vice

versa.

Sinée the difficulties arise already in dimension 3,
we'study global metric deformations on compact 3-manifolds.

A calculation in Part 1 of Chapter 7 shows that gilven

3 =z 0 and Ricg > 0, M3 admits =a

{(M”,z ) compact with K
© : & O O

- goft(mRich).

metric g with Kg > 0 via the deformation g(t)
There is a notion of "rigidity" that has been suggested

to us by Gromoll. This coreept of "rigidity" is best

explained by example. The Sphere Theorem asserts that

given (Mn,go) gimply connected with

/My <K, sw, w=>O0
go

that M" is homeomorphic to Sn, i.é., 6-pinching with

& > 1/I implies M is homeomorphic to s The principal

of "yigidity" in this case asserts that if (Mn,go) is




simply connected and 1/l-positively pinched, then M

can only fall to bé homeomorphic to s in a very specilal
WaY . Explicitly, it 1g known that any manifold-which is
'1/b positively pinched which 1s not homeomorphic to a
-spherefis igometric to a symmétric spacé of rank 1 with

the ugual metric.

Following this philosophy, in Part 2 of Chapter 7

and in Chapter 8 we ask what happens when Ricg =z 0
: o

is allowed in the hypothesis of the theorem of Part 1
of Chapter 7. In Part 2 of Chapter 7, this leads to
the study of Ricci-product like metrics and a formula
foy D*¥D Ric whieh shows in this simple dase how the second
.covariant derivatiVe of the ourvature tensor ls related
to the integrabillty of the conuwllity ”follation induced
on M3 by the curvature tensor, In Chapter 8, we define
a notion of a critical metric for (Ms,go) motivated by
Berger's result on the non-existence of positive varila-
tions at filrst order for (82 X Sz,gcan). We show that
critical metrics are preclsely the metrilcs for.which
(MB,gO) i locally isometrically a product metric.
Tinally, in Chapter 9 we make three'miécellaneous
observatlions on metrics and curvature.
We close with a warning (for our European readers)
that following the Amerilcan cénvention we say that a

function £ : A~ R is positive 1f £ > O on A (in lieu




of'btrictly‘positive”); negative if £ < 0 on A (in

lieu of "strictly negative"), non-negative if £ = O

*and non—positiﬁe if £ = 0 on A.

on

A




7.

Chapter 2: The general. theory of local convex deformations

" Let M* be a ¢” manifold. Let TM be & tangent bundle

of M with smooth sections ¢ (TM) called smooth vector

fields on M. ‘Tet T*M be the co~tangent pundle of M with

“emooth sections ¢¥(T*M) called 1l-forms on M. Let

G, (M) T=> M be the Grassman bundle with fiber at p in M

all two dimensional vector subspaces of Mp which we will

call two-planes. Let R(M) be the convex cone of a1l
Riemannian metrics on M. -There ig a natural actlon
R(M) x Diff(M) - R{M) given by (g,f) - f¥*g where

(£%8) (vyw) = g(£,7,8,0). Let R(M) = R(M)/Diff (M) be

the space of Rlemannian structures on M. (Ebin has studied

this in [17].) Given a Riémannlan nmetric g on M, there 1s

a unlque Levi-Civlita connection D c®(mM) x ¢”(TM) ~» ¢™(TM)

satisfylng for X,Y and 7 in ¢°(TM)
(1) 2g(D,Y,2) = X-g(Y,2) + Yeg(2,X) - Z+g(X,Y)
+ g(Z»[X:Y]) + g(Yﬁ[Z)X]) . g(Xj[YJZ])‘
With our sign convention, the curvature tensor R of g is
defined by |
R(X,Y)Z = DyD,Z ~ D,D,Z ﬂ'D[X y2 for X,Y, and Z
]

XY YUX

in ¢”(TM). But R(X,Y)Z] > and 7
'p p p

80 we may define for X,y,z,w € Mp the tensors R(x,¥)z and

depends only on le, Y|

R(x,y,z,w) = g(R(x,y)z,w) by extending x,y, and z to local
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fields and computing the value of R at p using these local
extensions. For non-zero, non-collinear vectors x,y € Mp

. 7 o g(R(x,y)y,x)
we find a number K(x,y) EGX) - B(Ysy) - B(X:5)2

Now K(x,y) depends only on two plane spanned by x and y s©O
that X 1s really a function K : Go(M) = R called the
sectlonal curvature function of g.. The Rieci tensor for
g 1s defined to be Ric(x,y) = tri{z - R(z,x )y] where

S X,VsZ € M?. Ir €s+--2€, BTE a basis for M?, then

n _
Ric(x,y) = = R(ei,x,x,ei). The Ricei curvature is then
1=1 '

“defined to be Ric{x) = Bé%%§§§l- so if P RRR LN are ‘an
2

-

orthonormal basis for Mp and g{x,x} = 1 then

(2)  rie(x) = 2 K(ep,x):(1 - gley,x)?)

I M

i=1
where K(ei,v) is deflned to be zero if.ei and v are collinean'
‘When there 1s danger of confuslon, we will write Rg, Kg,-
Ric ., and ricg for the curvature tensors and functions

defined by g. We will denote the scalar curvature function

of (M,g) by T or T g

let g(t) be a l-parameter family of metrics for ©
in some open interval about O with g(0) = g,. We will
write Dt,Rt,Rict, and rict for the operators, tensors,
and fuﬁctions defined by g(t). CIf we Pix X,y € Mp, then

t - Kt(x,y) is a real valued function so e can define



K' (x,y). = -(%E Kt(x,y) | = lim K- (x,y) E K(x,y)
4f the limit exists, Similarly we can define Ric' = é%Ric

d

and ric' = ag-rict |

t=0

Glven a Riemannian metric g on M, g defines an lso-
morphism bf_the tangent aﬁd cotangent bundles TM = T*M
which on the fibers 1s gilven by Mp v - glv,-) € Mg
where g{v,-)(w) := g(v,w). If & € c°(T*M) is a 1-form,
then the vector fleld assoclated to & by this lsomorphism
which we will denote by t:#g 1s given by g€ &,%X) = &(X)
for all X € ¢”(TM). Glven a vector field X, there is a
1-form XBg(Y) = g{(X,Y). When there is no danger of
confusilon, we will wrilte §# for £ ® ana Xh for ng.
Tet SE(M) be the bundle of symmetric two-tensors on M.
Ihere is a differentisl operator 8% : C(T*M) = ¢™(8%(1))

depending on g given by

645 (x,y) = 5 & 4 glxy) =

£ £

X

((D,8)(¥) + (D,8)(x)) g

S

where D is the Levi-Ulvita connection determined by.g and £
_is the Lle derivative. (8ee [5]) Properly, we should write
:6§ instead of §*. But glven a variation g(t) with g(0) = I

5% will always be the opérator defined by g, 80 our notatlon

will not be ambiguous. Let £ : M~ R be a smooth functlon.

We will write vf for the gradilent Vector field assoclated
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to £ which iz defined by g(ve,X) = X(f) for any X € C™(IM).

Then 6% (df)(x,y) = g(DXVf,y) ig the Hessilan form of f.

The TaPlaclan Af of f is Af = trd*(af). We have
(3} 5% (d(fg)) = ro%{dg) + gb*(af) + 2 dfedg where
aredg = 1/2(af ®dg + dg ® af), and

(4). ' 6%(fg) = F§%€ + dfe§

_Wheré f,g + M = R are ¢ functions and € € C7(T*M).

The importance of 6% in the theory of metrlic deforma-

tions stems from the decomposition of Berger and Ebin [5],

for ¢X(s2(M)). Tet &' = D¥ ¢®(g?(m)) -~ ¢®(T*M) be the | |

adjolnt of the Levi-Civita connection determined'by g.

Then ‘ _
¢®(s2 (M) = ker ' @ im 6%,

Let us call a deformation g(t) of go'whose 1-~jet 1s not
Tet

in the image of &% a "geometric deformation'.

g € c¥(T*M) and let g(t) = g + t6%E = g + ts 4 &
, _ g &
Consider the variation g(t) = mftg wiere $t£ M- Mi1g
v

g ®_
the l-parameter group generated by § ®. Then (M,eg(t)) —==> (M,g)

is an isometry and g(t) determines the same coset in ®(M)

for all t. This deformation g(t) can thus be thought of |

as a coordinate change in R{M). We will later be interested

n (M,g) with Ky 2 0. We can expliciltly see at first order
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that deformations in Imbé* do not impfove'sectiénal curva-
ture by

Proposition 1. Given (M,g) with K = K, = 0. Tet
a

g(t) = g + t6%€. Then K(o) = 0 implies K' (o) = agKt(G) | =o.
' t=0
: 2 k
. Proof. | In general, if g(t) = g+ ¢ nt o+ %= ho4. . ot %T‘ h

then oniy the tensor hl effects the flrst derivative of

sectional curvature. ([1171, p. 8) Now g(t) = % o¥.g = J
£t d 2 2
g+ 5 gpl@*e) |+ 0(t7) = g+ 88*E + 0(t7), so |

!

2{t) = g(t) + 0(t?). Tor the proof of the Proposition only,

lét ﬁt he the sectional curvature function determined by

z(t) and KU the sectlonal curvature function determined by

g{t). Then
g .t d ot |
EE' K l = e K , . !

g=0 ¥ to0 5

Given ¢ € GE(M)’ let ¢ = {x,y). Then for small t,mt(c) =

{o . x, . v} 18 in G,(M). Suppose K(o) = 0. Since
~t, %Pt 2

ﬁt(ﬁ) = X(p,.(0)) = 0, we have Ji-ﬁt(s) | = 0. Hence
K (o) = k() | = FH &) | = o0.
t=0 t=0 ' ) |
Q. E. D. }
Remark: A gimilar proposition'holds it K= A, K= B, or
A < K = B,

In [11] Bourgulgnon, Deschamps, and Sentenac studied for a
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fixed metric 2 for M arbltrary varlations
1 t7 .2 £F ok L, w2
g(t) = g, + t 0 + 5 W™, b g b7 with n e ¢ (87(M)).

They defined a differential operator £ : ¢™(82(M)) = c®(s%(A%(Tx))

depending on g, a8 follows. Given h € CW(SQ(M)), let
g(t) = g, + t h and define (sh) (x,y) = é%—Rt(x,y,y,x) |
t=0

Then they proved that

: ' 1 1
(5) (Z h)(X:Y) = DDb(X3Y:X5Y) = §DDh(X3XJst) - gDDh(y,y,X,;)

+ h(R(x,¥)y,x).

In particular, (Zh)(x,x) = 0. Suppose Kg =z 0 on M.
' o)
We call & two plane o at which K(o) = 0, an extremal value

for ¥ .
€o

Lemma Ef (Blshop, Goldberg, [37).

Let €13€05 00028 be an orthonormal basls for Mp.

Suppose {e;,e,} is an extremal two-plane. Then

R(eléeg,el,ej) = 0 for all j. In particular, 1f x and y

are an orthonormal hasls for an extremal two-plane, then

R(x,7)y = R(ysx)x = O.

Hence, 1f x and y are a gomorthonormal basis for an exiremal
two-plane of Kg , then for any tensor h in CW(SE(M)), the

, o ,
last term in formula (5) vanishes. If g(t) = g, + t h Faaes
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then 1f x and ¥y are»go~orthonormal

Ly (5,y) = K(ey) (B o) (o) = bl (x,y)2).

(6) K'(x,y) = (=h

1

Thus, 1f K(x,y) = 0, then K'(x,y) = (Zhl)(x,y).

One of the fascinating aspects of Rlemannian geometry
18 the relationship between curvature and topology. Let
MY, no= 2; be a non-cowmpact smooth manifold. Tet € > O
be given. Then work of Gromov, [24], shows that for any

K € R, there 1ls a metric g for M for which
K-—BSKgSK+8.

This means that not all Riemannian metrlcsg on a nonncompéct
manifold are of interest. The Interesting metrics from

the point of view Qf.global geometry are called complete
metrics. An,outsténding classical regult in global geometry
relating curvature and topology is:

(1) If M admlts a complete metric g with ricg = ¢ > 0 then

M is compact and vl(M) ig finlte.

A good example showlng that completeness is needed in

(1) is the cylinder M : = st ¥ R, Since M is diffeomorphic

N : = 8° - {North pole, South pole}
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f _ This classical result (1) which is a topological
restriction indicates one reasocon why the problenm of trying
" to produce a metric of everywhefe'positive Ricecl curvature
from a metric on ﬁon—negative Ricci curvature and all
Ricei curvatures positive at some point, is of interest.
A related question is: given (M,go)'complete with Kgo z 0,
when does M admit a complete metric g with Ké > 07 qu'

instancesra possible condition that was suggested to us

by James Simons is the following:

Conjecture: Let M be a smooth manifold adwitting a

complete metric with non-negative sectional curvature and
-all sectional curvatures posiﬁive at some point. Then M
 admits a complete metric of everyﬁhere positive sectional
curvature. |
Since the result (1) which holds for positive Riccl

curvature already does npt indicate the full geometric sig-
nificance of perturbing{a-metric from K = 0 to K > 0, we
mention two other reasons for the interest of this question.
The first is that CGromoll and Meyer have produced a nmetric
on an exotlic sphere with K =z 0 and all sectional curvatures
_pbsitive at some point. Secondly, given (M;g) complete
“with K, = 0, Poor [29] has shown that M is diffeomorphic

‘to the normal bundle of a soul S (constructed by Cheeger

.and Gromoll) in M.
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If K, > 0, it 1s known that a soul ié a point and hence

M is dlffeomorphic to R, Thus, suppose 1t were true

‘that given(MggO) complete with Kg .= 0 and all sectilonal
o .

curvatures positive at some point, M admltted a complete

metric g with Kg > 0., Then given (M,go) complete wlth

K z 0 and all sectional curvatures positive at some

e

point, it would follow that M was dilffeomorphic to Rn.

In [2], p. 397, T. Aubin stated a theorem for which

a corollary wasg that given any manifold with non-negative

Ricel curvature and all Riccl curvatures positive at some

point, M admits a metric of everywhe re positive Rlcecl

eurvature; However, the proof given in [2] appears to

be in doubt even in the compact case.

TLet ug fix some more notation for {M,g) once and for

all.
Put
Bg’R(p) = {q in M; dlstg(p,q) < R}
and _
- in B ; (1-n)R < dist < RJ.
g, g,n(®) 1= la 1o By plp)s (1) st (p,q) < R

We will call A, R Tl(p) the g-outer annulus of g-width mR
Aty .

for Bg,R(p)‘ We will let

(q) := dist _(p,q) = the g-distance from p

Te,p g

and we will let

p =p (a) =

R -r ' = the g~dlstance from
g)R,p (q) g
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Bd (B (p)) which we will define only for g in B (p).
gsR _ gsR

Canention: ~ All deformations g(t) of a glven metric

g, for M will be at least ¢3 in t through at least o°

metrics for M.

Definition: We will say that a set D contained in (M,g)

is g-convéx (or just convex when it is clear what metric
we mean):iff for all p,q in D, there is eiactly one normal
minimal geodesic in D from p to d. |

The theorem stated in [2] referred to.above suggests
that a possible method of solving the Conjecture for
sectlonal cufvature would be to find a deformation g(t) of
g, with g(t) = g, off a smail disk D cenfered at the point
Py of  everywhe re posiltive sectional curvature which would
spread thé positive curvabure from.a slightly smaller
disk D' centered at P, to the annulus A := D - D',
The most‘obvious way to cpnsider,whether a geometric

deformatlon g(t) is a "good" deformatlon is to compute K'.

More generally, let D be a "nice" connected open set
'in'M with D compact so that 1f

p D - R z 0

"is given by

‘o(a) := aist,(q,Bd(D))

ithen grad p is smooth in gome one—éided tubular neighbor-

iood U © D of Bd(D).
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We will say t - g(t) with g(0) = g,> t in (-e,c), ¢ > O

is'a Jocal deformation of 25 wilth support in D iff

(1) for all t in (-ec,c), g(t) = g, in M - D,
(2) for all p in D, there exists v # 0 in Mp such that
g(t)(vyv) # g (vsv)

for all t # O.

From [11], in order to compute-K5 or Ric' for a deformatlon

g(t) it 1lg enough to know the l-Jet of g(t). Thus, to

study X' or Ric' for an arbltrary local deformation of 2

with support in D we may assune |

g(t) =g, +th
for some symmetric two tensor h. Then the conditions
g(t) = gorin M - D angd all metrics g(t) are GlL imply that
in order to study K' or Rié‘ near Bd(D) for an arbitrary
allowable local deformation with support in D, it 1s

enough to study all deformations of the form

g(t) = g, + t poh.

Given a two-plane P € GE(M) wlth 7w(P) € U we will always

: choose a gomorthonormal basis {x,y} for P with x(p) = O.

Then it follows from Corollary ! given below that

K'(P) = - 39(y(p))2h(x,X)

g

+ %5 (0) (D) () = (Dyn)(x,%)) + p°(2h) (,7).

SPQP@HGPMXﬂthuy)f 5% (dp ) {(x,x)n(y,y) - 8*(dp) By)nb,x)]
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The presence of the Hessgian 8*(dp) suggests we choose D
to be a g -convex disk so that 5*(dp) will have a definite

sign. Thus, we will study local convex. deformatlons, that T

ig, local deformaﬁions wlth support in convex metric

isk .
disks Bg (p)

O’R

The formula above already shows the difficulty in
using local convex deformations to lmprove sectioﬁal curva-
ture. (This will be made more precise in Chapter 6.)

Even though it is always possible to chéése a tensor h

on D = B _ R(p) so that (=h)(x,y) > 0 if {x,y) are a g_-
- O 3 .

g

orthonormal basls for a two~plane P, 2h oqu enters the
formula for K'(P) in third order in p and hence, near

Bd(ﬁ) does not control K'. We remark here that a universal
choice of a tensor h with Zh > 0 1s

n = a(x®) ® a(x®)

where r = Ty P. The convexlty of D implies that 6%(d(r2))
o’ ' ,

is positive definite on D = B, R(p) and hence

0?
(5h) (x,7) = (8%ar%) (x,x) 0% (ar®) (y,3) = (8% (ar®) (x,7))" > 0

py the generalized Cauch&~séhwartz'inequality for‘pOSitive

operators. Geometriéailyg we can picturé?this'deformation

as follows. Let (M,g,) := (Ra?gcan) with p = {0,0).

'Then the metric

g, +t d(r2)7® d(rg)
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on R° can be.represenﬁed by the metric on the parabolold

of revolution
M oz o= a(t) =t (67 + y°)

induced from the standard metric on R3 by'the inclusion

3 ; 2
M, © R since 5*(a(r”)) = 28 un -

Tn later chapters with this discussion as motivation,

we will consider the following two problems:

Problem I: Given D = Bg R(p) convex, what are the
O.’

possible loecal convex deformations of £, with support in

D and with Ric' > 0 in an annular nelghborhood in D of
BdA(D)?

(p) convex, can we find a

Problem TT1: Glven D = B
goaR

local convex deformation of g4 wlth support In D‘so that

K' > 0 in an annular nelghborhood in D of Bd(D)?

-

We now derive some computatlonal lemmas that we will

uge later.

Convention:

defilne _
ag(x,v) = x-8(y) - Y-8(x) ~ 8([X,Y])
omitting the factor of one-half. |

Definition:  Given Uc D € M as above, p € U - Bd D,

For x € M_ the radial component of x written X, is

civen £ € c¥(TM)), X, Y € ¢7(TM), we will
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kel
1l

go(x,Vp)Vp and the tangential component 1s

Xp = X = X. We will say x ig radial if X5 = 0 and x

‘is tangential 1f Xy = 0.

This definition is motivated by the following
geometric model. Let D be a convex disk centered at Py

and let Sr(po) = {q € D; dist (po,q) = r}. Then ¥p

g
: o
18 the inward pointing normal vector fileld to Sr(po) c D

and Vp points in the "radial” direction towards p,. A

tangential vector lies in (vp)" and 1s tangent to the
sphere Sr(po)'

Notatlonal Conventioh: In the computational lemmas to

follow, we will write <{,»> for gorand D for the Levi-Civita
connectioﬁ determlned by g,. Given x,y € Mp, we will
always extend x and y to local vector flelds X and Y in

a neighborhood V of p so that [X,Y] = 0 in V and

DX' = 0 and DYf = O where DX(v) := DVX’ . We will call
p p

X and Y a good extenglon of x and y. For a good extenslon,

(%n) (x,5) = %7 (8(X,¥)) - Fxx(h(¥,¥))- Fy¥(n(x,X))

- B(R(x,3)y,%).

Temms 3: Tet £ : M- R be & C° function and h € ¢®(s~(M)).
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(3£0) (,y) = 8%(a2) (6,3)0(x,y) =  6#(a8) () (y,y)

- %-5*(df)(y,y)h(x;x)

b x(0)(00) (x,5) =~ (D) (7,3)) + w(£)(00) (x,) - ,0) (6,%))

+ £(3h) (%,)

Proof : Let X and Y be a good extension of x and y.
Then
(DXDyh)(x,y) = x¥(fh{X,Y)) = x(Y(£)n(X,¥) + fY{n(x,Y)))

= x¥(f)h(x,y) + y(£)x(h(X,¥)) + x(£)y(n(x,¥))

+ £xY (h{X,¥))
= 5%(ar) (e, y)n06y) + 7(£)(0,h) (x,) + x(£)(Dyh) (x,)

+ f(DXDyh)(x,y).

similerly, (D00)(ysy) = 04(af) (6,x)(y,5) + 2x(£) (D) (y,5)

+ £(D,D.h) (y,y)

and the lemma now follows from formula (5).

