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Abstract

We consider a real algebralc manifold U to be a compact.
connected complex manifold, together with a projective -
embedding invariant by complex éonjugation, The map in-
duced_on U 1s an anti-holomorphiec involution 0, and
the real points U+_aré the intersection with real pro-
Jjective space. Conversely, if we sgtart wifh an algebraic
u, and such a map ¢ with fixed points U*, we can find an
embedding realizing o and U+ via.complex conjugation.

From o, we induce "Gomplex conjugations" on

1) thé field of ﬁeromorphic functions M{U)

2)  the cohomology over € (with its Hodge de-

| ‘composition) '

3) Jacobians,
and when U 18 a quotlent T\X bf a symmetric domain by a
discontlnuous group, on | |

Iy the algebra of holomorphic automorphic forms.
These induced conjugations can all be described by
"y - T¥e". If also U (o) # @, we can 11ft ¢ to an anti-
' hoLdmOrphié Involution (called complex conjugation, and
thought of as a real form") of | | |

5) the universal cover X.
In fact, we can find a different lift for each compénent

of U+, so that the various fixed spaces X+ give the local
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jisometry types of the-vérious components. The exlstence
of conjugations in 1) or 4) implies the existence of a

o : U~ U, With an additional assumption, we conjecture
the same is true of 3). If a conjugation in 5) normal-

1zes T, it induces a conjugatlon of U.

We classify complex conjugétions in all symmetfic
domains ¥. We obtain all conjugatlons (up to conjugacy :
by holomorphic.automorphisms) from.certain'elementary
conjugations in the i1rreducible factors. We determine
_these eiementary oneg for non—exéeptional irreducible X,
and their assoclated fiied spaces X+. _ For |

¥ = %o(p,2) thelr number 1s Q%L {resp. Q%E) for p odd

(resp. even); otherwlse the number ranges among 1, 2

and 3 depending oh type and dimension. The X+ are
described as "standard" typés, ekcepﬁ for two of them
which are assoclated to concrete Lie algebras whose types

are not yet determined. The known.X+ are elther simple

( 8o(p,q), 8o(n,e), or 8p(p/2,9/2)), semi~simple with

two factors ( 8o(k,1)x So(p-k,1)), or reductlve with R

ag flat part (Rl X Sih(B) or Bl x 8%p(¢)).
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Preface

A compact quotient space U = I'\X of a symmetric
domain X = G/K wlth respect to a discrete subgroup I' < &
is a projective algebraic variety.‘ Often the polariza-
tlon of U is unlique. One has been-able to employ the
tools of algebraic geometry in the study of the arithmetile
of those T which are "arithmetically" defined; in fact,
these arithmetic studies have been so successful precisely
because of this approach. (Examples of such I' are dls-
continuous groups associéted té quarternicn algebrés, and
to alternating hermiﬁian forms;) | |

In contrast to- the above situation, when a diécontin—
uous group I'! is defined arithmetically In a Lle group Gt
7 whose symmetrié space X' = G'/K' has no invariant complex
structure, the arithmetic study of Ti looks quiﬁe difficﬁlt.
The typical exampie here hag been a disconﬁinuous subgroup |
of the orthogonal group of a.féal'quadratic form. |
| With the hope of narrowlng thils gap, I have started
the investligation of the locally symmetric spéce Ut = T'\NKr
ag a real projective algébraic variety. Of course, U7
might have infinitely many embeddlngs in real ﬁrojective

space, for example by means of spherical functions. How-

ever, I do not discuss this possibility, since there are




"too many" spherical functions. {One could defihe re -
automorphic forms on ¥' as certain "invariant® spherical
functions, but it appears that there would be too many

of these.) Instead. I will explore the pdssibility of
realizing U' as (one of the components.of) a real section

U N PY(R) of a locally symmetric domain U, projectively

embedded "over R". (Thé notion of I''-automorphic form

on X' should then probably involve directly the "complexi-
fications" X and T of X' and I''.)

In order to cdassify the abbve U', I want to investl-

gate the tOpology;geométry of the R-polints of certain complex
Vprojective'varieﬁies.. If U is a_smooth compact guotilent '
I'\X of a symmetric domain, then U is automatically algebraic
(Kodaira, [9]1). Sométimes U is a real algebralc variety,

that is definable over R, and one should be able to make a

1ist of the X and I' which give é real quotient. A submani-

fold U" of U is the locus of R-points (= U N PN(B) for

some embedding U‘*_PN(G)) if and only'if 7" is the fixed-
point-set of an anti—holomorphié involution of U. We call

such an involution a "complex conjugation”. The restrictlve

lifted to a complex conJugation on the symmetric domain

(universal cover) X.

condition U # @ allows the complex conjugation of U to be :
In this paper I classify complex conjugations, and thelr
|

flxed spaces X+, in all symmetriec domains.which as hermitian

symmetric spaces contain no "exceptional' factor. One
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should think.of thege conjugations as "real forﬁs" of X.
X is always the homogeneous symmetric ‘space of a reduc-
tive group. Each component of U is a quotient rh \X

some X by an ”invariant“ subgroup ¥ «r, (ef. [10]).

The real form X+.should_vary as arRiemannian space with
the component of ut. The list of all X+ gives a clagsifi-
cation of possible local-isometry types of components U’
of the B—pointe U+ of real algebraic-varieties U = I\ZX.