Q. E. D.

. Now _
0% (™) (x,5) = <D, (0™),3> = <D, (mp" 7190 ),

n-1

= n(n-1)p"2x(p)y(p) + np™ tox(ap)(x,y)
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(7) 5% (dp™) = np™ Lo (dp) + n(n-1)p" Papedp

In partlcular

(8) 8% (

» if Xp = O, then

do™) (x,y) = np™ ex(ap) (x,y).

Hence, we obtaln

Corollary: k.

Fornz 3 in U

(56%) (x,7) = 2O 2x(p)y(p)nle,y) -l lh(y,y

- Hypﬂgh(x,X)]pn"g

+ B o™ 200 (ap) (x,5)0(0,5) - 8% (do)x,x)n(y,y)

+ npn”l

g6 + & Eom,

Lemma 5:

*

N roj

N} =

(D, 8)(v) (o) (y) -

- 5% (ap) (3>3)n ()

y(p)((D,0) (,y) = (D) Gesx)) + 00" Hx(e) () (x5

- (D,h) (vsy))

+ pn(Zh) (X,')Y) .

Let £,m € ¢(T*M) and consider the varifation g(t)

)

An elementary but lengthy calculatlon shows:

(2(20m)) (x,7) = 5 n()(D,A8) (x,7) + & &(x)(

n(y)(D_a8) (y,x) + 5 E(y)(D,an)(y,x)

g(x,x)o*n(y,y) +

MO PN

(9,8) (%) (Dyn) ().

Dydﬂ)(X,y

i

/

b*n (x,x)6%E (y,¥) = & a8 (x,y)an{x,y)
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If dn = 0, then DXﬂ(Y) = DYn(X) since [X,Y] =0

sé - D& (Y)Dyn(¥) + D & (X)Dyn(X) =

D)D)+ BE(K) - 260 (x,)8%8 (7).

- We have proven

Corollary 6: If n is exact, 1.e., dn = 0, then

(2(201)) (o) = S(n(3)(D,28) (3,x) + n() (0,08) (x,) + §

+ 6*'§(x,x)5*ﬂ(y>ﬂ + 5*ﬂ(X:X)5*§(YJ) -

- 25%E (x,y) 6 (x,y)).

Lemma 7: Tf £ is a Killing form, i.e., 8¥f = 0, then
(p,a8)(y,x) = 0.
 Proof: . Making a good extenslon 26%E(X,Y) = 0 = DX§(Y)+DY€(X)

S50

(D,08) (¥,%) = D, (DE(X) = DE(Y)) = -2, DyE(¥)

Q. E. D.

Lemma 8:  (2(p°dpe))(x,¥) - %ﬁpg(HXpH25*§(y,yj +

Ny I12658 (x,5) - 2ap0 ap (5,3 ) 652 7))

+ B2y (p ) (Dd8) (y,x) + x(p)(Dyd8) (%,5) + 638 (x,3)8%(ap ) {y,¥)

Co*E(y,y)6% (dp ) (x0,x) =~ 26%E (x,¥)6%(dp) (x,¥7)).
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Proof: By Corollary 4, we have

3

(3(p~apg)) (x,y) =

30 (2x(p )y (p)apot (x,3) - I l12apoc(y,y) - lly,l2ape € (x,3))

+ 20228 (ap) (x,5)dpoE(x,¥) - 6% (ap) (x,x)dpo (y,y) -

5% (dp ) (y,y)dpeg(x,x)}

+ 3025 (p) (0,00 €) (x,7) = (D dpe8)(3,x)) + 3px(p) ((D,ApoE) (x,7)

- (Dapes) (y,¥)) - p°(2(dpe8)) (x,¥).

Now (D,dpo8)(x,y) = H((D.dp ® £)(x,5) + (D& © ap)(x,¥))

b

((m,dp) (x)E(y) + x()(D8)(y) + y(p)(D8) (x)+E(x) (Dyde) ()

Ol R

'~'-(@(y)é*(dé)(x,x)+x(p)(DX%)(y)+Y(P)5*€(X»X)+€(X)6*(dp)(X:Y)):

Il

(Dydpe £) (x,) = £(x)8%(dp) (x,y) + x(p) (D,2) (),

(8 (y)ox(ap) (3,5) + x(p)o*g(y,y) + v{p) (D 8(x)

o=

(DydPOE)(X,y) =
+ E(x)o*(dp) (v,y)) s

and @Xdpa€)(&,y) = g(y)ox(ap)(x,y) + y(p)(DE)(y).

Hence, _ _
3p%y(p) ((D,ape &) (3,5)=(Dydpe) (x,x) )+3p k() ((Dyap o) ()
- (D dpe &) {y,v))

2(ox(ap) (x,x)dpe&(y,y)+0*(dp) (¥,¥)dpet(x,x)~2dpe 8 (x,y) #{dix,y)

prugﬁ*i(y,Y) + Hypngﬁ%i(xsk) - 2dpedp (x,¥)0%E (x,) ).




Finally,

xp )y (o) (o) e (5 (98 () -l 1P (008 () -l P50 ) 2 ()

Suppose Xb _

so that

Corollary O:

25.

2dp°dp(x,y)dpaé(x,y)—prﬂgdpoé(y,y)—HypHEdpoi(X>X) =-

= OI

Q. E. D.

= 0. Then dpedp(x,y) = 0 and dpeE(x,x) = O

If X and y are go~orthonormal with Xp = 0

and

K (x,y) = 5 ooy 1848 (x,%)

g(t) = gyt ¢ pgdpog, then

- 3
+ B(0g (x,%)8%(dp) (v,¥)

+ 8xE(y,y)o*(dp) (x,x) - 266 (x,y)8%(dp) (x,5)+y,9p> (D, a8 ) (y,x))

- oClly 1P (8 ()7 ) -

Proof:

the hv

o

fSuppose Kg

':'..ineo, 6

By formula (6) for nt o= pgdpoi, we must compute

"area squared"

%, 3 )0 (y,7) - 0t (x,y)% = ~(p3dpag(x,y))?

= = pClly (e ()2,

Q,A E'I Do

z 0., Notice that if € 1s a gO—Killing form,
o} : .

* £ = 0, then by (4)
gO
4 L

6*(%r€) = p apet +_%rb%§ = pJapog
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s0 that depog is in the image of &% and hence
K(x,y) = O should imply K'(x,y) = O by Proposition 1.

Evidently, K (x,7) ;.{y,vp>(DXd€)(y,x) but this 1s then ,

zero by Lemme 7. -
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- Chapter 3: Some Remarks on the Space of Riemannian Metrics

of & Smooth Manifold

The purposge of this section is fhreefold. Flrst we
make explicit the notion that.if two metrics for a smooth
manifold are close, then metric balls Iin the two metrics
centered at the same point of the same radius are gimllaxr.
This we use in Section 5 to preve the Riéci_curvature
deformation theorems stated in [2C].

Second we obserﬁe thét 1f two Rlemannian metrics
for M agree off a compact subset of M and one metric 1s
complete, then the other metric 1s complete. We apply
this resgult to determine the end structuré.of cémplete
non-compact non-negatively Ricel curved manifolds with
positive Riccl curvature off a compact set.

Third we apply the results of [19] and/or {14] and
the comparlson theory in Riemannian geomebtry to obtain
the local minorization of the convexity radius function
g - ig(M) and the injectivity radius function g - cg(M)
on the space of Riemannian metrics R{M) for M. Precisely;
1f M i1s compact and g, € R(M)} is gilven, we show that there
exist constants 6(go) > 0 and C(go) > 0 guch tﬁat if
g € R(M) is 6(go) close to g In the ¢? topology on R(M),
then any g-disk of g-radlus < C(go} ig g-convex.

Given two metrics g, and g, for a manifold M, we

write
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heg =8=<Beg
for constants A, B in R 1ff for all v In T™

A gy (v,v) s go{v,v) = B gy (v,v).

Recall that for p and ¢ in (M,g), we define a dlstance

function

distg : MXM-—-R=O0
from the Riemannian metric g for TM by

distg(p,q) 1= inf{Lg(c)g ¢ 18 a sectlonally smooth
path from p to gl.

It is elementary that

Temma 1: TLet O< A € R, If A g1 % Eos then

(p,q) = dist (p,a)

(%) JE dist &

&1
for all p and g in M. We will write

T dist = dist
/ ° 51 ° &o

meaning that (*) holds.

=

Corollary 2: A g, < g, < B g lwplies Jﬁ'distg

1

< dist s J/B dist .
gg J £1 ‘ :

Now let

I

B (v in M_; go({r;\'r) <R M s

(p,q) < R} € M, and

O

B := (g in M; dist
gO,R(p) (g dn M5 o
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S

(p) = (g in M; dist, (p,q) = R} < M,
o 0

Boa R
Tet 0 < & < 1.

Temma 3: Suppose (1-5) dist_ = dist_ = (1+5) dist_ .
e - &6 & &

Then

(1) '8, () € By (145)p(p)s and

(11) Bg,(l$5)R(p) = Bgo’R(p) < Bg,(l+6)R(p) .

Proof: (i) ILet g € S R(p). Thus, dist_ (p,q) = R.
& &,

Then

aist,(p,q) € (1+6)dist, (p,a) = (148)R  so
[0

q € Bg,(l+6)R(p)’

(11) If q € B. .(p), then aisty (p,q) = R - ¢
g,sR o

for some ¢ = Q0.

Then
distg(p,q) < (14+86)(R-c) < (1+6)R

50

BéO,R(p) c Bg,(l+5)R(p)'

Then dist

g(pom) = (1-8)(R-d) for

Let m € Bg’(l_é)R(p).

some d > 0. Then

1
distgo(p,m) = TI:KT diStg(p;m> = R = d < R
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/' - which implies

Q. E. D.
Lemma.B can be thought of ag a sgqueezing lemma which

implies that 1if

(1-5)%g_ < g = (1+5)°

S0
for some gufficiently small &, then to a g-observer a

go~ball centered at p roughly looks like a gouball centered

’R(p) ig contained inside
O)
the g-annulus centered at p of "g-width" = 28R, namely

at p since the go—sphere Sg

A B, (10)alP) = P, (1200500

Ag an aslide, we note
Lemma 4: Given any Riemennian manifold {M,g), we have

distg(Sg’Rl(p); Sg,Rg(p)) = |Ry - Ry

Given a g_-outer annulus A = Ag R 8/4(9) with € suffi-
' Is) 3 p-]

ciently small, 1t is reasgonable that if g is another metric
'sufficiently cloge to 8o then A will be contalned in a
g-ball B centered at p of g-radius R slightly larger than
R such that the g-outer annuluélﬂ (= Ag,ﬁ,ﬂ(p) of B |

of width €R will contain A.

More preclsely,
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f - Lemma 5: Given M and a flxed metric g, for M. Fix
0 <& = 1/2. There exlsts &6 > O with the following
property. Let g be any metric for M with
2 ' 2
(1-8)%g, = g = (1+6)%g, .

Then for any p in M and R > 0, there exlsts R > 0 such

{

that
A . [ A o~ .
g Re/4P) < g e (P)
Proof': ‘From the hypothesis ard Corollary 2, we have

-§ 'd} & = dist = i+6 ai .
(1-5) dis &, 1s e ( ) stgo

inen € we want to choose b such that
(*) (1) (1+8) < (1-8)(1-e/h)
which holds if 1 - & - &/4 > 0 and & < 3&4(1 -¢& -¢e/h).

If € £ 1/2, then 1 - & - &/0 =2 3/8 so (¥} holds 1if
6 < 26, |

Now let g € Ago,Rjg/A(p). Let R := (1+8)R.
By definition,

(L-£/4)R < dist_ (p,d) < R.
o _

Hence,

distg(p,q) < (1+6)r = R.

It remains to show thatu

atst,(p,q) = (1-8) = (1-2)(1:+6 )R,
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But

alst (p,q) = (1-6)dilet_ (p,q) = (1-8)(1-€/U)R,
g - | 8o T

Thus
distg(qu) = (1-)%  if  (1-8)(1-€/W)R = (1-€)(1+8)R

which hélds if (¥) holds. Hence, for b < 2€,

A o \ = A~
gQJRag’/)‘L(p) A%:(l"['a)Rje(p) g,R,B(p)’ )
if '

' > >

(1<8)%g, = g < (1+3)7g, .

Q. E. D.

We now state and prove Lemma 6, then apply it to

study the end structure of complete open manifolds (M,g)

with Ricg =z 0 and with "positlve Rlcci curvature at infinity".

Lemma 6: TLet (M,go) be complete, non-compact. Let g be
another Riemannian metric for M. Suppose there exists a

compact D in M such that g = g4 in ™ .
- Int(D)

Then (M,g) is complete,

Proof: Let w : T » M be the tangent bundle of M. Let
E o:= (v in ™; 7w(v) € D and go(v,v) = 1}. E is compact

because D 18 compact. Then £ : E - R > 0 gilven by

f(v) := g(v,v) 1s a continuous function. Hence, we can

find congtants A, B in R wlth 0 < A < 1, B 2 1 such that
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A s f(v) =B for all v in E.
Then
Ag,=g=DBg,

in ™ so that

JE dlst_ < dist_ = /B dist_ .
o g 8

Hence, using the Cauchy sequence crilterion for complete-

ness, 1t follows easily that (M,g,) complete implies

(M,g) complete.
Q. BE. D,

Let M be a non-compact Riemannlan manifold, n 2z 2,

We wlll consider complete metrics g for M with Ricg = 0.

(M,g) is said to be positiveiy Ricel curved

Definitlion:

infinity iff there exisgts a compact C € M such that

Ricg(v,v) = 0 implies w(v) € C.

Recall that from the Hopf-Rinow Theorem a distg«
metric bounded set in a complete manifold (M,g) 1s compact.
Given (M,g) with Ricg z O positively Ricel curved at

infinity (with ¢ as in the definition) let

D $= pkéc Bg,l(p) ‘

which is distg—bounded (since ¢ is compac t) and hence
compact. By our Ricedl curvature deformatlon theorem of
Section 5 and [19] for uniformity, produce a C metric

g for M with g = & off D and Ric_, > 0 on M.
: g




By Temma 6, § is a complete metric fof M. Since

RiéN > 0 it follows‘that (M,Z) has no lines (see [23],
pp.gTB ff.). Hence, M has only one end, for if not the
standard classicai congtruction, c.f., Preigsmann, [30],
produéeg a line. (See [23], pp. 80 for a definition of

"M has only one end".) We have shown

Theorem 7: Let Mn, n = 2, be an copen manifold. Suppose
M admits a complete CLL metrle g with Ricg =z 0 that 1s
positively Ricei curved at infinity. Then M admnits a

complete ClL netric S with Ric_, » O everywhere. Hence,
' ' g

M ig connected at infinity, that is, M has only one end.

Now we glve an example to show that Ricg =z 0 is
necessary'in Theorem 7. Recall that the surface of

revolution _
Z = xe -+ y2
represents a complete metric on R2 wlith K » 0. Let

M = ((x,y,2) € 83; z =2 and z = x° + y°)

Glueing two coples of M together by a tube, we get a

1

compleﬁe metric on 87 X R2 which is positively Ricecil

curved at infinity, but with some negative Ricel curva-

ture. Clearly S:L b R2 hag two ends.

Taking the positively curved n-dimensional hyper-

nt-1

surface M" ¢ R given by
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o 2
o) et (x . 4)

and making the analogous construction we get a complete
n-manifold with two ends that 1ls positilvely curved at

infinity but again will have gome negatlve Rilcel curva-

ture.

We make some standard definitions. Glven (M,g)
complete, let ' R

1 (p) := R > 0; exp_ : B - B ) is
{p) sup (. 3 expy By p(p) = By o(p)

a diffeomorphism}

called the injectivity radiug of (M,g) at p, and let

p € M}

s

ig(M) t= inf[ig(p)

called the injectivity radius of (M,g). We say ¢ < (M,g)

is g-convex i1ff for all p,g € C there 1s exactly one

normal minimal geodesle 1In C from p to q. We define

Cg(p) := gupi{R > 0; Bg,R(p) 1s g-convex)

which is the convexity radius of (M,g) at p, and

cg(M) P= inf{cg(p); D § M}

the convexity radius of (M,g). It 1s well known

r

fixed g,
p~i(p) fromM-R=ZO0

and
from M= R = 0

that for
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f are continuous functions. Thus, 1f M is compact,

ig(M) > 0 and cg(M) > 0.

We want to study the locai behavior of g~ ig(M)_
and g - cg(M)'as functlons R(M) - R = 0 on the space
of wetrics R(M) for M. Fixing a Rlemannian metric g
for M, recall that igo(p) and cgo(p) are determined by
the behavior of the configuratlon of radlal geodesics

from p. The basgic idea is that near p the configura-

tion is qualitatively like that in (Rn,gcan).

For g close to g_ In the o topology on R(M), we
would expect the configuration of g-radlal geodesics at

p should be close tb the g ~configuration of radial

geodesice at p. This ig because writing out the partial

differential equation for a g-radial geocdesic at p in

Initial dlrectlon v € Mp in a gO—Riemann normal coordinate

ball, g belng Cg'close to g, implies the coefficients of

g-p.d.e. are close to the goucoefficients of the go~p.d.e,

for the go—radial geodesic in directlon v. Hence, 1t is
reagonable that the functlon
g~ i,(p), R(M)~ R=0
2

for a fixed p in M should be locally minorized with the C

topology on R{M). (See. [19] for details.)

For M compact we will-consider the behavlior of the

injectivity radius ig(M) and the convexity radius cg(M)

.
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/ .as we vary g in a neighborhood of a glven metric 8o in

R(M).

A basic estimate 1in Rlemannian geometry asserts
for M compact
(%) 1,(M) = min(r/A/ng, 1/2 L(g)]

L{g) := inf[Lg(c); ¢ 1s a smooth closed g-geodesic)

and where ng > 0 is any congtant chosen so that

g

Of course, for M compact, there 1s a geocdesic ¢ with

K (p) = hg for all two-planes P € G,(M).

_Lg(c) = L{g) é 0.

Theorem_§; Given M compact and a Riemannlan metric
g, for M, there exists constants 6(go) > 0, L(go) > 0,

and i(go) > 0 such that if g i1s any Riemannian metric

for M with

Ig—golcg < 8(g,)

then | _
(1) L(g) > Llg,)s and

(11) ig(M) > 1(g,)-

Proof:. Since M ig compact, diam(M,go), Vol(M,go), and
1= sup{]Kg (P)|s P € G,(M)} are finite. Thus, we

g0 o
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’

can choose d,V,h, and‘ﬁ(go) > 0 so that

) [gf80102 < 8(g,) implies

(#) datlam(M,g) < 4, vol(M,g) > V, and Ké > h,

Then the existence of L(go) follows from a theorem of
Cheeger [14], minofizing the length of the shortest smooth %
closed geodesic for any manlfold and Riemannian metric |
for that manifold for which (#) holds. The exlstence

of i(go) is then trivial, from inequality (*). It is

posslble to give a more direct proof using [19].

Q. E. D.

Now we turn our attentlon to the local minorizatilon

of the convexity radius function.

Definition: B, o(p) is said to be g-good iff for all
k]
q in B (p), the exponential map
g,y R exp

: RN
Mmq ) ﬁg,ER(Q) > Bg}ER(q) M

i a diffeomorphilsm.
The followlng lemma from [22] pp. 160, shows what is

needed to minorize the convexity radius function on R(M).

We make the conventlon thab for p €M v e Sl(M,g)l
' p

that we write

cv(t) 1= expptv

: for the g-radial geodesic from p in unit direction v.
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Temma T: Suppose B_ _(p) satisfies

£sR

.A) BgJR(p) is g~good, and
B) for all v in Sl(M,g)l the index form T, 1is
b _ v

positive definite on all Jacobi flelds J along cy with
initial conditions J(0) = © and g(cv,J) = 0,

Then B
T gsR

(p) 1s g-convex.

The proof of the Index Comparison Theorem (221, p. 174)
and the fundamental inequality for Jacobl flelds ([22],
pp. 145, for mula (5)) easily ilmply that the following,

which seems to be abgent from the standard references,

holds.

Proposition 9: Fix (Mg,gl), (Mg,gg) complete Riemannian
manlifolds. Choose < € Ml’ D5 € Mg, and a Euclidean

lsometry

- ME .

P bo
For all v in Sl(Ml’gl)[ L, let c, R - Ml and
Py |
cé(v) : R~ M2 be radlal geodesics from Py and Ps

respectively, defined as above. Let
: M - Mgl
C@(V)(t)

be the usual parallel transplant map, i.e., Par t(w) 1s
: s
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f obtained by parallel translating w along cv(t) to p,y

to get W € My " and then parallel translating & (W)
Py
along Ca(v) t@ C@(v)(t)‘

{(py) = My is g,-good,

Suppose R > 0 18 chosen so that B
glﬂR.

B (pg) C M, 1s g,-good, and so that

8233

Kgl(év(t),}() = Kgg(éé(V)(t)’ Parv

for all x € (év(t))i C M all t € [O,R), and all

l 3
| [e, (8)
v € Sl(Ml,gl)l " .  Suppose for all v € Sl(Ml,gl)l that
Py . P1
~the index form I, 1is positive definite on all Jacobl

‘ v
fields along o on My with J(0) = 0 and g,(7,6,) = o.
Then for all &(v) € Sl(ME’gE)] the index form I,
| O
is positive definite on all Jacobl filelds J along Cp(v)

& (v)

in M, with J(0) = 0 and gg(J,c@(v)) = 0. In particular,

iven R > O with B_ . . ~convex and B
g wi gl,R(pl) gy ~convex 82,R(pg)
&o-800d, BgE,R(pE) is g,-convex.
Given,wpggo) compact, K, < = < %, & > 0, Propo-
o

O .
sitlon O applied to (M;,g;) := (8%, ) and (My.g,) =
(SE/JH’gcan) shows that the behavior of (B) of Lemma I

is minorized for g close to 25> which can be stated as

Proposition 10: Given M compact and # > O, There ig




by,

a constant R ) > 0 with the following property. Let
g be any Riemannian metric for M wlth Kg < %, If B

isg any g-good ball of g—radiﬁs < R(%), then B is g-convex.

Remark: Clearly, if Kg < X< O, then any Riemannian
' 0

metric g sufficlently close to 8o willl satisfy Kg < 0
which autbmatically'forces any g-good ball to be convex.

Putting together lemma 1, Proposition 9, Proposition

10, and Theorem 8, we obtain

Theorem 11: (Local minorization of the convexity radilus

function).

_ Given M compact and a Riemannian metric g, for M, there
exlst constants 6(g,) > O and c(gO) > 0 such that if
g € R(M) satisfies
C .
then any g-disk on M of radius < C(go) is g-convex.

For the Ricel curvabture deformation theorem for

Rie £ O to be given later, we need an estimate on

6% (g
ex(aln, )
(where Ty p(q) = distg(p,q), or equivalently on the
2 : :
index form I, of Lemma I for all metrics g sufficlently :

v
close to a fixed metric'go for M.

Given'M compact and a Riemannlan metric 86 for M,

choose constants KL and %g such that for all two-planes
. 0 o




L2,

AP € GQ(M) ; .

L .

Fixing suitable constants ny < Kg and Ao >—%g we may

‘ o o
choose 0 < él(gc) < é(go) where G(go) 18 the constant of
Theorem 11 such that

|E’S - golcg < 61('%0)

implies

ﬂlsKgSKQ.

Then applying the idea of the proof of Proposition 10

to compare the index form of (M,g) to that of the relevant

standard model spaces of consgtant curvature %l and ”93 we
‘gee that

Theorem 12: Glven M compact and a Riemannian metric g5

for M. There exlst constants 6(go) > 0 and F(go) > 0

such that g € R(M) and

& - g, 5 < 8lg,)
C
implies any g-disk centered at any p € M of g-radius <

F(go) ig g-convex, and

(2-1/1)g S'é*(d(rg’pé)) < (2+1/M)g

holds any such disk,

Remark: As a motivation for'this'inequality, recall that
ox(a(xs )| =28
g p p
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Proof : Tet v € Sl(M’g)l . Then
- - D
b 5
b* 2 = .
(alry 20 0rav) = Loy e (o) ] o |

But for t small,

2
tv = {dist (ex
- (exp,tv))? = (dist (exp

tv,exppov))2

(ry ple (8" = (x .

= gltv,tv) = t~.

Thus,

wlafe 2 _d - _ 5
8*(a(r, ) (v,v) &?(t t)tio 2

5P
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Chapter 4: (alculation of Rie' for local convex deforma-

tiong: the sdlution of Problem T.

In this chapter, giveh (M,go) and p in M we conslder

Problem I: Given D = B (p) convex, what are the

goaR

3

possible geometric deformatlons g(t) of gO-C in t through

o metrics with support in D and with Ric' > O in an
annular neighborhood of BA(D) in D? and show that this
problem can be solved in particular by a‘cdnformal defor-
mation. - : .

| Recall that technically g(t) geometric means that 1if
h is the 1-~jet of g{t), then h E Tmb¥, Also, in Chapter 2

we saw that 1t was enough to study varilations of the form

e(t) =g, + tp°n

to compute Ric! for all posgible variations satiéfying the
conditlons of Problem I.

Fix p in M. TRemember that if‘r is the distance from
p on M, then in M -~ {p} r is a smooth function up to the
cut locus C{p) of p and r® 1s a smooth funciion on M up
to ¢{p). We may take U =D - {pl} as the one-gided tubular
neighborhood of D discussed earller. Then the distance

function p to BA D is Just p = R~r. In

b - {p}, gO(Vr,Vr) = 1 so that 8*(dr)(x,vr) = gO(DXVr,Vr)

% (g, (Vr,vr)) = %x(l) = 0 and henceé we obtain
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(9) 5%(dp)(i,y)'=‘6%(dp)(XT,yT)_ where Xf 18

the tangential component of x defined as in Chapter 2.

Given h € Cm(SET*(D))), we may write h = hp + dpen + fdpedp
where f : D= R is & smooth function, m € cT(T*(D)) with
n(vp) = 0 and hT(x,y) = hT(xT,yT). We will call hy,
the_tangeﬁtial cbmponent of h. For now we comblne
 dpom -+ fdpedp as dp°E where £ € ¢®(r*(D)).

3
(

hT+dp°§).

.We want to calculate ric' (v} for g(t) = g+ Ep
Fix q € D - {p}. Choose as a g -orthonormal basis for M,
vectors eq,.. .58 4

B, . :
rict(v) = gii z’z%« by the gquotient rule for differen-
>

‘"tiatlon we have

spanning (Vo Y* and vp, . Since
' lq ’ |q

. \ _ Ric'(v,v) _ Ric{v,v) 4 |
TLemma 1: rie!(v) 2 (vav) go(V’v)d =T g(t)(V5V)th

g0 that ric(v) = 0, go(v,v) — 1 dmplies ric'(v) = Ric'(v,v).

Notational Convention: In all computations we will take

go(v,v) = 1, and write < , > for g_ and <, >t for gl(t).

Let g{t) = g, + t h. Then

& n-l & £
Ric {v,v) = = <R (ei,v)v,ei> + {R"(Vp,v)V,7p)
i=1
n-l ot t |
= <R (e.,v)v,e.>t + ¢R (Wp,v)v,Vp>,G
11 i i: _
| n-1 -
Vp,VIV,Yp ).

—t 5 n(R(e,,v)v,e,) - t n(RY(
i=1 1 l
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Thus,
n-1
Ric'(v,v) = = (Zh)(v,ei) + (sh)(v,vp)
=l
n-1 o ' i
- 'Zl h(R(v,eiWei,v) - h(R(V)Vp)vaV)'
T _

Thus, for g(t) = g, + b pg(hT+dp°§), we have
Ric‘(v,v)lz tr((z(ps(hT+dpo§)))(—,v)) + p3 (terme in curvature).

Tet A(R)(x,3) = 3y(p) (D) (xuy) — (Dyh) ()

F 3x(p) ((0,1) (755) =~ (D) (3s3)).

Now dpodp(VJVp) = V(p)J hT(V5Vp) = hT(VPJVp) = 0,
6*(dp)(v,vp) = O, and 5%(dp)(vp,vp) = O. Using Lemma 8
3

and Corollary Y of Section 2 we have for h = p°(h +dpe)

T
that

(3n)(9,v) = =3p hy(v,v) + p2A(n,) (vo,v) + p°(3hy) (7p,7)

+ %—pg(Hﬁjﬂgé*iﬁvp;Vp) + 6% (v,v) - 2v(p)o¥E(Vp,v))

+ %§(<v,v9>(nvpd§)(v,vQ) + (D a8) (e, v) + 6¥E(Ve,vp)ox(dp)(v,v)).

Using Corollary 4 and Corollary 9 of Section 2, slnce

(5h)(e4590) = ~3pllvp | Zngles,e0) + 5 p7[28%(ap) (v bg(ey V)

- 8%(ap)(ey ey (v, v) ~-6*(db)(V;V)hT(ei,ei)]+02A(hT)(ei,V)

Fang) (eg,v) + 3% lvell®x5(egep) + B [Cv,u0> (0, aB)(vsey)

+ B%E(ei,ei)é*(dp)(v,V) + 8% (v,v)ox(dp)(eyse;)-28%E (e, v)8%(dp) (e
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To compute tr{x - 6*(dp)(x,v)hT(x,v)}; we may choose

€1s--s€ g With hT(ei,v) = 0 and v,e;,...,e, _, & basls

for M_. Then
q

tr 8%(dp) (=, v)hg(=,v) = 8*(dp)(v,v)hy(v,v)

n-1 : ‘
+ izl 6*(dp)(ei,v)hT(ei,v)

- 5*(dp)(v,v)hf(v,v)

If we define 6§ = trbf€ = trd*€, then

Lemma 2: For go(v,v) = 1 and g(t) = g, +'tp3(hT+dpo§),

Ric' (v,v) = ~3p[bo(v,v) + JvpliPerng] + pPera(ng) (-,v)

p2r26%(ap) (v, v)h,(v,yv) = Ap by (v,v) = 8%(de)(v,v)trhy]

+

N W

02185 (v,v) + llvpliZos - (v, 90> 8%E(v,vp)]
+ p2 v,y trlx ~ (D,d8)(v,x)) + (D d8)(vp,v) +

+ 5% (dp Y{v,v)8E + &¥E(v,v)hp - 2tr6%€(—,V)6*(dp)(-,V)]-

I

(R(v,z)z,v)}.

p3[z - hy,

From Lemma 2, we see that 1f hT 1s negative definite

near Bd(D), say hT(v,v) s - rg (v,v), with A > O a constant,
then Ric!' willl be positive in an annular nelghborhcod of

BA(D) in D. Thus, the answer to Problem I 1s YES. The
satisfyiﬁg this condltion is

most obvlious cholce of hT
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hy = - gl (7p)t.
This leads us.to consider the deformations,gl(ﬁ) = g0+tp3go
and g,(t) = go—tPSgo- | |
From Lemma 2 ﬁe obgerve that for the varlation
g,(t) = g +tpe, = (1+tp3)go, Ric' (v,v) = ~3pf3(n~2)pvaHE+O(92)

3)

and for gg(t) = gomtﬁggo = (1-tp oo Rict'{v,v) = 3p +

3(n-2)pllv, % + o(s®).

Thus, in an open annulus with the

outer boundary circle Bd D for gl(t) we have Ric'(v,v) < 0
and for gg(t) we have Ric'(v,v) > 0. THence, up to second
“order in t near Bd D the variation gl(t) 1s decreasing all
Ricecil curvatures and gz(t) 1s incféasing all Rlcecl curva-

tures. By taking t sufflcileritly small in the Taylors

expanslon
2

b t RSN
Ric” = Riec + t Ric! + 5= Rie't + ...

we should hopefully be able to make Ric' dominate the higher

order time derivatives of Ricl. We shall shortly see that

this can be done.

Tn [11] Bourguignon, Deschamps, and Sentenac conslder

Ck varlatlons
2 . k . .
g(t) = gyt b+ i nfr ok EonS ot e oT(sP ().

The difference tensor of the Levi-Civita connections pt
2 k
t o 1 t 2 £

‘and D° can be written D¥ - D° = t ¢ + - C+...+ e Ck

for two-tensors Ci. Then Bourgulgnon, Deschamps, and




_ ‘ i
Sentenac gilve formulas for calculating %E-Rt ] from
_ . t=0

the ténsors Cj.

| For gl(t) = (l+tp3)go we calculate these tensors
dlrectly since thelformulas of [11] are complicated for
1> 2. We write {,> for g_, D for n°, and {,», for g(t).
Given vectors x,y, and z at Mq make gdod extensions to

local fields X,Y, and Z. Then
KD;Y,@ = x(Y,2>, + y<2,0, - z{X,Y)t

c((L6p2 )Y, 2>) + y((Le6p )2, 10) = n((1+tp° )X, ¥)

!

3607 (x(p)ysm> + y(p)(maz> = Ve )
- q

+ 2<DXY,Z> + 2tp3<DXY,z>.

Tet Cp(x,y) = x(p)'y + yl(p)'x - {x,y>¥p. Then we have

t 3 2 ‘
obv,Ed, = (1t KDY,2 + 5 b ¢, (xy),22. But

<D§Y,z>t = (l+tp3)(D;Y,z> so that

tp2

+tp

3

w

2.8, ()

t 3 3,2
DY - DY = 5 +(tp)

J

2
¢ (x,5) = 5 tp~(1-tp

-

P
. 8.
(x,¥) = 5 690%C, Cy) + 5 6797 G (o) e

so that Ck(xsy) = (—l)k+l % £ pgkdlcp(XJY)f

t 3

Consider the conformal variation gl(t)_= e'p goe

Using the power serles expansilon for tbe‘exponential,
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oy 3 2 6

Since El(t) =-gl(t) + O(tg), hoth variations have the
same first derlvative of Rilcel and sectlonal curvature,

- But for g, (t), a calculation simllar to that for (t)
SRR &1

shows that

~t '

DY - DY = %—tpg(X(p)y+y(p)x - {x,0¥p)
g0 ﬁl(x,y) = %—pgcp(x,y) and ﬁi(x,y) = 0 for i = 2.
Although g,(t) looks like a simpler variation than gl<t)

the Levi«divita.connection defined by.gj(t)'is more
- complicated than the Levi-Civita connection defined by El(ﬁ).
Hence we willl use the conformal variation gl(t) to perturb

the Riceil tensor.

5

We now consider the conformal variation g(t) = e 2P &q
on convex disks.

The reason for using p5 instead of ps 1s only to make

1
g(t) a ¢! metric on M and hence ricl a G° function on the

sphere bundle Sl(M,gO) of g -unlt vectors in TM. If

g(t) = e“"g_, then 1t is well-known that

-2tf
e

v) = {(ric(v) - t(nwz)ﬁ*(df)(v,v) - bAf

+ t3(n-2) ((v(£))? - |ve]|®)).

(See for instance [22), p. 90.) Hence for f = —2p5, lv|l = 2,

eetPS[ric(v)+t(n-2)6*(dp5)(V;V)+tA(P5)

:rict(v) =

+ t2m-2) (v ) - v(e2)I%)).
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4

But 8%(3p7) (v,v) = 200°[lv [® + 50™6%(ap) (v,v),

8(p%) = 20p° + 5p™ Ap, ana
(v(62))2 - [lv(e2)12 = - 250° v, 2.

Hence _ _
rict(v) = egtp.[ric(v) + 20tp3(l+(n—2)vaH2)
+ ﬁtp”(Ap+(n~2)a*(dp)(v,v))—25t2(n—2)p8HvTH2].

Thus

é%rict(v) = 2p5e2tp5{ric(v)+20tp3(l+(n-2)vaH2)

+ 560" (Bpr(n=2) 6% (ap) (vsv)) - 2567 (n-2)pC v, 1)

u

4 P57 (20p (14 (n-2) v, 250" (40 (52 )6 (ap) (v,v))

- 50t(n-2)p vy} %), ena

2
L (n-2)fv,]1?)

5
d t(V) — uplOGQtp

3
— ric (
dat

(ric(v) + 20tp

+ 5te’ (bp+(n-2) 6% (dp) (v,v)) - 25t2(n~2)p8HvTH2}

+ up5e2t95{20p3(1+(n—2>uvpn9> + 59 (8p+(n-2) 5% (ap) (v,v))

- 50t(n-2)p"flv JI?)
HQEEth_

- 50(n-2)p vy

is of order p8 and
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= 2093(l+(n~2)vaH2)+55?Ap

+ (n-2)8*(dp)(v,v)) + 2p5rie(v)

3 ' : '
2 5p7 (U+p (Ap+(n-2) 8% (ap ) (v,v))).
Let p € (M,go) be a point where all Ricei curvatures
are positive (assuming Ricg z 0)., Thus, in some small

O
closed disk about p all Riccl curvatures are positive.

We want to change the metric so that all Ricci curva-
tures will be positive on a larger convex disk

D =B (p) of radius R and so that the new metric agrees

g, R
with 2 of f D.

If we let r be the go—diétance froh p on M, then
p = R-r éo 8*(dp) = -6%{dr) and Ap = -Ar. By cholce of
R according to our convention, &8*(dp) will be negative
definite on D - {p}. At p, the function r° is smooth
and 6*(d(r2))(v,v) = ng(v,v) for all v in My, as we showed
in Chapter 3. We may then by contlnulty and/or the Index

Comparison Theorem technique of Chapter 3 ehoose R small

enough so that on D

(9)  (2-1/M)g, = 8+(a(x?)) s (201/4)g,.

Hence on D - {p)} we have

(o) =8

_ ' 8
VO g (npeg) = 0% (anfe,x) = g (xgux).




Congider the Taylor series with remainder

6 62 4% Lt
ric” = ric + t ric' + % —— ric’ | for some s
e gt  t=s '

S TNs)
e 2tp

‘with 0 < ¢ < t where g(t) = g, in D centered at p.

From above for v with go(v,v) = 1,

rie®(v) = (14207)ric(v) + 5bp° (Mo (Aot (n-2) 8% (do) (v,v)))
e - |
+ S 0eP90 (550 (8p+ (n-2) 8% (ap) (v, 7)) 250" (n-2)s 7 vl )

. |
2507 (50! (ap+(n-2)5x (ap)v,v)) -500"s (n-2) [l v )

+ bp2e (5p

| 5
- 50(n-2) " v, | 22077,

otp?

Choose t small enough so that on D, 1 < ¢ < 2. Then

rié%v) z ric(v)(i+tp5)+5tp3[4+9(QD+(H"2)5*(dD)(V:V))

8

+ £(8p [ (bp+(n-2)5%(dp) (v.v) ) -5p (n-2)s v, ®]

+ 15" (Ap+(n-2)6% (dp) (v,v) )-10p" s (n-2) v | %
- 1095(n~2)HVTH2}]-

Remember that R = r+p. We willl assume R £ 1 so that p < 1.

wrom (9), |6%(ap)(vov)] < Mvell” o 9 o' japy £ 2An=2)

BR-pT 8(R-p) - 8(R-p)

(Remember that &*dp{vp,9p) = O.) Thus

| (n-2) 8% (ap) (v,v) | = FEEES
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on-3)
R-p

80 rict(v) z ric(v)(l+tp5)+5tpg[“-9f of %.uts Z g?gs)

+ BteP (ne2) it %%2&;%1

) BlRp -Aots(n-e)-lot(n—e)}].

By choosing t and hence s small enough, in D - {p} we obtain

by o 5 3., _ 9(2n-3)
‘(10) ric (v) = ric(v)(l+tp )+5tp [2 BlRes T pl.
Now if 2 - 9(§%%%l p » 0 and 0 < p < R, then rict(v) > 0
' 1
for all v. But this 1s true if 0 < p < RIS R R.
Hence we have shown
Theorem 3: There exists a constant € = &(n) > 0 with

the following property. Given (Mn,go) wilth Ricg z 0,
o

let D = Bg R(p) be any disk for which (9) holds and
0.9. .

R < 1. Tet

Then there exists t_ > O such that for all t € (O,to],

. & - -
ric” > 0 on th -outer annulus A ' . .
® go © C gO,R,EEZ(n)(p_)

.Remark: We need to consider the second derivative of-
riel since ric' (v) > 0 only on some open annulus about
. Bd(D) since g(t) = g, on BA(D). From ric'(v) > 0 on an

open set we cannot conclude that there exists a small &
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such that rict(v) » 0 everywhere on the open set even
though‘for each point q in the open set we can find a

t = t(g) 8o that ric®(v) > 0 for all v in My 0f course,
if ric' > 0 on a compact set, we can find a t > O so
_that'rict > 0 everywhere on the set.

A trivial modification of the argument of [15], p.

lEl; shows

Lemma U4: (Cheeger, Gromoll) Glven (M,go) complete with

for Sdme constant A = 0. Then for any p in M, up to the

cut locus of p,

. ,_.l :
A < D2 Loa,
r-gap : r
£sP

Hence, 1f Ric_ = 0, then Ar < ﬂ:%,,
: g _EsD rg,p

Remark: This lemma should be compared with the compu-
tation in Berger, Gauduchon, and Mazet, [61, p. 134 ff,
(noting that their Laplacian has the opposite sign from

ours) which shows

_n-l, 8
Ar~—r—'+e .

In particular, in (Rn,gcan), Ar = (n-1)/r. Alsgo, Lemma 4
1.

says that Ricg z 0 implies %T = 0,

Using the estimate of Lemma U in place.of (9), we

obtain by an analogous calculation
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.Theorem 51 There exisgts a constaﬁt g =¢&(n) >0,
with the following property. Let'Mrl be any n-dimensiohal
smooth manifold. Iet g be any CLl Riemannian metric for
M with Ricg =z 0 and let D := Bg’R(p) be any g-convex
disk with R < 1. Let .

oD
3 {e 2tp &6 in D

g4 in M - D.

Then there éxists'ﬁ to > O such that Ricg(t)'> 0 in the

g-outgr gnnulus Ag,R,a(p) for all t with 0 <t = t_.

We remark that the analogue to Theorem 4 holds for

Ricg < 0 using the deformation

o}
3
eztp_go in D
g(t) =
Remark: In Theorems 3 and 5 since p =R -~ r ig not smooth

at p, the deformafion given is not smooth at p. Bul we are
interested only in the positivity of the Riccil curvature in
the outer annulus. Clearly given D = Bg,R(p)’ g(t) can be
smoothed off near p to produce a.metric satisfying the
conclusions of Theorems 3 and 5. We will callrthis the

"standard deformation of Theorem 4.3" in Chapter 5.
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Chapter »: Proof 6f the Ricci Curvature Deformation

Theorems .

In this sectlon, we use local.convex deformations to
prove geversal theorems on deformation of Ricci curvature.
First werwill give a detailed proof of the corollary to
the.theorem of [2] using the results of Chapters 3 and 4.
-Theh-the same method of proof together with sdmé addi-
tional local calculations like that of Chapter 4 will
imply the femaining theorems. '

We prové
Theorem 1: ~ Let M"Y be compact and let'go be a G” metric
for M with ricgo = 0 and all Ricel qurvatures positive
at some point. Then M admits a C‘Ll metric of everywhzre_

pogitive Ricei curvature. Hence vl(M) ig finlte and

bl(M) = 0.

Proof: . The bagic idea to prove Theorem 1 1s to use the
standard deformation of Theorem M.é to spread“the positive
Rieccl curvature from,thé point of positive curvature to
all of M. | |

| Explicitly, Theorem 4.3 tells us that givén positive
Ricel curvature on a small enough disk, we can spread

the positive Ricecl curvature tola slightly lérger disk
centered at the same ‘point, provlided the larger disk is-

convex,
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But if we just start changing the metric naively, even

though we can alWays find a convex disk in which to apply
Theoren H.SQlit is not obvious that the radii of the
disks In the originél metric can be chosen to remain bounded.
away from zero so that we can cover all of M with even an"
infinite number of_deformations. In particﬁlar,‘the
convexity radius 1ls changing with each deformation.

However, we can use the compacﬁness éf M tb overcome .
| go’Ri(pﬂ]i:l
with Ry s‘F(go)/E, F(go) as in Theﬁrem 3.12, satlsfylng ‘

this difficulty as follows. Cover M by N balls {Bi=B

the following properties. Let & = €(n) be as in Theorem 4.3,

(1) -Bl is chosen so that p, is a point with all g _-Riccl

curvaturesuposltlve in By - AgO,Rl,ﬁ/ﬂ(pl) and thus

the standard deformation of Theorem 4.3 applied to By

will produce a metric &y for M wlth ricg =z 0 and
' i
ricg:L > 0 in Bl'

(2) 1Inductively for n = 2, if riég were posiltive on
o

o V.U By U (B,~4 e /mipn))

UB
rn go’Rn’

By

then the standard deformatlon of Theorem 4.3 applied to

B, would produce a metrle g for M with ricg z O and

r

ricg > 0 on B, U...U Bn'

1
(3) +th t 11 {A -1( j)} v 11
- OV
e g ~outer annu . JR:,E/ p cover a

points g in M for which there 1s a v # 0 in M, with
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For instance, assume ric_ > 0 in B. _(p) to begin
' . €o go’R ' .
with, We can choose a flnite number of balls as required
to cover all possible points with zero Rlcel curvatures
”_in Bgo,(l+8/8)R(p)' In fact, it is clear that for all n,

with a finlte number of balls we-can extend the cover

. ) - 1 " . .
of all possible "'zero polnits" from ng,(l+n8/8)3(p) to
'Bg03(1+(ﬁ+1)8/8)R(P)- Since M is compact, we can thus

clearly produce the requlred sequence [Bi}§:l stipulated
above. | |

Tet 6(go) satisfy Theorem 3.12 and Lemma 3.5. Use
the standard deformation of Theorem 4.3 to produce from

8o @ metric.gl for M with
’go - gll(}‘g < B(go)/N

with ric. = O on M, and ric_ > O on B, (which is

_ g1 L g 1

ogg8ible since ric” > O on A ) by Theorem 4,3.
p gO,Rl?gg(pl) y

By Lemma 3.5 applied to B1s We can find a disgk

B, = Bglsﬁz(pz) whigh is g;-convex and with

A=A c A« - %
| gO,R2,6/4(p2) gl,ﬁé,ﬁ(pE)

and R = F(go).
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Hence we can apply the standard deformation of Theorem 4.3

to gl and ﬁé - to produce a metric g, for M with

lgl‘gglcz < 5(g0)‘/N9

ricg2.2 Q and ricge > 0 on Bl U_B2 and hence on
Bl U BE’ spreading the positlve Ri@ci_curvature to

Ag ,RE,S/M(pQ)' Note that by éonstruqtion
]gO - gg_lcg < 5(80)-

Carrying on thls way we construct metrics gé,...,gN

applying the standard deformation to balls §3 o BS""’gN D BN
to spread the positive-Ricci curvature Tyom gOuOuter annulusg
to g,-outer annulus making each new metric g é(go)/N

close to the preceeding metric &1 and hence 6(go) close
to.go g0 Lemma 3.5 and Theorem 3.lé'apply to enable us

to carry out the next step.

Q. BE. D,

Remarks:

m
e~2tp

(1) vUsing g(t) = g, as the standard deformation,

‘we can produce a C" metric for M for any m = k4,

I

(2) 1rf g, was a ¢” metric for M, we can produce & C
metric for M with ricg'> 0 by Theorem 1. Since M 1s
compact, there 1s a ¢ > 0 with ricé z ¢ > 0. Hence we

can approximate g by a ¢~ metric Z with rie_ > O everywhere.
' g
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We state ,
Theorem 2: " Let M be compact and let g, be a CLL metric

for M with ricg < 0 and all Ricci'curvatures negative 7
o} , _ _ , : |
at some point., Then M admits a Cu metric of everywhere

negative Ricei curvature. (ric<0)
Theorem 2 has a completely analogbus proof to Theorem 1,

the only wmodiflcation being that the local convex deforma-

5
e?tp

tion g(t) = g, 1s used.

Suppose (M,go) 1s a compact Riemannian manifold with

isometry group Ig (M}. Suppose ric:g z 0 and at some
0 o
polint ricg' > 0. Then we could apply Theorem 1 to produce

o}

a metric g on M with ricg > 0. But if Ig (M) is not
0

discrete, it 1s not obvious that the construction outlined

in the proof of Theorem 1 will result :'Ln'Ig (M) < Ig(M).
' o

However, using the ldea of Alan Weinstein in [33] to
integrate the metric deformation over the isometry group,

we can usge local deformations to produce a new metric g
' Ot D
with ric_ > 0 and T (M) € T _(M). Tet g(t) = e 2°P

as before. Let dv be Haar measure on Ig (M) normalized
' : o

o

80 that
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By the invarlance of dv, g(t) is invarlant under

I (M). But

&o
Re® = [ o*(RLe®)av(y)
mGIgO(M)
~and
| Rie! = [ w*(Ric' Ydv(p)
@EIgO(M)

as Weinstein observed for the sectional curvature in [33].
Hence, the proof of Theorem 1 carries through using the
deformations Ei(t) obtalned by integrating the deformation

gy (t) = e~2tp5§iql over the isometry group I_ (M) of

1
the metric Ei_l constructed at the previous step.
Theorem 2 has an equivariant version also obtained by
integrating theldeformations g(t) ='e2t95go over the
isometry group.

We wart to cbnsider whether local convex deformations

can be uged to improve Ricci pinching.

Definition: (Mn,go)_is positively Riecci pinched with

pinching constant 0 < A < 1 iff for all v € TM,

Ak go(v,v) < Ricg (v,v) = k go(v,v) for gsome -k > 0.
o

If (M,go) i1s Riccl pinched, then multiplying the metric

by a constant we may assume that k = 1,

If A = 1, then (M,go) i1s an Elnsteln manifold. If
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o (Ml,gl) and (Mg,gz)‘are Einstein manifolds with positive

Riccl curvature, then (M, ¥ M5, £, X g,) will be Ricci
1 2 L 27 .

pinched manifold with the upper and lower bounds for the

pinching attalned at each point.. Recently H. Hernandez

[25] has given an example of manifolds which are not _ '
product manifolds wilth non-Eingtein pinching that is
attalned ét each point., Evidently local convex deforma-
tions cannot be used to improve the pinching in such
sltuations.
Suppose howe ver that (Mn,go) is & compact manifold
“with A =3 = Ricé s'go and éuppose there exlsts p € M

_ O -
such that the pinching 1ls not attalned for any v € Mp.
By compactness arguments, we can find a'closed convex
‘disk D' centered at p of radius R < %-cg (M) and A > O

. _ o
so that for all v € Sl(M’go)JD elther

(11) A+ 2 < Ric(v,v) = 1, or

(12) A < Rie(v,v) <=1 - A,

ILet D be a disk centered at p with D! € D. Conslder the

D
e™* g on D. For

‘local convex deformation g(t) =
g(t) = egtfgo if €1s+4.5€, 7 8re a goLorthohormal basils
for v©, then e;(t) = e_tfei will be & g(t)-orthonormal

bagis for vl and
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¢ n-J. ‘t - " n-1 & _
Ric (V,V)= i§1<R (ei(t)JV)v,ei(t)>t = 1§i<R (ei,V)v,ei>

= Ric(v,v) - £(h~g)5*(dﬂ(v,v)—tgf_+ tE(n—z)((v(f))g-HVfHE).

~DtpD
o"2tp 5

Hence, for g(t) = gy> £ = ~p~ and we have

Rieb(v,v) = Ric(v,v) + potp” (1 (n=2)|lv [I%)

+ 5t (hp+(n-2)6%(ap) (v,v))-2587 (n-2) o8, |12

= Ric(v,v} + 20t93(1+(n—2)”va2) + tO(pu)+t20(p

5.

Then, fixing q € M - {p}, max [Rict(v,v)} Sl+20tpg(n~l)
| g, (vsv)=1 e .
veM, +£0(p") + t20(p")
and  min  (Rieb(v,v)) = A + 20t0° + to(p™) + £20(p°).
g {v,v)=1 |
-vEMq

As in the proof of Theorems 1 and‘2,7by making D and the
annulus D - D' small, the term In p of order 3 will
dominate the two higher order termé. The condition for
lmproving the Rleel pinching is that the ratio

min‘RietI

t

4 ‘be greater than A. But we have
max Rilc | ' - - ’

q

' t
min Rie Iq A 20tp3
3(

+-tO(pu)

max Rict]q 1+20tp~ (n=-1) :

(A+20tp3)(1~20tp3(n-l))4520(96))+t0(pu)
3 %)

= A + 20bp~ (1-A(n-1)) + to(p
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By choosing t and p small we can make this ratio greater

than A 1f 1 - A(n-l) > 0, that is, if A < An~-1). Hence

1f the annulus D - D' ls small and A < 1/(n-1), we can

improve the pinching in the annulus. It is clear that

we can obtain a uniform estimﬁte for the size of the
annulus depending only on the dimension n of M as we
did in proving Theorem 1. Also, since 6*(dp5) is
bounded in D' we can keep the pinching greater than A
'in'D‘. Explicitly, choose an Integer m > 2 so that

A > 1/(m-1). Choose t small enough so that

L

|Ric” - Rie| < A/m on Sl(M,go)]D, . Suppose v satlsfles

(11), i.e, A + ) < Ric(v,v) £ 1, Then

A+ E%Agk < Rict(v,v) < .1+ % . We must check that
A+ 9%£ A
— > A. But A <1 < m-1 implies that this in-
1+ 2/ :

equallty holds. Suppose v satisfies (12) and hence

t(v,v) <1 - Bl Y

A < Rie(v,v) € 1 - A. Then A - % < Ric -

But this holds 1ff A > 1/(m-l1}. Hence, for a small t,

~Dtpd
the metric gy = e etp

g, 8breads the area.on M where

the Riccl pinching is greater than A from D“to D. By
our remark above, we can perform thils construction in a
"uniform annulus"” and-hénce spread the greater pinching

from p to all of M in a finlte number of deformations

for compact M. Doing this, we get a Cu metric g for M




66,

s0 that

. . min Rice| both extrema over v€M_ wlth
pinch(g) = inf{ R Py 5 oa,

pPEM max Rng] g(v,v) = 1

p

Then by compactness of M, there exlsts & > O so that
pinch (§) = A ~ d. Now we can choose a C  metric.g
approximating ¥ so that [pinch(g) - pineh(g)] = a/4

and hence pinch(g) > A. We have proven

Theorem 3: Let (Mn,go) be a compact Riemannian manl-
fold. Suppose'there exlsts k > 0 and A with
0 < A <-l/(n—l) 50 that on TM the inequality

Ak go < Ricg < kg holds. TIf at some point for all
0 .

non-zero vectors the pinching is not achleved, then it
is possible to improve the Ricel pinching.

The analogous theorem holds for negatlve Rlccl pinching

2tp5

using the local convex deformation g(t) = e g, Tor

- which

Rict(v,v) = Ric(v,v) - 20tp3(l+(n~l)HVpH2)+ tO(pa).

Hence, if -go(v,v) < Ricg (v,v) = -A go(v,v) with
_ o
0 <A <1, then

min Rictl 3 3

q _ ~A =(n-1)20tp~ . to(pu) _ A+ 20tp
tl K

5 + to(pu)
~-1-{n-1)20tp 1+(n-1)20tp

3
max Ri
Rie q

so again thils ratlo can be made greater than A for small
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t and p 1f A < 1/(n-1).

We remark that 1f K. = 0 and'we perform a sequence
o :

of local convex deformations to lmprove the Riceci pinching
as above getting a metric T wilth pineh(E) > A, we cannot

be sure that K = 0. The reascn 1s the following.
& 5

From Corollary 4, Sectlon 2, if g(t) = ebP 5

8y = goutp g0+...

on some convex disk D and if x and y are gomorthonormal
bagis for ¢ with Xp = 0, then

5

k(o) = 0 = X (x,y) = 200°0y (12 + B o™

8% (dp ) (x,x)+0%(dp) (y,¥))

- , ' | ,
Hence, if y = O, then K' (x,y) = % o (8% (dp) (x,x)+8%(dp) (y,y))<0.

Now consider for A g_ = Ric, = g,, 0 <A <1, what

&0

L2tp2

effect the variation g(t) = g6 has on the Riccl

pinchihg; In this case;

Rict(v,v) = Ric(v,v) - 20t93(1+(n~2)vaH2) + tO(pu).
min Ric®l . 20t(n-1)p° , .., U
Thus , e d4 = 7 P+ t0(p"), 80 We need
max Ric | 1 - 20tp
3

A - 20t{n-1)o~ A. But this inequality holds iff A > n-1.
1 - 20tp° - |

_ 5
Hence, the variation g{t) = eEtP g, worsens positive
Ricei pinching. "

N. Hitchin [26] has shown that the signature of a

’ J]
Y -manifold Mu ig an obstruction to Ml admitting an Einstein
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metric. S. T. Yau [34] generaliied the result of

Hitehin to show that the signature represents an obStruc;l

‘tion to improving negative Rlecl pinching to be Einstein.

Yau gave an examplé of a compact negatlvely Rlcel curved

manifold which does not admit a J/5/6 Rlcckpinched metric,
For n = 4, the bound of Theorem 3 18 1/3 so there is

a gap betwéen the "geometric" obstruction of Theorem 3

and Yau's topologlceal obstructioh of J§7EZ It 1s important

to see whether the "geometric" obstruction of 1/(n-1)

in improving Ricei pinching using conformél deformat ions

in a convex disk cén he improved'by using'some other

type of local convex deférmation.

_ .
We ghall show, however, by studying ﬁiigi t Egig';

that assunling only.that the pinching does not hold at
some point we cannot improve the bound of 1/{n=1) from
conformal varlation. Thus, conformal deformation is the
"pest" variation for improving Ricel piﬁching by the
method of local. convex deformations. |

Let p € M, let D be a closed cdnvex dlsk about p,
and let g(t) = gol+ tp5h in a one-gided tubular neigh-
borhobd of Bd D. Recall that we remarked thﬁt'h méy be
wriltten as

h = h, + fdpedp + dpot where E(Vp) = O.
3( h).

Then Ric!(v,v) = ~20p~(h

2 (vs) + Iy [Bex 0 + o
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If t > 0 and min Rie' (v,v) > 0, we have the inequality

A+ t min Ric!
TFE Z A

max Ric!
which must be satisfied to improve the Ricei pinching.
This is equlvalent to the inequality |
min Ric' |M_

A < 9. But min(Ric'(v,v); v € M_ and go(v,v) = 1}
max,RicllMﬁ 4

1s the smallest eigenvalue of Rig' |, and

max{Ric' (v,v); v € Mq and go(v,v) = 1} 1is the largest

eigenvalue of Ric‘[M . Thus, the inequality for Improving
q -

the pinching is that - |
smallest eilgenvalue of Ric‘qu

(13) A<

largest elgenvalue of Rié‘]Mq

We can estlmate (13) by the leading terms in p in the
expansion for Rilc' in terms of p.

Suppose h,, 1s negative definite with eigenvaldes

T
wll,...,-Knnl where 0 < kl < xg S...5 Knnl' Then up

to 0(p3) the inequality (13) becomes

n~l _ : n-1
A< xl/iil Ay « Let B(hg) = xl/iil Ay. Then

B(hT) < 1/n-1 and B(hT) < 1/{n-1) wunless
. _ | — L —
Ay =dy'= ay = Mp.1+ In thils case, hg = Ay gOI(Vp) = kl(gJT

- 80 that gt) = g, + tp5(hT+fdb°dP + dpeE) and
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OpgD
e 2tp

and B(t) = g, have up to a constant the same

first derivative Ric‘ in the leading term in p. If

'hT 1s taken to be positive definite wilth elgenvalues

0 < Kl S_RE <...5 A then to improve the plneching,

n-1?

n-1 .
A must satisfy the inequality A > 3 Ay/AiZn-1. Thue,
o ' 1=1 :
this variation does not improve posltive Ricel pinching

_ 5 :
(as we saw for g(t) e te 2, above). Suppose h, has

T
pogltive and negative elgenvalues

"My < - My S -y <0< S, K8 RS.' Then.
my A - tpT 2 A,

A4+t mi ic! 3

I+t 2&2 giz' = L Jd<n-tp Zhj < A

3
1+ tp™ 2
_ T "
so the pinching is worsened. If for some v, the term

‘ 2 :
(v, v) + v l[Te*(ap) (v,v) = 0
then the terms in order plL are lmportant. Tor such a

vector v,

5 it

Ric' (v,v) = - 5 6*(dp)(v,v)tr hytp ' br A(hT)(—,v)

+ p4 (terms from dpof and fdpedp) + O(p5)

sorthat we cannot be sure that all elgenvalues of Ric!
will have a definite sign. Buﬁ we Jjust saw thét 1f there
‘are elgenvalues of opposite slgn, then the pinching may
be worsened. Hence, to achleve the bound of 1/{n-1)

~with by not identically zero we must have hy collinear




with g [(vp)".

Suppose hj = 0 so that g(t) = g0+tp5(dpo§+fdpodp).

Then Ric' (v,v) = %*pu[fa*(dp)(v,v)+f - 6*(dp)“vp”2+6*§(v,v)

+ v % tr xg - (v, upeuE(v,90)] + 0(p7).

Since §(vp) = 0, §*€(vp,Vp) = 0. Let Sr(p) = [qu;distg,(p,q)=r]
_ o

Then, writing g for 8,> We have g = g + dpedp (geodesic

polar coordinates.). TLet

A , :
oqE =5 6§#g &p . .
T n |

be the differential operator on Sr(p) from restricting

the metric g to Sr(p). Then since §(vp) = 0, |

ﬁ%i(x,y)rz 6*(x,y) for x and y tangential vectors. If

6*§(v,v) 2 0 for all non-zero veétofs_v tengent to Sr(p) L

and for some v, 6*§(v,v) > O, then

6T§ = tr 6%@ = tr 6*5.2 ¢ and at v(v), 4,6 > O so
I 8,86 > 0.  But 8,6 1s a dlvergence on Sr(p) B0 must i

S,.(p)

Integrate to zero. THence either for all tangential v we j

must have 6*¥E(v,v) = 0, or 5*§(v,v) does not have a definite |

sigh on tangentlal vectors. Since 0*£(Vp,Vp) = 0, this

lmplies that elther E must be a Killing l-form on a tubular :

neighborhood of D or 6*% does not have a definite sign on -

tangential vectors. Since the exlstence of Killing l-forms
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implies that D 1s "symmetric" near Bd D, we must suppose

that the second alternative holds and hence 6% has

posiltive ahd‘négative elgenvalues. Thus, by the argu- S

ment we gave above for h.,, with positive and negative

T
elgenvalues, we conclude that the deformation ' * '

g(t) = g, + tp5dpo§ cannot'improve the Riccl pinching
near Bd D, If we conslder.

glt) = Eo ~ tp5f-dpedp, then if 5%(dp) has elgenvalues

- Kl,..., - Kn—l wilth 0 < kl £ A, S.u.8 knnl { remember

5*(dp)(vp,¥p) = 0), then to improve the Ricel pinching
near Bd D we need |
kl
Z A,
7 L

' 1
<
A < n-1

$0 that at best this is no better than a conformal varia- _
tion. Tn the variation g(t) = géQth(fdp ® dp + dpeg) {
the addition of the ftensor dp.i fO'the variation : ]
g(t) = 8o - tp5fdp ® dp only worsens the lower bound j
N, ' | i

2 from the tensor £ dp @ dp.

3 Ay
1L

If we conslder a variation g(t) so that only terms

in p5 appear in Rle', then since 8*(dp) 1s negative definite

il

we must have g(t) = g, + tp5dpo§,where 8% = O near Bd D.

Even 1f such a Killing l-form exlsts near Bd D, one can
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check that Ric' will not have a definite sign. Hence,

Theorem 3. uslng local conformal convex deformations is

the best theorem we can obtain.




h.

Chapter 6: The solution to Problem IT: The non-existence

of posltive at first order local convex deformations

for gectlonal curvature

Since we saw that Ricel curvature can be deformed from
being non-negatlve and positive at a polnt to beihg every-
where posit 1ve using local convex deformations, it is
reasonable to congider wﬁether local convex deformations

can be used to solve the following conjecture for n = 3.

Conjecturer Let'(Mn,g ) be a compact Riemannian mani-

fold with ‘all sectional curvatures non- negative and suppose
'there is a point p on M with all sectional curvatures

pbsitive. Then M admlts a metric of everywhere posltive

sectional curvature.

For n = 2, the conJecture 1s true by Aubin's Theorem.
Recall that 1f £ : R - R is a smooth function and
0 1s not a critical value for f, then M = f—l(o),is a

smooth n-manifold imbedded in Rn+l. By the Gauss curva-

ture equatlons, [22], p. 10, for x and y orthonormal

veétors in Mb

K(x,y) - W (6% (ar) (x,x)o*(af) (y,5) - 8*(af(x,5)?).
N \ |

Hence, if f 1s strictly convex (1ff all elgenvalues of f are

positive), then K > 0O by thé generalized Cauchy-Schwarz
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Inequality.

Suppose M? = f_l(o) 1s a compact hypersurface where

f is weakly eonvex, l.e., the eigenvalues of 6*(df) are

all non-negative. Iet g : Rn+l - R be glven by |
n+1 L |
g(xl,...,an) = -2]:(121 xig - 1), so that &*(dg) = Id.

Then for small ¢ > 0, 1ff = f + eg,  then 6*(df‘€)
wlll have positive elgenvalues so¢ M, = f;l(o) will be

a compact hypersurface with everywhererpositive sectional
curva@ure. Ir P * M- ME 1s a diffeomorphism and g o

1s the standard Fuclidean metric on Rn+l

restricted to
M, then (M,w *g) will be a metric on M with everywhere
positive sectional curvature. Hence the conjecture is
probably true for compact manifolds imbedded 3isome-
trically in FEuclidean space in codimension 1.

We can also use a single global convex deformation
to handle the following simple case of the conjecture.r

(This was noticed by Bourguignon and wyself indepen--

dently.) Let

—_ . l' . — .—l
Ds(p) = {qéM; distgo(p,q) < e} and Zgo t= Kgo (0).

Glven (M,go)rsuppose there exists p € M so that

_W(Zgo) c Int(DR(p)) - DR+d(p) where d > 0 and DR+d(p)

1s convex. TLet r be the g, dlstance from pein M. Let

R20 - R=0 be a smooth function with -
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f(t) = 0 for t = Rid, £(t) = 4 for t = R+d/2.

%) @ a(xr?)

Consider the deformation g(t) ='go+tf(r)d(r

Then for 0 < r < R, where f(r) = 4

(22 (r)ar?ear® Yo,y )=a2 5% (4 (2 Noe,x) 854 (22 Ny, 3) -4 (a2 x>0

by the generalized Cauchy-Schwarz Ine@uaiity for positive

operators. Hence g(t) is a positive variation of Ty
. _ : )

As 1n Theorem 1, Chapter 4, we can find t, > O S0 that
' : _ : 2 2
0 <t <t  implies Kt(x,y) = K{x,y)+tK' (x,y )+ %?- Jlﬁ-Kt(XsY) [ >0
' _ dat ' t=g

off DR+d(p)’ of course k¥ = K > 0 by our

in DR+a(p).

assumption that W(Zg ) Int(DR(p)). In éeneral, if g
o

18 a metric for M with K ZIO, then this construction will
: o

deform isolated points of W(Zg ) to points of everywhere
0 : ' :

positive sectlonal curvature. Notice that this method is
different from the methods of Secilon U4 in that here we

took p € W(Kél (0)) 1nstead of taking a point of positive
o _

gsectional curvature and spreading the curvature out from
p while decreasing the.magniﬁude of the posgitive curvature
at p.

Inspired by the proof of Theorem 5.1, a reasonable way
to try té prove the conjecture would be to find a deformation
g(t) with support on a convex disk D cen#ered at p so that

-on some annular nelghborhood of Bd(D), K(o) = 0 would

|
:
i




T

tmply K'{o) > 0. Howéfer, we will see that the convexity i
of D and the condition that g(t) = g, off D means no
such deformation can be found. :

We will coﬁsider 03 variatioﬁs wlth support in a - ‘
closed convex disk D with center p and D # M. (If D = M,
thén the .variation g(t) =g, + t d(rE) ? d(rg) with r
the distance from p will prove the conjecture.) We saw
above since we are only Interested in computing K' that
we need only consider variations g(t) = g, * th. Further,
g(t) = g in M-Int(D) and g(t)-a-c3 varlation with support

in D implied h = pgﬁ in an annular neighborhood of Bd D.

Definition: Given g ER(Mj,-let Zg = Kél(o) where-r

Kg :‘GE(M) = R 1s the sectlonal curvature function defined
by £,

Definition: A o3 local convex variation g(t) of &

wilth support in D will be called positive at first order

iff X' > 0 on Zg N w“l(Int(D)). Let (M3,go) be the
5 ,

3-sphere flattened near the North pole so that if 29 is

3
c (B%,ga,,,)

Kgo = 0 on the closed 3-ball N of radius 1/4 about the
North pole and Kgo > 0 in SB—N._ Tet p in S3~N be a

- point near N in the Northern hemisphere. Thus Kgo > Q
l(p). Let D be any convex disk centered at p so

“the metric induced by the inclusion 8 then

on 1

that BA(D) N Int{N) is norn-empty. In D N N all curvatures




are Zexo,

Theorem l? - There 18 no positive at first order local
convex deformation with support in D. ~Thus the answer ‘ | é
to Problem II is NO.
.Hence, the érgument for the Ricel curvature given
In Theorem 1 of Chapter 5 does not generallze to the 3
sectlonal cﬁrvature. In féct, 1f D 1s any closed convex |
set with Ba(D) N Int(N) # &, then our proof of Theorem 1
shows that there i1g no_positive variation with support
in E. Hehce, non-negatlve sectional curvature and positi
curvature at a point is rigid undef local'cénvex deforma -
tions. Our proof is presented for n=3 only for convenler
and Theorem 1 is trué withrthe analogous constructlon of
N and D on the flattened n-sphere for all n z 3.
Flx an arbitrarj convex variation g(t) oﬁ D. Then
thefe exlsts a one-sided tubular nelghborhood U of
Bd(D) N N in D so that g(t) = &, +'tp3h. Decompose | |

h = h, + dpe&. By Corollary 4 of Section 2, if x and y

T
are a go-orthonormal basls for a two-plane o with

r{o) € N N U, and X, = 0, writing {,» for &g

(1) K oy) = 360D 6oy) = 3plly, Py (x,%)
+ 207(26%(dp) (x,5 )0y (x,5) =8% (a0 ) (6,3 ), (v, ) 6% (dp ) (5, 5) b

2<Y,VP>((thT) (X,Y)-(DyhT) (x,x):)+p3(2hT) (x,y )+ %p2nypn€

+ Es-(o%(ap ) (x,%) 8%E (y,y)+8%(dp) (y5y) 6% (x,% ) -28%E (x,5) 6% (

+ {y,vp2 (D, a8) (y,x)}.
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It is easy to find tensors h with (3h)(x,y) > 0 like

h = dp2°dp2. However, (14) shows that the derivatives of
the smoothihg-fﬁnption p are of order ijand 2 1In p but
Zh is a term in order 3 In p. We are thus led to ask
what conditions must be imposed on h 1n order that

Z(p3h) = p?Zh near Bd D, it follows from (14) that this
happens 1ff h, = O and 8%E{x,y) = O for all tangential

vectors x and y near Bd D. We will say € 1s a horilzontal

Killing l-form iff &6*E(x,y) = O for all tangential vectors

x and y. ' Hence E(QSh) = pSZh near Bd D 1ff h = dpof

where £ is a horizontal Killing l-form near Bd D.

Lemms 2: TFor K' > 0 in Int(D) N N, we must have hp = 0
in some neighborhood U; < U of BA(D) N N.
Proof: If not, then there exists a sequence [pi}?:l

so that 1lim distg (pi,Bd(D) N N) = 0 with hy, # 0 at py-
1w 0

.Since hT 18 a symmetric two-tensor, we may choose 8o
orthonormal tangentlal vectors xy and Yi at py 80 that
hT(xi,yi) = 0. For all tangential vectors v, Wé have the
radlal zero two-plane o = {v,vp). PFrom (14) we have

(5) K (v,90) = 3png(vsv) + 0(p?)

and also

+ 0(p°)
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From (15) for v = x, and yy» for 1 large, we must have

i
hT(xi,xi) < O or hT(yi,yi) < 0 and hT(v,v) < 0 for
v = xi,yi since hT(Xi’Xi) = hT(yi,yi) = 0 implies hg = O
at pi contrary to cholce of p,. Then near Bd({D) N N

from (16) we have K'(xi,yi) < 0.
Q. E. D.
Now in Uy, g{t) = 8o F tp3dpog. ‘Suppose we have
{py} < Int(Uy) N W with 1im distg (py>Bd(D) N W) = 0

100 o
and 8*E(x,x) # 0 at p, for some tangential x € Mp for
: _ ) i
all 1. For all tangential vectors, v, we. have
’ 3 2 N, .3
(17) K'(v,7p) = 5 p“ 8% @(v v) + o(e”).

Let Xy and Yy in Mp be go—orthonormal veétors dlagonalizing
i .
5¥€](vp)*. Then
3

K! (Xi’yi) = %—(M(dp)(Xi,rxi)ﬁ*g(yi,yi)i-é*(dp)(yi,yi)é*g(xi,xi))

From (l?) with v = Xqa¥y for p; near Bd D, we must have
5*E(v,v) 2 O for v = x;,¥yy and either 6*§(xi,xi) > 0 or
5*§(yi,yi) > 0 for K' > 0. But then near B3d(D) N N,

K'(x4,¥4) < 0. We have shown

Lemma 3: For g(t) = 8o T tp3dpo§ to have K' > O on some
nelghborhood of Bd(D) N N, £ must be a tangential Killing

c U, of BA(D) N N.

l-form in some neilghborhood U2 1




81.

Using Lemmas 2 and 3 we can now prove Theorem 1.

To be a positive varlation on D, on'some neilghborhood U2

of Ba(D} NN, g(t) = g, +ltpsdpo§, where € is a tan- 7 i @
gential Killing l-form iIn Ué. Then for any g, -orthonormal ;M

tangential vectors x and y in u, : ' : o jjﬁ
3 | e
K (x55)= B 0% (dp) (x,%) 8%E (y,7)+8%(dp (v, )8 %8 (x,%) -26% (ap) x,yB*E (x,5 | |

= 0

50O Theorem.l is proven. It is not at all clear that
tangential Killing forms exlst ﬁear Bd(D) N N. If there
are no tangential Killing forﬁs, then In fact Temma 3
shows that K' does not have a defiﬁite slgn in BA(D) N N
for any local convex variation in D. - |
Let £ : R~ R>0O be a smooth function with

f(t) =1 for t £ 0 and (&) > 0 for t > 0. Form the
Blshop~0'Neill warped product 3-manifold M3 = R x T2

f
is the 2-torus wlth the standard

' 2
where (T ’<’>T0rus)

flat metric {,> (See [9] for the warped'product).

Torus®

Then M3 ls complete in the metric g given by: for
d .3
o gg T Vo In M l(t define

dt
sp)

_ d _
wl = al - + vl and w2 =

Caa 4 (s(eNZ -
g(wl’WE)MS = alag + (f(t)) <Vl’vé>T0ruS .

Given a two-plane v at (t,p) we can choose & basis of

the form o = {« é%4+ v,w} where 02 +_&(t))Q“V”2 =1
_ Torus
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and “w“ (t))g. Then from Bishop and O'Neill

Torus l/(f.
[9] p. 27, the sectional curvature is given by

H
Py

ct .
s

X Li:w**“*"l| “Torﬁs ‘ | |
£(t) (£(t))® ' |

O for (t,p) with t < 0, and K < O for
w3 | , &3

(t,0) with t > 0. Let N = (=,0]x,T" so0 K, =0onX.

MS

At the point p_ = (1/100,p) we have Kg < O for all two-

MS

planes. Let D be a closed convex disk of finite radlus

K(o) -

Hence, K
> g

centered at p_ with BA(D) n Int(W) # 4.

Definition- A C3 convex deformation of .g 3 with support

in D will be called negative at first order iff Kt < O g

on Zg n RInt )). The proof of Theorem 1 just
& g . _

chaﬁg?mg the signs shows

Theorem U: There does not exlst any negative deformation

at first order on T. Hence, the method of using local

convex-deformations to prove Theorem 2 of Chapter 6 for

the Ricel curvature does not generalize to ﬁon—positive ;-i

sectional curvature. | o if%
| Let us again consider convex variations on D on the

flattened n—sphefe Mn, nz3. From ﬁhe‘proof of Theorem 1,

8 necessary condltion for K!' = b in D N N is that in some.

neighborhood U2 < D of B4 D, the ldcal.convex variation

must be of the form
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g(f) =g, + thdpég where £ 1s a horizontal
Killing form on Uy If £ 1s the restrlction of a
"Killling fofm to Uy, then X' = 0 on U,.  We derive some
Vnecessary conditions for § £ Imd* to satisfy in order

that X' = 0 in B4d(D) N N.

Notational Convention: We will write g = <,> rfor &g

in thelfollbwing computatibn.

‘For g(t) = g + tp dpef with & & horizontal Killing
form, K(x,y) = 0, x, = 0 implies
0 (55) = B(6%(ap) (x,%) 675 (3 15) -26%8 (s6,) 6% (dp ) (x,)

+ y(p) (D, A8) (y,x)}

For x and y g-orthonormal vectors, let-za - a*y+hvp,
’ . >
a2+b2 = 1. Then we can defilne a quadratic form

A : o
Q(a,b) in a and b in TMIU2 NN by Qla,b) := ;g K'(X,Zajb)a If

Qla,b) = h(a,a_)a2 +'2h(a}b)ab+h(b,b)b2 and we write

mat(qfa,b)) = (Ples8)  nlab)y
h{a,b) h(b,b)

then a necessary condition for Q(a,b) to be positive
semi-definite 1s than tr(mat{qQ(a,b))) = 0 and

det(mat(Q(a,b))) = 0. Using

6% (dp)(x,vp) = 8*8(x,y) = 8*E(y,y) = o,

Qla,b) = bE[6%(dp) (x,%) 8%8 (5,79 )+(D,a8) (vp,x)

+ 2ab[0%(ap) (x,%) 8¥E(y,%p) < o%(dp) (x,¥)6%5(x,vp) - 5(D,48) (y,%)]




B

so h(a,a) = 0, h(b,?) = a*(dp)(X,X)5¥g(vp,vp}+(DXd§)(Vp,X), |
and ' . ‘ ' | : | B i
B(ab) = 8% (dp) (x,%)8*2(y,7p)=0%(dp) (x,) 6*E (x,¥0) = 2(D_dE)(y,x).

)2 |

N3]

Now det(mat(Q(a,b))) = - n(a,b)" = 0 1iff h(a,b) = 0,
and tr(mat(Q(a,b)}) = n(b,b) so we obtain for

g(t) = g, + thdpog with & & Tméx, | B !

Proposltion 5: A necessary condition for K' = 0 1in U2 is

that the following three conditions are satisfiled:

(1) £ 18 a horizontal Killing form on U,, but not |

‘a Kiliing fofm.
.(ii)' for.all go—orthogormal tangentiai vectors i and y
26% (ap) (5,%) 0¥5 (3, 9p) -6 (dp ) (x,¥) 648 (,9p )+ (D, a8) (y,%) = o. o
(111) for all tangentlal vectors x,
5% (dp) (x,x)6*E(vp,Vp) + (D,AE)(p,x) = O. - ‘i;

We make a final comment on (1). We may write

T

E =mn+ fdp where mn = §° satisfies n(vp) = 0. Hince L

&, = &p + dpedp, if 6% 1s the differential operator defined
, |
as. in Chapter 5, by restricting 8% to S,(p), then condi- =

tion (1) becomes S ) | ;

(1) 6%ﬂ(x,y) + £ 8%(dp)(x,y) = 0 for all tangential

X and y{

From the geometry, 1t is clear that there does not exist

a tangential 1-form m wlth 8% = O near BA(N) N Uss
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since any sphere Sr(p)'with.Sr(P) N int(N) # ﬁi is more
curved In the tangential metric in D - N than in D N N.
Hence, 1if T = 0, then condition (1i') cannot be satisfled.
If n = 0, then,fdr condition (i'j to hold since §*(dp)

ls negative definite, we need f = 0. So for condition
(if) to hold, okn | must be collinear with 5*(dp)
near U, 0 Bd(N) on the spheres Sr(p) with

8,.(p) N Int(N) # &.

Theorems 1 and U suggest the followlng open questlans:

Question A: In the context of Theorem 1, do there exist

»

local convex deformatlions non-negative at first order?

More lInteresting are:

Questlion B: Doeg there exist é manifold M admltting a
complete metric g, with evefywhefe non-negative sectional
curvature and all sectlonal curvatures positive at a point
such that no complete metric g € R(M) in a C2 neighbor-
hood of g (sultably defined in the non-compact case) has

everywhere posltlve sectional curvature?

Question C: Does there exist a manifold M admitting a

complete metric go wlth everywhere non-positivé sectional
curvature and all sectlonal curvatures negative at a point
such that no complete metric g € R(M) in a o? neighborhood

of g has everywhere negative sectiona’ curvature?
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Perhaps these quéstions meke more seﬁse forrM cqmpact
inrview of the'tecﬁnical difficulties involved in defining
"a topology on R(M) for M non-compact. |

In connection.with Question €, in [18] we give an
example of a complete metric go.on R2 X S:L X Sl with
everywhere non-positlve sectional curvature and with
points of all negative sectlonal curvature such that

no complete metric ”CE—nearby” g, has everywhere negative

gectlonal curvature.
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Chapter 7:  Metric Defdrmations on Compact 3-Manifolds

- In iight of the non-existence of positive at first
‘order varliations of sectional curvature, two natural

guestlons that come to mind are the following:

Question I: Is the sectlonal curvature conjecture true
under weaker hypothegeg? Explicitly, for instance,

= 0 and Ric = > O.

glven (Mn,go) compact, n = 3, with Ky
, o o

Does M admit a metric g with Kg > 0%

v

Questibn-II; Are there results in dimension 3 which
might hold given the esﬁecially nice algeﬁraic properties
of the curvature tensor in dimension 3. For instance,
one such property is that Ricg = 0 implles Kg = 0,

Secondly, if x,y,z are orthonormal Veétors dlagonalizing

l1e = Ric .: M =M
Ric R o b

p .

and
V= ax +oayy + agy
W o= blx + bey + b3z

then_
Ric(x,x) = K(x,y) + K(x,z)
Ric(Y::V) = K(XJY) + K(.Y>Z)
Ric(z,z) = K(x,z) + K(y,z)
Ric(x,y) = Rle(x,z) = Ric(y,z) = 0




and

‘ 2 ' 2
- K{v,w) = (albgfazbl) K(x,y) + (ale—aBbl) XK(x,z)

2 2
+ {agbg=agby) K(y,z) 1if “vﬂwH = 1.

Hence,“one checks easily that

..l) 1/2 ¢ g < Rlec £c g, c >0, atp implles K(x,y) = 0,

K{x,z) = 0, and K(y,z) = 0 and henceé X = O-at p.

2) 1/2cg<Ricscag,c > 0 implies K(x,¥), K(x,z),K(y,2) > O

and hence K > 0 at p.

These relations do not hold for n > 3.

In considering Questioﬁ I, we are led to conslder

Question I': Glven (M,go) as in Question I, does there

‘exist a symmetrilc two tensor h not in Imé¥* such that

(esx)Rie, (7,7) = (Rie, (x))s

(*) (=(h)){x,y) = Ric,
, o o o

0

Notice that 1f (¥*) holds, g(t) := g_+ t h, and

o
Ricg > 0, Kg = 0, then g(t) is a poslitive variatlon at
o o

2

first order. Hence for (SEXS for which

85

Ric » 0, X z 0, the general exlstence of such a
can can

tensor h would imply the existence of a posltlve varia-

242 ).

tion at first order for (8%xS 8agy )+ But this is impossible

by.a lemma of Berger, [4]. Hence the answer to Question I'

is NO in general if dim M =4,
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~ In consldering Question I for (M,go) compact, the
mos t - obvious thing to try 1s to computé K' for the de-

formation

g(t) =g, +t Ricgo

Surprisingly enough, the computation of KI for this
deformation leads to an answer of YES for Questlon I

for dim M = 3 only and answers Question I' for dim M = 3.
Thls constitutes part 1 of Chapter 7.

In part 2, we compute Ric' for g(t) = g, + t Ric, .
o

v

In trying to understand the global significance of XK' = 0

when Ric = O, Kg z 0 (instead of Ricé > 0, ag in

0 o o
part 1) we are led to consider the followlng:

a) What do D*D R and D*D Ric mean?
b) The study of Riceil-product~like manifolds.
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Part I: Deformation of Sectional Curvature by the Ricecl

Tensor on 3-Manifolds

Let (M,go) be & RiemannianrmanifoldQ We wlll use

{,> to denote g, in this paragraph.

Recall that in defofming curvature, we want to uge

tensors h not in Imé*,
Tn [10], Bourguignon showed that for any‘go,

Ricg £ Imb* unless Ricg = 0. Hence, it 18 not unreasonable
o} ¢ '
to consider the deformation g(t) = g, + b Ricg .
. 7 ) . O
et Z t= Kﬁl (0) and suppose'K =z 0., We will say

£(t) 1s a posltive deformation of g, 1f and only if ¢ € Zg

O

implies X'(c) > O. Note that if M is compact, Kg z 0,
' o

and g(t) is a positive variation, then we can find an
s >0 With Kg(s) >0 on GE(M).

We will see that for a 3-manifold (M3

,go) that Z(Ric)

hags a partlcularly simple formula and that g(t) = g, + t(-Ric)
ls a positive deformation if K = 0 and Ric > 0. Ience

a compact 3-manifold that is %—positively Ricecl plneched

‘admits a metriec of positive sectional curvature.

Remark: It ie false that Ric > 0 implies algebralcally

for 3-manifolds that K > 0. Using_the local convex deforma~
_tlon on the 3-sphere flattened at the North pole of Chapter

6, we can easlily given an example of a compact 3-~manifold
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wlth Rie > 0O bﬁt for whieh there 1s sbme negative gectional
curVature. ST, Yau has informed us braliy.that he alsgo has
arcounterexample.
We would like to thank J, P. Boﬁrguignon for suggest-
ing the use of the second Bianchi identity to study
VVZ(Rlc | |
Define a (A,Q) tenéor R by R(x,y,z,w) := (R(X,y)z,w).
Then

(*)  (pyDgR)(s,T,U,v) - (D DyDy R)(S,T,U,v) - (D[iSY}R)(S,T,U,V)

= = R(R(X,Y)S,T,U,V) - R(S,R(X,Y)T,U,V)

R(8,T,R(X,Y)U,V) - R(S,T,U,R(%,Y)V), for

X4¥,5,T,U,V vector fields.
Let I ERRRPLN be an orthonormal basgis at p. Given X,y
orthonormal vectors at r, extend x,y,el,...,en to local

vector fields X,Y,El,...,En. Then

(3(rie)) (x,7) =-§ %{D D R(Ei,X,Y,Ei) + D

Dy D R(Ei,X,Y,Ei)

XY
- DXDXR(Ei,Y,Y,Ei) Dy YR(Ei,X X,Ey )}

+ Ric(R{x,y)y,x)

The idea 1s to use (*) and the second Blanchi ldentity to

write this ags 2 D

3 EiDEiR(X’Y’X’Y) + curvature terms,
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Bianchiiidenﬁity on DyR(Fy,X,+,) and DyR(+,*,T,E,) to

get - DXDEiR(x,Y,Y,Ei) - DYDEiR(Ei,X,X,Y) + curvature

terms.

Then, wrlting this using (*) as

= Dy DXR(X Y Y,E, ) DEiDYR( 13X,X,Y) + CURVATURE terms,

use the Blanchi 1dentity on D R( )" Y,Ei) to get

Ric(x,y) = - % ? D iDEiR(X,Y,Y,X) + curvature terms.

Definition: Deflne D*DR(x,y,y,x) : = = DDR(el,ei,x,y,y,x)
- ) 1 .

where €yse00s 1s an orthonormal basis at p. Then we

have

L]
o}

_Proposition 1: Fof g(ﬁ) = go + t h, where h = -Ricg
(Zh)(x,y) = %-D*DR(x,y,j,x).% Curv(x,y) where
for an orthonormal basis €1seaesey at p,
Curv(,7) = JUCR(x ey )%, Rlyse,)> + <Rlyse))xoly.e, )0
- 2R(x,e4)y, R(y,e)x> + (R(x,y)x, R{y,ey)e
+ CR(y,x)ys R(x,ey)e].

Remarks: (1) Although <R(y,ei)x, R(y,ei)x>-is not  symme -

tric in x and Y, = <R(y,ei)x, R(y,ei)x> 1s symmetric in x
i _

and y.

(2) 1r (Mn,go) has congtant curvature k, then

' Curv(x,y) = -kg(n-l)go(x,y)-
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Now suppose Kg- = 0. Then lemma 2.2 shows 1if
_ 0
€ys+..,e  are orthonormal vectors and K(el,e2)= 0 then

'<R(el,e2)el,ej> =0 for 1 < J < n. Hence
(#x) K(x,y) =-O lmplies R{x,y)y = R(y,x)x = O.
It 18 not hard to see that if we make a good extegsion
of e;sX,y to E,,X,Y then

D D R(ey,e4,X,¥,¥sX) = ei(Ei(R(X,Y,Y,X)))

- XROGLY)Y, Rixseglery ~ XR(y,y)x, Riy,e,)ed.
Hence, by'(%*),.if‘K(x,y) = 0, then

- DDR(ei,ei,X,y,y,x) = ei(Ei(R(X,Y,Y,X))). -Since K 2 0,
'ei(Ei(R(X,YjY,X))) = 0. Thus,

Lemma 2: If K = O, then K(x,y) = O implies D*DR(x,y,y,x) = O.

Remark : Since R(X,Y,Y,X) = ((X,X0<Y,¥> - <X,f>2)K(X,Y)

1t is not necessarily true that K 2 A implies R(X,Y,Y,X) = A.

Hence, if K = A and K(x,y) = A, we cannot conclude that

e, (8, (R(X,7,7,%))) = o,

Suppose (MB,gO) 1s a 3-manifold with Kg = 0. For
: >0

orthonormal vectors x and y,

2

Curv(x,y) = Rie(x,x)kic(y,y) - (Ric(x,5))? - 2(K(x,y))?

- PK(x,y)Ric(z,z)

where-z is any unit vector orthogonal to x and y.
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if K(x,y) = 0,

K' (x,y) = L p*DR(x,¥,¥,%) + Ric(x,x)Ric(y,y) - (Ric(x,¥)F.
. , 2 ,

-'.Hénce, 1f Rie > O; then g(t) = &g F t(-Ric) 1is & positivé
deformation by the generalized Cauchy-Schwarz lnequallty
.for positive operators. In light of our introductory
remarks, |

3,g0) be & compact 3-manifold with

Theorem 3: Let (M
K = 0 and Ric > O. Then M admits a metric of everywhere

positive sectional curvature.

Remarks: (1) The proof of Theorem 3 does nob generalize

ton = 4, The lemma of Berger (see [4], implies that

for the canonical metric g, . on Szxsz, if g(t)} 1is any
deformation with'K‘ z 0 on Z s then X' = 0 on Z .

_ - Egan : can
Hence even though Ric > 0, the deformation

carn

g(t) = 8o t(—Ricg' ) cannot be a positive deformation.
can |

In fact, for the '"mixed" 2-planes which are the zeroes

of Kg , Curv = 0.
gan

(2) Consider (M,z ) with K. < O and Ric_ < 0. Then
0 g, gy

K(x,y) = 0 implies K' (x,y) :.~‘% D%DR(x,y,y,xf - Ric(x,x)Ric(y,y)
' 2
+ (Ric(x,y))".

At a zero of K, the curvature'term willl be negative,

but in this case D*¥D R(x,y,y,X) £ O, so we cannot be sure
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that K' (x,y) < 0. This contrasts with the situation in

Chapter 5 for local conVex deformations where

2tp5 . 5
g{t) = e 2tp 8o worked for Rilc z 0 and g(t) = e2tp 8o

worked for Riec = O,
In [6], p. 73, the eigenvectors of Ric for 3-manifolds
are related to the sectional curvature. Using this, it

is not'hard-to‘see

Lemma 4: TIf Ric is positively % pinched, then K = 0.
If Ric 1s positively %1+ 8 pinched for any & > 0, then

K > 0. Hence, by Lemma !l and Theorem 3 we have

Theorem 5: Let'(MS,gO) be a compact pésitively % -
Ricel pinched 3-manifold. Then M admlts a metriec of

everywhere positive sectional curvature.

Remark: By the methods ofVChapter 5,'to conclude that
M admlts a metrlc of positive sectional curvature, we
would need Ric %-— pinched and at some point,_for all
vectors, the plnching not attained. Thus, Theorem i
giveg a strenthening of the results-using local deforma-

tion, but Ric cannot be used to prove the analdgous theorem

for negatlve %-Ricci plnching.
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Suppose‘(Mn,go) 1 & Rlemannian manifold with

K 2 0 and that 7 is characterized as follows:

(#x%) if p e_w(Zg ), then there exlsts n € M, such
: 0
that for o = {x,y} in w“l(p), then K(o)= 0 1ff
{x,n> = 0 and <y,n>7: 0.
‘Let ¢ be a zero 2-plane wlth orthonormal basis {x,y}.
Choose an orthonormal basis e = X, &5 =¥, es,;..,em = n

for Mp. Using (**) it is not hard to see that

Temma 63 Suppose K = 0 and uyvﬁw,ﬁ are orthonormal
vectors in Mp._ Suppose K(u,w) = K(v,w) = K(ukv,w) = 0.
Then ‘_ |
<R(u,w)v,B> = - (R{v,w)u,B>. | | -

For our 2-plane ¢ in Zg » We have
ol

CurV(X3Y) = ?{(R(x,ei)x,R(y,ei)y> + <R(y,ei)x,R(y,ei)x>

- 2<R(X:ei)Y3R(Y:ei)i>}-
m-1 :
Now 3XR(x,ey)x,R(y,e )y> = iZl<R(x,ei)ng(y,ei)y>
1 =

+ <R(X,H)X,R(y,n)y>. ;

Now using the stronger form of Lenma 2.2, Wwe have

1) =0 for

<R(x,ei)x,d> = 0 for 1 < 1 £ n~1 since K(x,e

1 <14 = n-l. Hence
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m-1 m-21 : '
by <R(X,ei)x,R(y,ei)j> = iEi<R(X,ei)x,n><R(y,ei)y,n> = 0.
(Obviously <R(x,ei)x,ej>_: 0 for 1l=1i,js<ml by
formula (15} of [22], p. 93, as well as by the strong

form of (**).) Hence

since K(x,ei) = K(y,ei) =0 for'l £ 1 < m-l, A gimilar

analysls of the other ftwo terms of the formula for Curv(x,y)

above, using Lemma & on the thlrd term shows that

- Lemma 7: K(x,y) = 0, x and y orthonormal implies
- . 2 5y
Curv(x,y) = Rie(x,x)Ric(y,y)-(Ric(x,y)) +5 ZliR(y, ey )=l

Notice that for x € (n)", Ric(x,x) = K(x,n) > 0 by

assumption (*¥%), Hence Ric]( ; is a posltive operator
' n

so Curv(x,y) » O for ¢ in Zg with orthonormal basls
o

{x,y}. Hence

- Proposition 8: Suppose Ké, = 0 and Zg satlsfies the
o o

~algebraile condition (**%) above. Then
g(t) =-go + t(~Ricgo)

18 a positive varlation on Zg .
o

In particular,rsuppose -1 fA(Nn,go) is an embedded

Z CR(x,e4)%,R(yse,)y> = (R(x,n)x,R(y,n)y> = Ric(x,x)Ric(y,y)
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/ submanifold go that the zero set of Kg 1s precisely the
o ; o =
"tangential" 2-planes formed by vectors in 1. (™). Then

1f M 1s compact, there exlsts a metric for M with every~

where positlive sectional curvature.
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Part 2: More Metric Deformations on‘Compact 3~Manifolds:

-How to Understand D*D Rie

Let h be a tensor. Let {ei] be an orthonormal basisg

at p. Define

D*Dh(vl,vg,...) = ? DDh(ei,ei;vl,vg,...)

=3 (D, D h){vy,Vpseus).
i ey ey 12722

Suppose X 1s a local unit vector field on M3 with DX = O,

X
Chooge. y,z in Mp so that [Xp,y,z} are orthonormal. Tet

lax®)|® = ((axP)(y,2))?

(ax®) (u,v) t= (DX, = (D X,w
(S*Xb)(u,v) s = <DuX,i> + <DVX,U>

DRI e (€D L5)? + (Coyx,n )P

+ (nx2)? + (0,x,5)%

Note the non-standard omission of the factor of 1/2,
These definitlions make sense in light of the standard

definitions because {|X[| =1 and D,X = O implies

(de)‘(X,.) = 0 émd _

(6%xP)(x,-) = 0 .
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As usual, we write (DX){v) := DVX and for any extension
of w to a local vector field W,

(DD X)(v,w) := D, DX - DDVWX,

Where there is no danger of confusilon, we will write <,>

. for g, R for R, , Rie for Ric_ , T for T (scalar
' © € &o €o

S

curvature function of M).

We have seen that for a compaét'Bmmanifold (M,go)
wilth Ricéo > 0 ané Kgo z 0, perturbing the metric by
the Riccl tensor of g, will give M a metrie of positive
sectlonal curvature. The natural questions to ask then

are:

(I) How does this proof fail if Ricg z 0 only?

(IT) What happens to the Ricel curvature when the metric
is perturbed by the Ricct tensor?
Recall that 1f g(t) = g, + t(~Rlc_ ) and X(c) = 0

go_
then

K' (o) = 1/2(D*D Ric)(x,y,y,x) + Eic(x,x)Ric(y,y) E

where x,y are a go—orthonormal basis for ¢ dlagonalizing ?
Ric restricted to 0. We saw that if X = 0, then K(x,y) = 0
implied ' '

(D*D R)(x,¥,¥,%) = O. 7 P

Thus, if Ric(x,x)} = O and K(x,y) = O, then K'(0) = 0 iff f

(D*Dr R)(Xsys.V;X) = 0.
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Even for Ricg = 0, this varlation is thus still a non-
0 ) .

negative sectional curvature variatioh.- Below we deai

'with'the case in which this variation vanishes identically

on the zero 2-planes (for Ricg = 0) and show that this

can happen only if (M,g_) is'lgcally igometric to a ‘
"product. 'If this condition is not safisfied, then

g(t) = g +-tCRicgo) is a non-negative variation for M i

that is positive on some zero 2-planes in GE(M)' | !

If {x,y,z} are a gO—Orthonormal basis for Mp, 1t 1s

not hard to see that

(1) (DD R) (3,5,7,%) + (D%D R)(x,2,5,%) = (D%D Ric)(x,x).

While we do not understand D*D R very well, equation (1)
suggests that there is sowe connection between (I) and
(II). Tn the case where Ric' = O on the zero set of Ric ,

0
we will see that this tensor has a nice expression. Here

we only remark that-

Lemma, l: Tet X be a vector fileld in M. Then

(DD Ric)(v,v,X,X) = 6*(a{Ric(X,X))(v,v) - M(DVRic)(DVX,X)
-2 Ric(DVX,DvX) - 2 Rie((DDX){(v,v),X)

so0 that

(D*D Ric)(X,X) = A(Rlc(X,X)) -4 tr{z -~ (DZRic)(DZX,X)}
-2 tr{z =~ Ric((DX)(z),(DX)(z)))

-2 tr{z - Ric((DDX)(z,2),%X))




which does not seem to be very enlightening.

Proof of TLemma 1: -Extend v to a ldcal vector field Vv -[
(DvRicXX,x) = v(Ric(Xx,X)) -2 RiC(DVX:X)- | \%‘/J/
.'_Thus

v((DVRic)(X,X))-% v.V(Ric(x,x)) - 2v(Ric(D X,X))

= v-V(RiQ(X,X))V~ Q(DVRic)(DVX,X) -2 Ric(DVDvX,X)
- 2 Ric(DVX,DVX)
Then
(DD Ric)(v,v;X,X)= v((D Ric)(X,X)) -'2(DVRic)(DVX,X)

s0.substituting the expresslon derived for v((DVRic)(X,X)),

we are done.

Q. E. D.

We want to'éompute the first derivative of Ric' at
t = 0 for the variation g(t) = g, + t(—Ricgo). We will
need the followlng well-known formula which 1s Just the
Second Blanchi Identity rephrased and in the notation :

and sign conventions of [6] 1s Just o |

1
ity - o 1]
6'Ric = 5 ar ",

A

Lemma 2: Let [ei} be an orthonormal basis for Mp. Then

§(DeiRiC)(ei’w) = %—W(T) .
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P . i o
' Prpof: Step 1: (DXRlC)(y,Z) = ?(DXR)(ei,y,z,ei)

Step 2: The Second Blanchi Identity and Step 1 glves

2 ?(DeiRic)(ei,w) = §(DWR1c)(ei,ei)

Step 3: Let ¢ be the geodesic through p := w(v) with

c{0) = w. Extend the e, at p to the parallel fields

i

E, along ¢ with E = e, . Then.{Ei] are orthonormal

1|p

along ¢ and

?(DWRIC)(ei,ei) =_; W(Ric(Ei,Ei))-- 2 % Ric(DwEil ,ei)
| i _ 1 p
= w(Z Ric(E;,E;))} since Dy =0
1 : p
= w(T).
Q. E. D.

It

In [2], Berger showed that for g(t) g, + t h that

1

Ric' = = % D*D h + Ric®h - R® -~ 6*b'h - = Hesg(tr h)
)

noj

where for an orthonormal basis {ei} at p,

Ric®h(x,y) = = Ric(x,ei)h(y,ei)
1

310‘33}’1(}(,3’) zi?J_R(X‘)ej_ﬁejay)h(eibej) .

PO b

Sinece h = -Ric, by Lemma 1; 6'h = dr  so that
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= B¥81h + & Hess(tr h) = & 8%(d7) - & 6%(dr) = 0

and thus for g(t) = g, + t(-—Ricg Y,
g,

" Rle' = 1/2 D*D Ric - Ric®Ric + R®Ric.

From now on, all manifolds will be 3-dimensional
unless explicitly exempted from this convention! Recall

that in 3-dimensions, if {x,y,z) are g,-orthonormal

vectors at p then . - j
(2) K(x,y) = 1/2(Ric(x,x) + Rlc(y,¥y) - Ric(z,z)).

- Then

Ric'(x,x) = %-D*D Ric(x,x) - (Ric(x,x))? - (R_ic(x,y))2

, | 5
- (RiC(X,Z)) + R(X,Y:Y;X)Ric(y,:y')
+ R(x,z,%,x)Rte(z,2) + 2 R(x,y,z,x)Ric(y,z)

= % DD Rie(x,x) - (Ric(x,x))? - (Ric(x,y))? - (Ric(x,z))

+ K(x,y)Ric(y,y) + K(x,z)Ric(z,z) + 2 (Ric(y,z))2

Substituting (2) for K(x,y) and K(x,z) we obtain

Proposition 3: For (M,go), let g(t) = g, + t(rRicg )
. o -
and let {x,y,z} be g,-orthonormal vectors at p so that y.

ahd z. diagonalize Ric : x~ ® x* - R. Then




Ric' (x,x) = 5 (D*D Ric)(x,x) - (Ric(xax))é ) (Ric(g;y))Q“

1
e ‘ .
7_—7(Rig(x,z))2 + %?Ric(x,x)(Ric(y,y) + Ric(z,z))

L
2

E: (Ric{y,y) - Ric(z,z))g.

Now suppose'Ricg =z 0. Then
' o)

Lemma 4: Ric(x,x) = O implies Ric(x,v) = 0 for all v.

Proof: Just consider f£(t) := Ric(x+tv, x+tv) =2 0 which

has 0 as a minimum, so f'(0) = O.

. Q,o Eo D-

Lemma H: If X = El,EQ, and E, are a good extension of
X,¥s% in a neighborhood of p, then

(D*D Ric)(x,x) = A(RLc(X,X)) -2 = Ric(x,R(Eil ,X)Eil ).
1 p p

Thus, if Ric(x,x) = 0, then

A(Ric(%,X)) = o.

Mo =

(D*D Ric)(x,x) =

Proof: Using Lemma 1 applied to X, since D §l = 0 we

have

~t

DEiX,X)
b

. (D*D'Ric)(x,#) = A(Ric(i,%)) —'2 ? Ric(Dﬁil

.DNEi using [%,Ei] = 0 near p,
< ,



Definition: Given x in Mp,"let ll(x)'and lg(x) be the

- eigenvalues of the Ricci tensor Ricg restricted to the
&g

g,-0rthogonal complement of x In Mp. Let

ll(P) < Kg(p) < ks(p) be the elgenvalues of Ricg on
_ _ o
M_. Thus, we have

D

Proposition 3': Suppose Ricg z 0., If x is & go-unit
. @] .

vector wilth Ricg (x,x)}) = 0, then

o

RiC'(X,X) - l/g(DxD 'RiC)(X,QX) + l/g(ll(x)"le(x))g z (O,

Fxamples: (1) 1In [25], p. 29, Hernandez gives an example

of a metric on RP(3) such that at each point p, there is

a unit vector z(p) so that the Riccl tensor 1s given by

Ric, (x,x) = (<x,2(p)>)%,

Then O = Ricg < 1, xl = KE = 0, XB = 1 and the zeroes

of Ricg are preclsely the vectors orthogonal to z{p)

0

In M. Tt 1s not difficult to see that Ai(p) = xp(p) =0

and kg(p) > 0 implies that there is a 2-plane o0 © M,

with Ky (o) < 0. (We will see this below.) However,
o _

for x with Ricg (x,x} = 0, Rie‘(x,x) z 1/2 by Proposition 37,

0



B0 We can perturb this metric by the Ricel tensor to get
a metric of positive Ricel curwture . Note that since

bl(RP(B)) = 0, if X is a global vector fleld with -

Ric(X,X) = 0, then DX = 0 on RP(3) is impossible.

(2) Tet g, be any metric on S° with Kg > 0.

Let g
5 1

be the usual metric én Sl. Form

(M,go) = (Sl X Sg,gl X gg). Then g, is a metric

for M with Tg > 0. Let X be the global unit flelqd

o N .
defined on M by: if g%-is a unit field on Sl trivializ-~
‘ing TSl, let
o : 1 2
X = = 0 u in M =8 X S .
[(p,q) (Bt!p’ q) ustng My (psa) ~ "lp g

Then X is a global g,-unit field with DX = 0 g0 the

integral curves of X are geodeslcs and Ric(X,X)

i

0.
Furthermore, 1f v € Mp

Ric(v,v) = 0 1ff v = ¢ Xp for some t in R,
Since ll(X).= lE(X) = 1/2 on M, and DX = 0 implies

(D*D Ric)(X,X)

Hi

O by Lemma 1, we have Ric'(X,X) E'O.
Thus in this case the Ricedl variation vanishes identically

on the zero set of Ricg-. Since bl(M) = 1, M does not
)

admit a metric g with Ricg z O, and Ricg, > 0 for some

p

P In M, let alone a metric wlith everywhere positive Ricci
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curvature by the Bochner-Lichnerowicsm harmonic thecry.
Also, since vl(M) = Z, by the Myers-Synge Theorem and
Theorem 5.1, M'does'not admit a metric with non-negative

Riccl curvature and all Ricel curvatures positive at

some point. Thus the fact that Rie' (X,X) = O here would

seem to provide an . "operational verification" of the
classical topological restrictions of homology and homo- !
topy on the sign of the curvature of a metric on M. In

fact; 1t follows from our computations below that not

only is Rie' (X,X) = 0 for this metric on M, but also

Rict(X,X) = Ric(X,X) = 0 for all t for which g(t) is a

metric, '

If we could find a non-negative Rlcei varilation with

Ric‘(X,X), > O for some p on M, since
, 'p _

kl(X) = kE(X) = % =€ >0 onM, 1t is not inconceivable

that we could get a metric g with Ricg =z 0 and Ric | >0 f
and hence using Theorem 5,1 produce a metric with positive

Rlcel curvature on M. So 1t might be that the topology
.is lwposing conditions even on the existence of non-
negatlve variations that are positive at sone zero direc-

tlon. However, as we will see below, 1t appears to be

quite difflicult to improve the amount of positive curva- j

ture using a non-negative variation.




Considering Propositlon 3' again, we see that
for Rile_. = 0
g, ’ |
' t) = g+ t(-Ric
e(t) = gy + v(-ric, )

is a non-negative variation on the zero directions for

Ricg s and if' for all zero directions x, (D*D Ric)(X,X) > 0
o ‘

3

or 1l(x) # lg(x), then the variation is a positive varia-
tion. The second condition suggésts that we should alge-
braically study the Rlecl tensor in 3 dimensions and in
particular we should. explore the implication that

ll(x) =712(x) for all zero directions x for Ricg .
: - o

‘Example (2) above has already shown that given (M,go)
with non-negative Ricci curVature and poslitive scalar
curvature, we cannot always produce a'metric with positivg
Rieecl curvature. Hence, the analogue of the sectional:
curvature deformation theorem of Part 1 1g false. But,
in light of example (2), a natural question to ask is
whether the analogous theorem féils to be true only when
(M,go) is locally isometrically a product manifold.

Since Ric is a symmetrié 2-tensor on Mb, we caﬁ find
orthonormal vectors {x,y,z} diagonalizing Ric on Mp SQ
that Ric(x,x) < Ric(y,y) = Ric(z,z). Also,

Ric(x,x) = K{(x,y) +_K(X,z)
(3) Ric(y,y) = K(x,5) + XK(y,2) .
K(x,z) + Kly,z)

il

Ric(z,z)



From (3) 1t follows that

Lemma 4: Suppose Ric(x,x) = 0 and Ric(y,y) = Ric(z,z) # 0.

Then Ric(y,y) = Ric(z,2) = 1;(x) = 1,(x) = K(y,z) = 2L
Ric(v,v) = 0 iff v € Rx, so K(x,y) = K(x,z) = O.
v L x implies Ric(v,v) = K(y,z) = T(p)/?.-

Furthermore, K(0) = 0 1iff x € ¢. Finally, K(o) = 0
for all o € M . |

Let us assume 1n (3) that Ric(x,x) = 0. Then we have

the following possibilities.
case. (1): Ric(y,y) > 0, Ric(z,z) > 0.

Then Ric(v,v) = 0 iff v € Rx
K(x,y) = —K(x,z)r
K{y,z) > 0.
If Ric(y,y) = Eic(z,z), then X(x,y) = K(x,z) = 0.

Case (11): Ric(x,x) = Ric(y,y)= 0, Ric(z,z) > O.

Then Ric(v,v) # 0 1ff v € Rz - {op}
Rie(v,v) = 0 iff v = ty + sx,.s,t in R
K(x,z) = K(y,z) > 0 dimplies K(x,y) <-0.

Thus, there may be 2 zero directlons for Riec in Mp iff

there are negative sectional curvatures in Mﬁ.

Case (1i1): Ric(x,x) = Ric(y,¥) = Ric(z,z) = 0 implies

K(o) = 0. for all o ¢ Mp




Definition: (M,go)'is Ricel product-like iff

@ > 0

(r1) at all points p in M, one of the eigenvalues

of Ricg on Mp is zero and the other two elgenvalues are
o .

equal (and hence non-zero by (I)).

By connectivity of M,r >0 on M, or 7 < 0 on M.
€o €o

A natufal questlon raised by the example of Slel
above which motivated this definition 1s whether (M,g,)
Ricel product~like implies (M,go) 1s locally isometrically
& product. At this point we only remark that if'(x,y,z)
are Ehe usual coordinates‘on RB, and if we take £ : R° - R
to be a smooth funcfion débending only on #, for

g = 21>

cap® Ve have

Ric(% ,‘3%) = —2f"(5)e™ 2 ang

Ric(gr s ) = Mol s &) = ~(27(x) 4 (1 (2))2)e7ES

Thus, if we put f(x,y,z) = z, we get a metric g wilth

Ric(-gaz- , -é-a-z-) = 0, Ric(% A 3%-) = ﬁic,(% s %) < 0,

However, in the case of non-negative Ricel curvature, it
1s not difficult to see that uéihg the warped product

construction of Bishop, 0'Nelll, [9], p. 23, it is not

posslble to construct from (R,gcan) and (R2,gcan) by




In order to even consilder thisg question, we need to under~=*

s tand D*D Riec.. Ag’ a first step, writing < > for g, in

the computations below

Temma 7 : (Bourguignon, Ehflich)é let (M,go) be Ricel
product-like. Tet X be a local unlt vector field defined

on an open set U< M so that Ric(X,X) = 0 on U. Then

(1Y DX & 0 so the Integral curves of X are geodesics,
| - Yx

(2) S dlv X = tr{v ~ DVX] = - X(7)/T, and

(3) (ax°) (x,+) = 0, (8%x°)(x,") = o.

Remarks: (A) In fact on an n-manifold if Ricg' diagonal -

o
lzes globally as '

0 0
T/n-1 0
T/n-1
n - 1
0 T/n-1
L———

n - 1

then (1) div X = - %ﬁ& X(T)
(2) Dy X - - %ﬁi (grad T —;X(T)X)

where X is a local unlt field with' Rie(X,X) = 0




(B)

Slxsz, property (1) of Lemma 7 held since DX = O.

Tn example (2) above of the product metric on

Proof of Lemma 7T: For p-in U, we can find local fields

Y and Z so that (X,Y,Z)} are orthonormal and dlagonalize

Ric (this uses Lemma 4). Thus

Ric(X,-)# = 0
(*) Ric(v, )¥ = =Y
| Ric(Z,.)# = %-z
Let I = D, (Ric(X, -)#) + DY(Ric(Y,-)#) + ﬁZ(Ric(z,-)#),

1T = (DXRic)(X,-)# +(DYRic)(Y,;)# + (DZRic)(Z,-)#,_ and

ITI = Rle(D X,.)# + Ric(D Y,.) + Ric(D %y )7"L

X
- By definition of the derivative of a tensor field,

I=1II+ III.

But I = Dy(5 ¥) + Dy (& 2) by (*)
1
= §(Y(T)Y + Z(v)z) + %{DYY + DZZ), and by
Lemma 2,
iro L X(T) o, X(T) ., a(r)

= = _75,_
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- Now

Ric(D X Ric ((_DXX,Y>Y + <DXX,Z>Z, -)#

: 1
(since <pXX,X> =5 X(1) = 0)

It

<DXX,y>Ric(Y,- )# + <DXX,Z>Ric(Z, -)#

DXX L]

N

%—_((DXX,Y>Y + <{DyX,207) =

Similarly,
' 0 _
Ric(DYY, = —2-(_DYY, 7> 7

and

_ ] |
R:Lc(DZZ, -)# = é-<Dzz,Y>Y.
Also,
DyY = <DYY,X>X + <DYY,Z>Z
and

D7 = <DZZ,X>X + <DZZ,Y>Y.

Il

Substituting in (**) we obtain

T T , .
= <DYY+DZZ,X>X + oz (<DYY,Z>Z + <DZZ,Y>Y)

X(7)
5

i

.
X+ z DyX + o (I<DYY,Z>Z + <DZZ,Y>Y)

and hence

T cx = K1) T -
7 v X ¢ X = e DyX. Since {D,X,X> = 0

and |1] > O, this yilelds DiX = 0 and div X =':££il-.

Q. E. D.
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On a disk U for Whlch the nulllty follatlon s trivial,there ar
exactly two choices for a local unit fileld X with
Ric(¥X,X) = 0, namely X and -X.

It then follows that 1if (M,go) is Ricel product-

llke, that we can find a local unlt vector field X on

M satisfying (1) - (3) of Lemma 7 and such that locally

- _Eo be b -
Ricgo = — (gp~X ® X' ), where —-bgo

At this point we remark that in 3 dimensions, but

not in higher dlmensions, the notions of nullity and Ric

0
being Riceil product-like coincide. Explieltly, fixing a

wmetric go'for M

Definition: x in Mj 18 a nullity vector 1ff

R(x,y)z = 0 for all v and 7z in M?. Define the nullity
space at p by
Null(p) := {(x in My R(x,y)z = 0 for all y,z in M ]

and the nullity at p by n(p) := dim Null(p). Define the

conullity space at p by

CoNull(p) := {R(x,y)z ; X,¥s% 1n Mp}. |

Then Mp = Null(p) @ CoNull(p). These concepté were ' i

defined by Chern and Kulper [16], and have been sub- : ’

sequently studled by Maltz [28], Gray [21], Rosenthal [31] i

and Abe [l], among others,
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In particular, if the nullity n(p) isrconstant on M, 7
then the nullity subspace defines an-integrable distri-
bﬁtibn and hence, a foliation with complete, totally
geodesle leaves. We will thus refer to the nullity ang
‘.conullity distributiong below. Tn our case, (1) of
Lemma 7 expresses the fact that the nﬁllity distribution
15 totally geodesic. Tt is, of course, integrable being
one dimensional. |
In [31], for complete simply connected manifolds N™

with a globally constant nullity n satisfying 0 < n < m-3
a splitting theorem for N ag

with B flat ig obtalned under additional hypotheges on
the curvature tensor. In particular, thls result applies

to constant 1 dimensional nullity if dim N > 3, but not
for dim N = 3.

It is not difficult to see that

Lemma, 8; (Ms,go) has constant nullity 1 iff 8, 1s Ricel
product-like for M.

Thus, asking whether (3 3,g ) with constant nulllty 1 1s
locally or globally a Riemannian product is equivalent

to asking whether (M,go) wlth g  Ricci-product-like for M
is in fact locally or globally a Riemannian product.

Here we only state the next  theorem. Details will




appear elsewhere.

3

Theorem 9: | (Bourguignon, Ehrlich) Tet (M >8, ) be a
complete simply connected 3-manifold of constant nulllty
1 such that the conu]llty distribution is 1ntegrable
Then M3 admits a glqbal parallel field of length 1 and

thus splits isometrically as (M,go) = (R,gl) X (M?;gg)

where both factors are complete and ME'; Sgror Rz. In
particular, M.is non-compact.
Corollary 10:. .SB does not admit a codimension 1l foliation

which arises from an integrable conullity distribution

~of a curvature tensor defined by a metric on §9.

Problem: Does 33 admit a Ricei product - llke metrlc?
If.so, this would show that R1c01 produet 11ke does not
imply- 1sometr1c to a product.

Hawving dlgressed into the connection w1th the nulllty

- in dlmens1on 3, we return to study of Rlc‘ for Rlcc1~=

product-like metrlcs,' An easy calculation shows that

Lemma 11:  TLet g(t) = g + t(-Ricg ) where
_ _ . >

(g, - Xb® Xb) as above.

=

4

o

Il
Ay

Then Ric'(X X) = 1/2(D%D Ric)(X,X) = e

CAs a corollary we obtdin
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Proposition 12: Tet (M,g ) be Ricel product-like.

o
tion that is negative on the zero direction for

Fither |
(l) | (M,go) is locally isometric to a prodﬁct, or
(2) - Af Tg >0, M admits a nonnnegativg Ricel
variaiion that 1s positive on tﬁe zero direction
for some p in M, or | l
(3) ‘_ if Ta < 0, M admits a noﬁmpositive Ricel varia- !

some p ih M.

In light of Aubin's Theorem, we thus ask

Question: If (M,go) is Ricci-prodﬁétflike, ig 1t true
“that either ' ' |

(1) (M,go) is locally a product, or , ;

(2) M adnlts a metrle of posltive Ricel curva ture if

T > 0, or
€o

(3) M admits a metrlc of negative Ricci curvature if
T < 0. | :
g o . : |

We do not know whether this is true or false.

Remark: Observe that if (M,go) 1s Ricel product-like with |
X as above, and Y and Z are local vector flelds so that
{X,Y,2} are g,-orthonormal, then the variation g(t) = go+t(—Ricg )

0
is the same ag the variation




e(t) = (1 -t De, + t T x’e 0.

Then g() (X,X) = 1, g(8)(¥,7) = a(8)(2,7) =1 - t &,

and {X,Y,%Z} are g(t) orthogonal.
A conformal varlatlion amounts to declariﬁg

{((1+t £)x, (14t £)Y, (1+t )2} to be an orthonormal
basis dt time t for some function £ : M -+ R. Here, we
are studying in a particular case the "next simplest™

varlation where we declare

X, (1t £)Y, (14t £)7)

to he orthonormal,at time €. -
We now want to compute Rict(v,v) for (M,go) Ricei

product-iike and for
Dg  + f'g' X‘o@ X’

g(t) = g, + b(-Ric, ) = (1-t

We give a number of computational lemmas, reminding the
reader of the varioué factors of 1/2 ommited as glven in ‘
the "Notational Conventions" section. Fix local filelds ’
Y,Z so that {X,Y,Z]} are g,-orthonormal. We write <> W

for go below.

Temma 13: | (de)(Y,D X)'%-(de)(Z,DZ ) = ((de)(Y,Z))2
= Jlax®||®

= {D A, DX - <Dy, X,

YX




- Now use DX = <DYX;Y>Y + <DYX,Z>Z to get
(@) (v,0,%) = (<n,x,v5)2 + (Kpyx,7)?

- <DYX,Y>(DYX,Y> - <DYX,Z><DZX,Y>
| 2
(KDyXs22)% - <pyx, <D X,¥>

Simlilarly, _ _ _
' Y N~
(dx )(z,DZXJ_ = (D%,72)7 - <D X, V<D %, 2

so'thafv (dxb)(Y,DYX) + (de)(Z,DZX) =

(<DZX,Y> - {DyX,2>)% = ((dX")(Y,z))E_= Jlax®)2.

Q. E. D,

Lemma 14: (Bochner Lemma): With the above assumptions

on'go, Ricgo, and X, then

- X(aiv x) = |jv % - fax") 2.

Proof: Modify the argument of [15] p. 121, the de
in our case coming from the‘fact that 1in [15], X-was
locally the gradlent of a function so <DYK,Z>-: <DZX,Y>
which does not hold 1in our case unless the conullity

distribution is integrable and Theorem 9 applies.

Theorem 15:

8x(a1) (3,x) = ~x(1)atv X + x| - cax’)?

|
|
|
|
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Proof: X(7) = -1 div X by Lermné 7, SO
o (ar ) (3,X) =:X(X(fr')) - (DXX)(T)-
= x(x(7)) = -x(7)div X -»-'l;lK(div X)

~ so done by TLemma 14,

For the variation g(t) = g, * t(--Ricg ), we now
, . 5 ,

sketch the computation of Rict(X,X).

T

S0x) = (1 - BTG e+ RE )z ).

Now Ric

Using the standard formula expressing the relation between
the metric and its Levi-Clvita connection, for any v,w in

Mp extending w arbitrarily to a local field W,

~ Lemma 16: 2(1 - %;J(DEW - DVW) =
teT N tQTE b B
- = X (M w = Kooy DX 00Xy = (4% ) (van) X
p p p p p

- %[V(T)(W-<W,XIP>K|p)_ + W(.T)(\P-(V X) >X| (v, w <v, Xg@ X[}D grauz:

b

+ o) (o) xk—+<w,x5>(axV)(v,-># # <Xy > (ax ) (s ).

In particular,

Lemma 17: For v € Mp,

o
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: é(l - %r—)Df;X = 2(1 - %T—)DVX - %le(.m)(v{v,x|p>x|p)
+ Eax®) (v,

‘NOW

t Cenbobe N opbpt
R (ysx)530 ¢ = DDy = KDDyXLT

t ,
- <D[Y,X]X:Y> £

t t v
.;<DYX,D}%Y>t - X - (DYX,'Dt - <D[Y’X]X,Y>t

gince DEX = (,

T.emma 18:
(1) D§X = DX - —r X(1)Y + —i'r—-—-(d}{b)(f,-)#
| B(1- B 5(1- 5 |

t .t 5T
(2) <b ,DXY>t = (1 - T)(DYX,DXSD

- Ex(r)ry,xl Y+ $ax®) (x,px)

202 by oy
o)+ e oll () (T

BT ¢ 2P (
+ -&—(dx Y (Y,D
' 2

2

+ o (x(1)?

T
16(1- 5y
(3) <oix,v>, = (1- EXpx, > - x(1)

, t | ET v L
(4) x » <pgx, >, = (1 - %+ {DgX,Y)
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(5) <D§Y,X]X,Y>t (1 - --—-)<D[Y X]X 193
. X(7T)K[Y,X1,0 + i‘"’T( b)(DYX,Y)

: %(ax")’(DXY,Y)

Corollary 19: <Rt(x,y)j,i>t = (1 - —~J<R( SY)T %
= %é(dkb)(y,DyX) + EXT) <p x,p> + F ox(an) (1,X)
. 2
R R TOSYPTR L Ce (Cab il
16 (1~ -—-) : 16(1 - —2—)

and a similar expre531on of course holds for (R (x,z)z,x>t

Yo 11 (@) (v, I = 10ax®) (2, 9H2 = ((axP)(3,2))2 = Yax"]?
s0 that
CRUG,y)ysy + RPxn)z0, = (1= F)Rie(x,x)

+ Srr(ax®) (7,0, %) + v(ax®) (2,0,%) + x(r)atv X + &*(ar)(X,X)]
+ tg(X(T))g n t2T2 ||deH2 )
8(1 - L)° 8(1 - 47

Using Lemma 15, we finally obtaln

Proposition 20: With everything as above,

: , 2
ric®(x,%) = ﬁunxng e mpe [ (1)) ax’?)



Hence, if (M,go) 1s Rleci product-like, on the zero direc-

tionVX for Ricg = T/é(go - Xb® Xb) we can certainly find
_ ‘ o .

& t, > 0 guch that if Ioxll [, > 0, then for all t with
O'<_t = to we have elther

(1) if v, >0, then R1c®(X,X) 2 0 and micP(x, ,x, )
: y 2802 lp>*|p

or

(11) if 7 < 0, then Rict(X,X) < 0 and Rict(xlp;xlp) < 0.

However, 1t is necessary to determine whether we can

find such a to > 0 without Introducing any negative Ricel

curvature. We distinguish 3 cases. Let_XE,Kg,lg be the

elgenfunctions of Rict.
Case (A) HDX”,p > 0.

Then since kg,ks 2 ¢ >0 on M by compactness, 1t is clear
we can find a t,(p) > 0 so that

¢ £ |
M (P)AS(P),A5(p) > 0 for 0 < ¢ = t,(p).

1!

Case (B): DXy =0 but DX = 0 in an open neigh-

Ip
- borhood of p. Then we can find a.to(p) > 0 50 that

Rict(x,v) = 0 for all v in M, and for all ¢ with 0 < t = to(p)

Then -hf(p) =0 for 0= t < to(p) and these polnts are

\

no problemn.

Case {(C): ”DX“]p = 0, but we do not know that

DX = 0 in a neighborhood of p.
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- Thege polnts are the "bag" points. In order to see

what happens here,'we nmust look at the map t - Rict

in a neighborhood of the zero direction Xp in Mé. We
‘use a method.similar to the method used in [12] for the

- sectional curvature. Let Y and 7 be local fields near P

"so that {X,Y,Z} are go-orthonormal. Define a nelghborhood
of X b
Ap |
Va,b = Xp + a Yp + b Zp, a,b in R.

We have a functlon

va,b’va,b)
and we want to know if we can find a to(p) > 0 so that
H(t,a,b) = 0 for all t with 0 < t < t (p), and for all

a,b. A necessary condition is that 1f we conslder the

-3 x 3 matrix deflned by the second order terms In t, a

and b in H(t,a,b) that this matrix be positive definite.

We need the following computation, the proof of
which is laborious but straightforward so omitted in
detail.

Temma 21: Suppose DX|;_ = O. Let v € M_. Then
e lp ‘ p

Ricb(v,v) = (((v,2) 2+ (v, PN B+ - Loy )

b o [ERL y (@) (v,2) ¢ 5 s*(ar)(z,0)]

b v [ (@) (1,2)) + & sx(an) (v,2)1.
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. Tdea of the proof of Lemma 21l: As a first step, we need

Lemma 22: . If D'Xp = 0, then for all v in Mp,
<Rt(v,x)x,ﬁ>t.= 0.

Proof: Extend v to a 1ocai vector fiesld V.
t t, t, .t
<R(mxﬁﬂbt-)c.<ggﬂét-<qgﬂ%@t
t

. - by b R- N
since D X), = 0, <DVX,DVX>th = <D[V;X]X’V>t|p = 0

- —

I = DXV - H—‘Et——-— X(7) (<rs D= (v, 0)F)

Since (dxb)(v,v) = 0 near p, XIP(T) = 0 by Lemma 7, and

by ILemma 15, 6*(dT)(X[p’X[p) = 0, we have .

X * <D3X,v>t :VX<DVX,V> - m-—~5~f?- o*{dr ) (x,x)

41 - 7;)

(v, - (3v,k>)2)
= X - <D X, V. '

Hence, <Rt(v,x)x,f>t = <R(v,x)k,v> = 0.
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<Rt(yav_)VJY>.t <Rt('Z,V)V,Z>t

-+

(1 - %) (-5

By Lemma 22, Rict(v,v) =

‘Now <Rt(y,v)v;j>t = 2<V,ﬁ>£<ij>ﬁ<Rt(Y:X)Z:j>t_
x> KR (3,25,

and <Rt(y,x)z,y>t, ete. can be calculated from previous

lemmas,

Q. E. Do

Let c(t) = T z((ax")(¥,2)) + § 0*(a1)(y,x)

and

a(t) = T y((ax®)(v,2)) + F 6% (ar)(z,%)

Proposition 23 The matrix of second order terms in

H(t,a,b) is given-by

£ a b
t 0 | e(t) | d(t)
a | e{t){ 7/2 0
b | d(t)] © T /2

Thus the 2 x 2 minor in t and a has determinant ~-(c:(t-))g.
Hence the matrix 1s not positive semi-definlte unlesé
¢(t) = d(t) = 0. Hence, for any small &t > O we are
.introdﬁcing negative Ricci curvatures with Rict(va’b,va’b)

in a neighborhood of Xp where p 1ls of type (C).
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Remarks: (1) By Lemma 21 for points p of type (C), we

can define a function Sl(M,go)] L5 R on the g -unit
. ,

-vectors at p as follows: glven a unit vector v in Mb,
choose t(v) > 0 o that 0 s ¢ = t(v) implies Ric®(v,v) = O.
The difficulty which 1s made explicilt by Proposition 23

is that this function v = t(v) need not be contiﬁuous or
evén semi-continuous-so we cannot use the compactness

of Sl(M,go)lp to choose a to(p) > 0 g0 that t(v) = to(p)
for all v.

(2) Even if we assume that X(r) = O or even 7 1s

constant, we still have the directional derivatives
, | , 5_
y((ax®)(v,z)) and =z((ax")(¥,z))

in Pro?oSition 23 4n the direction of the conulllty distri-
bution. Since in our hypothesis-there is rigldlty only

in the X direction, there 1s no reason to believe that |
these terms should vanlish. It would appear that even

in 3-dimensions, the curvature tensor belng a second order
derivative of the metric 1s not strong enough to control

D X which 18 a first order derivative of the metrib. In
order to get a positive seml-definite matrix In Proposi-
tion 23 we must assume that DX = O near p, but in this

case we have a 1ocal.product and the variation does nothing

to increase the curvature in the X dlrection.
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(3) Even if |px| > 0 in M - (p ), but

DXI = 0, we can not find a t > 0 so that Rictlp >0
Po , o -

by Proposition 23,‘even though for each g in M - [po}
we can find a t(gq) so that
0 <t < t(qg) implies Ricth > 0.

We can even make the map g - t(q) continuous in M - (b,

near p_ . Evidently, t(q) - 0 as q — Py

There is another "natural" tensor *R defined on
(M,go) as follows. Let ej,e, and ‘e; be an ordered ortho-

normal basis for Mb. Ag usual we will write v for Tg R

_ _ _ . o
R for R. , etc. Define * : M- - AE(M ) by setting
| g, , P p

*eq = ejheg

*82 = e3/\el

fey = eqfe,

and extend by linearity tb M?. Define *R by
(*R) (v,w) := R(¥v,*w)
where R : AZ(M ) ® AE(

-+ R 1s defined from and
b MP) efine 8o

R by
Ry, 2Aw) 1= g (R(x,y)z,w).

For instance,

-(*R)(el:eg) = R(egaegaegael) .
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. Lemms 24: (1) *rR = -1/2 g, + Ric

(Ej if Rie = T/é(go - Xb® Xh) where go(X,X) = 1, then
| ¥R = - -r/z.x% Xb

Thus the-variation g(t) = g, t*Rgé for (M,go)

~ Ricei product-like is the variatlon

g(t) = g, - t1/2 P x¥.

If Y and Z are local fields so that {x,Y,2) are g_-
orthonormal, then |

g(t)(X,X) = 1 - tr/2, glt)(¥,Y) = g(t)(2,2) = 1

so thig deformation is only changing the length of the

local orthonormal frame in the zero direction of Ric
O

We write {,> for g  in the following formulas as usual,

Lemma 25: Let g{t) =g, + t T & xX° where X 1s a global

1

XX =0 and £ : M~ R is a C

function. Then for any vector flelds U and V on M, | i

unit vector fleld with D

piv - pv = -—lﬁ—(u(f)<v,x> + V(£ ¥Uu,x3
v U o1+t T) '

- X(f)<U:X><V3X>) X

w5 (U(e T, 0% + V(£) U0 X - <unO<y,R> - grad £)

2.2
I ST

YU, v) + (axP) (v, %) <usx> + (@) (u,x ) v x> ) X
h{1+t £) .

+ Eom)y (0,7) 0 + <o (ax) (v, + L0 (@) (0, ).




Using Lemma 25, it 1s possible to show that

Proposition 26: With everything as above,

rict(x,x) = Soar - B fioxll® 4 £ ex(ar) (x,%)
b (lgraa ol (x(1)?) + T ax?
16(1- L |

Thus thils variation for which

g(t)(X,X) = 1 - tr/2, g(t)(¥,¥) = g(t)(2,2) = 1

- {X,Y,Z} remain orthogonal

1s not as well adapted to the "geometry" of the Riceil

product-llke metric g  as is the variation g(t) = g, + t(—Ricg )
_ o
for which

g(£)(x,%) = 1, g(6)(¥,7) = a(t)(z,2) = 1 - &L

{X,Y,7} remain orthogonal .




Chapter 8: A Converse in 3-dimensions to a Temma of

- Berger
In [4], Berger proved the following:

Temma: Let (Ml’gl) and (Me,ge) be two compact Rlemannian
manifolds. Let (M;g) = (MlXMg,nggg) be the Rlemannian
product manifold. Let g(t) be an deformation with g(0) = g,
Suppose K'(U)-Z 0 for all mixed 2~planes o. Then K' = 0

on ail mixed 2-planes. (See [11] for a definition of

mixed 2-plane).
_ In 3-dimensions we have seen in Chapter 7, part 1, E

that i1f a compact (Ms,go) satisfies Kg. S O,_Ricg > 0, |
' 0 S0

then M admlits a metric of everywhere positive sectional
curvature. We remarked while discussing "rigidity" in
Chapter 7, part 2, that our'proof must fall for topological
reasons_for the product manifold_sl X 82. Here at each
point there is a zero elgenvector for the Ricci tensor and
by Berger‘s lemma, any non-negative deformation at first

order of the product metric must vanish identically on

K_l(o) at first order.
€o

It is then natural given a compact manifold (M3,go)

wlth certain curvature properties of the product metric
N .

on 37 X 82 and such that under all perturbations any non-

negative variation at first order on the zero set vanishes

ldentically on the zero set at filrst order (as in Berger's




Lemma), to ask if (Ms;go) is locally a product.

(Slxsg,nggg) where g1 1s the usual

Let”(M,g) =

metric on Sl and-g2 is &nf metrie for 82 wlth everywhere

positive Gaussian curvature, then Kg z 0, T >0, and

g :
there is a zero 2-plane o C Mp, of the sectional curvature

-£uneti0n=Kg : G,(M) » R, .for each p in M.,

2

Propbsition 1:: Let g, be any metric on Sl X 82 with

Kg Z 0. Then there does not exist any poilnt p in
O .

st x 52 witn

p) where 7 : GQ(M) -+ M is the projection

map of the Grassman bundle of 2-planes in TM.

Proof': If so, then Ric = 0 and Rilc > 0 so
o ®o|p
Sl X 82 admits a metric of positive Riccl curvature by
2
)

Theorem 5.1, which 1s impossible since wy(8xs%) = z.

Q. E. D.

In light of Proposition 1, we consider the set

P':='{(M3,go); M compact;’Kg z 0, Tg > O,'and there

>0 o
exists a zero 2-plane ¢ C,Mp for all p in M}.

(P is for product.)
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Definition: . Let (M3

,go) € P. We say g is a

critical metric fof M iff the following holds: - for all

symmetric 2-tensors h on M, let gh(t) =g, + t h.

Suppose gh(t) = g, + t h satisfies for all ¢ in GQ(M)

that Kg (o) = 0 implies KE(U) z 0, Then we require that
8o

'Kh E 0. on K"l(O).
(That is, every non-negative variation at first order on
the zero set of 8o must vanish identically at first order

on the zero set.)

Then on  we have the following converse (o Berger's
Lemma.:

THEOREM: :Suppose (Mg,go) € ® and g 1is & critical

3

metric for M", Then M is locally isometrically a product.

First we restaﬁe several lemmas from Chapter 7.

Lemua 1: Let x,v,w be go—crthonormal vectors at p.

Then

'(D*D Ric){x,x) :(D%D R){v,x,x,v) + (D*D R)(w,x,x,w)

Lemma 2: Given (M,g,) with K, = o. Let p in M.
: @]

Then either .




(l) Ricgo(v,y) > 0 for 3;1 v £ 0 in Mﬁ,

(2) there exists x # 0 in Mblwith Ricg (x,x) = 0
_ | o |

and

Ric {(v,v) = 0 1ff v € Rx,
g

(3) Ric_ (v,v) = 0 for all v in M_.
g, p

Proof of Theorem: Tet (M,go) € . Given any p 1In M, 1 ’

there exlsts a two-plane ¢ € GE(M)Ip with Kg {g) = 0. % |
o ?

|
Choose a g -orthonormsl basls {x,y)} for o with Ricg (x,y) = O, ﬂ

o

Let g(t) = g, + t(-—Ricg Y. From Chapter 7, this is a non-
o , _

negative varlatlon at first order. Hence,

K' (o) = 1/2(D*DR) (x,¥,7:%) + -Ricg (X,X)Ricg (v,y) = 0.

' (o] O

Hence, Ric_ (x,x)Ric_ (¥,y) = 0. Since 1_ (p) > O by
€0 €0 %o

(x,%) = 0, Rle (v,¥) # 0.

hypothesis, assume, say, that Ricg
) o

Further, by Lemma 2, Rx can be the only zero line for

Ricg in Mp. We have thus shown I1n combination with
o}

Chapter 7 that (M,go) € P implies (M,go) is Ricci product-
like.

Now let X be a local g_-unit fleld with Ricg (X,X) = 0, |
_ o : |

and : - ’ ' |

3 b ooLb
Ricgo = ng/Q(go Xe X )

as in Chapter 7. Then, by Chapter T s
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(D*D Rie)(X,X) = 7 Jpx|Z.
. g5
But now take:local fields Y and Z orthonormal to X.

By Lemma 1,

g Dx[[% = (D*D Ric)(X,X) = (D*D R)(Y,X,X,Y) + (D*DR)(Z,X,X,7%).
o) L

But K(X,Y) = 0 from our analysls of the curvature tensor in

Chapter 7, so

K' (X,Y) = 1/2(D*D R)(X,Y,Y,X) = 0
since'(M,gO) € P. Thus, (D*D R)(X,Y,Y,X) = 0. Similarly,

K(X,Z) = 0 implies that (D*D R)(X,Z,2,X) = O. Hence,

T HDXﬂ2 = 0 locally. But then since T_ > 0, this
8 g,

forces DX = O locally, .and so we are done by the DeRham

Decomposition Theorem.




-Chapter 9: Some Miscellaneous Results.

The Sectional Curvature Formula for Doubly Warped Product

Manifolds

The purpose of this part 1s to sketeh the derivatlon
of the gectional curvature formula for a doubly warped
product manifold
(M}<:>): M = MJ_ X M2

where the metric <,> for M is defined as follows. ILet
g Mi - R >0

ahd '

.

e

MEF'R>O

be'two'smooth functions., Let

py + M~ Mi 1 =1,2

be the projection maps assoclated to the Cartesian product
and let

P: + TM - TM

i L 1= 1,2

be thelr differentials, l.e., Py := Pyx « Tet g = gopy

and f = fep,. Then define the metric on M by

oo (f<>+"‘) 25

In [9] this was studied in the case f(q) = 1 for all g
in M, in the framework of Riemannian submersions.

) € T(p,q)} for

d pPsq

Identify x € TM; with X := (x,0




all q in M, and identify v € T,M, with

G ::‘(op,v) g T(p,q)M for all p in Ml' We use X,Y,

on M, below. .Nofe that [X,T] = 0 for any such vector
flelds coming from different factors of the product mani-
fold M. Define _gfade in ¢®(TM™) by

<grade,n> = n(f) for all g in CM(TM).
Similarly define gfadMlg € Cm(TMi) using the metric <’>l
for Ml' and gradMgf € Cm(TMQ) using the metric <,>2

for Mé. It 1s then immedisate that

, - -
‘{Pl(gradMg)‘w-g gradM g and

(%) f 1
=y 1
Pg(grade) = ;§ gradMaf .

Let v 'be the Levi-Civita connection for (M,<,>) ang pl
be the Levi-Civita connection forp (Mi’<’>i)’ 1=1,2,.
Using the Koszul formula relating the Levli-Civita connec-

tion to its metric (see [22], p. 83, formule 7)s we obtain

Lemma 1:
el L

vP=vx=Y0 g, X&)y ‘
X v £ g
v Y = DlY V&K grad, T
' X F M




1ko,

Of course the symmetry in the metric in My and M, if f

and g are relabelled induces symmetry in X and V in these

‘formulas if we swltch f and g. B8ince by (¥) we see that

grade and gradyg

are not "basic" fields like ¥ and V, we must use (¥) t

o
obtain
Lemma 2:
~ 11 X(g)
V_grad,g = = D grad, g - =L grad,
7 M fE X Ml F M
= 2
_ . _ grad,,f _
V_grade = - X{g) grade + ” _M H X
X g f .

where we will write ,
g2 = <e,2> ror g e c®(m).
Ml - M

Define the Hessian forms hg and hf2 by:

M
for X, € c7(my), put b M(x,¥) = X(va) - (Dhv)(e)
and

w0 My 2
for V,W € ¢ (TMQ), put hg (V,W) := VKWf) ~ - Y(F).

Then

S Ml -

hg (x,5) = (V_gradMg,ﬁ
. X

4

M
and the analogous formula holds for hfg.

We obtain




.

grad. F

R(%,5)7 = L) xlg) 5 _ x(g)
£ g g

y)

Recall that the 1-form df on M iséiven by
{d T)Y(E) = &(F) rfor any vector field £ on M;
(Hence (d F)(X+v) = v(f) for instance.)
Recall that df ® dg 1is defined by
(af ® ag)(e,n) = E(finlg) for vector.fields E,n on M

and

afeag := 1/2(af ® d + a& ® af).
Also, the metric {,>, for T,M; induces an inner product

2 .
on A (Tle) given by

<X1"y1’X2"Y2‘>1 P <X1’X2>1(-V1’y2>1“.<X1’.V2>1<x2’y1>1’ ete.

Given a 2-plane ¢ in GE(M), the Grassman bundle of 2-planes




2,

~in TM, we can choose X,y € Tle and v,w € TqM2 80 that

{i+§5§+ﬁ}

15 a <{,>-orthonormal basls for 0. From the Temmas glven

-above
. Theorem 4

K(o) = (f(q))g(KMl(X3Y) - ”gradﬁfng)-uxﬂyui | n

+<g<p))2(KM2(v,w> - llgraa,@ll®) lvauf2

M2 Mé ' ' M2
- f(Q)(<sz>lhf (W;W)‘2<¥ay>lhf (sz)+<y3j>lhf (v,v)))

! Cosd gy idor o
(X,X)-2 VW th (XJY) ViV, th (Y:y))

: M
- g(p)(<W5W>2hg

4 ' IR (aF 0 ) (74, 547 ) -2 247, 54> (4T aB) (347, 545) ,
£{q)eg(p) | |

o+ IR (aFeag) (R, 5a0)).




A Kazden-Warner type proof of the sectional curvature deforma

tion theorem_for K £ 0 in Dimension 2

Motivated by the work of Kazden and Warner as announced

In [27] we consider the following

Problem: Given (M?,go) compact with Kg < 0 everywhere,
o

Suppose there 1s a point p, in M with Kg (po) < 0. Can
' o

we find a function

so that 1f
2tu

eg(t) = € éo

then X' (q) < O for all points q in Kél (0)?
o

By compactness, the éxisténce of such a func tion
implles that M admits a metric g with Kg < 0 everywhere,

Now
K'(q) = - b, u(g) - 2Ky (q)ufq)
O 8]
If we let

L := - A - 2K _ 148 , 1
| g, 8 |

then L is elliptic, 1 € Ker L (since K, (p,) < 0), and
: O

since Ky = O,L thus has a trivial kernel. Hence if we let Q
. O :

f : M- R

¢

C

be a 'hice" function which ig negative on Ké 0), we can




golve L u = f and thus obtaln the required negative

variation. This shows

ol

Theorem: Given a compact 2-manifold (M,go) with Kg < 0,
——— | , _ o

Suppose there exlsts a point of negative Qauss curvature.
Then by a global conformal varlation, we can produce a

metric g for M with Kg < 0 everywhere.
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An example showlng the non-realizablllity of the local convex

deformation of Chapter 3 as a bendlng of a plece of sur-

face in dimension 2

|

R R,

We use an example of Sacksteder, [32], to show that
3

R,

the standard deformation on a surface M in R which can

produce positilve Gauss curvature does not necessarily

vield a new metric g for M which can be visualized as

being produced by a local bending of the surface.

Let

2)

S :z= x3(l+y for |y| < 1/2.

A computation shows-that the line segment in S wlth x=0

and z=0, has K = O.. Sacksteder remarked in [32] that

the second fundamental form II satisfies

IT < Q for x < 09 . .
{' } which implies K > O

IT > 0 for x >0

for x # 0.

This surface represents a metric on an open disgk D

of radius 1/8 centered about the origin 1n R?,’anﬁ hence

1g an open manifold (D,go) with Kg = 0 on
o

L = {(x,y) € D; =0} and Kg >0in D - L. Let
. [ I

L, := {{x,¥y) € Ly -1/1000 < y. < 1/1000}.

Sultably choosing a convex disk Dy perform the standard




deformation of Chapter 5 to get a new metric giqu_n

with K, > 0 in (D-L) U L.

Recalling the geometric meaning of positive'cufvaa;“'ﬁ

ture for a piece of surface 1n RB, it 1s clear with a

little thought that this metric deformation cannot be
realized by physically bending the surface

Sz = X3(1+y2)

which represents (D,go) in the reglon corresponding to

D, bnly. This is because the bending in,Dd necessary

to curve,Lo to make'the_curvature positive on Do would

rip S open since II < 0 for x <O and IT > ¢ for x > O.
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