‘A typlcal example of such real forms is the embedded
symme tric space T of the group g0(Q) of an indefinite
quadratic form in the hermitian symmetric space,X of the
group SU(Q) of the same form. Here the complex conjuga-
tion of X fixing X+ is actually induced by complex conjuga-

tion of the matrices in su(qQ). (The other cases are not

quite so nice.) This example will be important in the

study of the number theory of Quadratic forms and related

hermitian forms obtained by quadratic imaginary extenslons

of a bage field. Our other real forms should define, and

aid in studying analogous number theoretilec situations.

The study of dilscontinuous groups which act_on hermitian
symmetric spaces should extend (restrict) to the number
theoretic study of discontlnuous groups acting on real

forms of hermitian symmetric spaces. The llst of X" appears
to show that some symmetrlc spacesY cannot be real forms of “

any hermitlan symre tric spaeerx. For the discontinuous
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groups which act naturally on subh Y, the numbér theory
ghould be muéh more difficult. I would like to return
to all thesé-considerations in a later papér. In fact,
in this papergrlnstudy in detaillonly the problem on the
level of the symmetric space ZX. T view the application
to the quotieﬁt_U - T\X as only a (very difficult) corollary.
(cf. §1.6). |
My case—bywcase study for the "eclassical ymmetric
domains ¥ uses essentlally the fact that the Lle groups
involved have standard representations as matrix groups.
The classification of the real forms can then be_carried
out, using essentlally only linear algebra. There might
exist a more Lle group-theoretical éolution which would
extend to the spaces of exceptional type; this ié clearly
desirable. For the applications to the quofient I'\X,; one
will want to regard the isometry group of X as the auto-
morphism group.of an "algebrs with involution”, in the
sense of Weil [16]. - This will ailow a.systeMaﬁic dis-
cugsion of the group I'. Work on this project has Dbegun.
The lmportance of the study of the manifold U' should
lie not only in 1ts possible application to number theory.
The algebrao-geometrilc investigation of U’ éhould'itself
be quite interesting. In the begihning of algebraié geo-
metry, Newton and Descartes studieq real_planar curves,

and in those days 1t was not even acceptable to sPéak of
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- the complex points (called geometric today) of the corves.'
[Even then, 1f a curve was defined over @, 1t wes felt
that only the rational polnts truly “belonged” to the
curve. | Although Hilbert and Petrowski [19] later paid

- gome attentlon to real algebraic varieties, the field
has not until quite recently come close to being central
in modern mathematics. The varietles U obtained by our .
elasgification will supply concrete and computable examples
in real algebraic geometry, which hag recently attracted
the attentioo of some geometers (Thom, Atiyah, Malgrange,
Hironaka)

Specifically, what Hilbert proposed in his Parils
lectures of 1900 (Question 16) was a study of real algebraic
hypersurfaces ~ number of connected components, and their

| spacial relationship in the ambilent projective spece.
-'Although our man ifolds ol supply examples of hls problem

ohly when U 1s a curve ([23], [247) it still makes sense to

ask for the number of components of U%, and how thls number
relates to the way U 1is defined as an algebraic variety.
For the special cases of U = T\X which arise from quaternion
algebras, and for famlllies of abelian varieties over such'U,

| Stephen Kudla and Allan Adler have computed the number of
complex conJugations of U, and number of components corres-

ponding to each, and the various lifts of these to a fibred

variety V_over U, and the fixed subvariety of V for each lif¢t.
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Formulas for all these.in terms of the arithmetic propertles
of the quaternion algebra.come out of number theoretical
investlgations of quaternion algebras, énd appear Iin thelr
diésertations [20]; [elj.

Detailed explanatlons, definitions, and the program
of my paper are glven In the Introductilon.

Finally, I must give thanks to those who madé my paper
possible. I thank the professors and students of Haverford
College and SﬁNY at Stony Brook, for influenclng my mathe-
matical perspective and insight. out of that cblledtion,

I must single out a fellow graduate student, Allan Adler,
and above all else, my thesls advisor, Professor Michio Kuga,
whoge falth iIn me has never'waned. Specifically, it was
John Millson who first came to Professor Kuga with the
observation that the symmetric spéce of the Lorentz group
80(3,1) was a real form of the Syﬁmetric gpace of SU(3,1).

i had helpful conversations with Pfofessofs Helgagon and

B. Kostant of M..I; T, and 1t was a ietter of A. Borel
which sent me to the correct place in Cartan, and which-
made the explicit computations eventually possible. Alsé,
thanks are due to Professor Henry'Laufer of Stony Brook

for reading my fhesis and belng on my‘examination committee.

Finally, I want to thank Mrs. Virginia LaTLumia for typing

the manuséript.
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Introduction

In part I, we study a complex manifold U which has
the structure of a projective algebralc variety, definable
over R. Thisg 1s equlvalent wilth suppeosing that U has an

anti-holomorphic 1nvolution o. We call such an involu~

tion a complex conJugation. Generally speaking,'éuch a
map induces complex cbnjugations, suitably definéd, on
structures associated to U. These conjJugations are 1in-
volutive endomorphisms of the underlying structure "over o
R" of a given structure "over ¢", and the involutions are
required to take the structure "over ¢" into its conjugate
structure. We study 1nduced complex conjugations on |
1) the fileld of rational (meromorphic) functions
m(u)

2)  the cohomology ring over C, with its Hodge de~
cbmposition '

3) Jacobian varieties
'and, when U is a quotlent of a symmetric domain by a dis-
cont inucus group,

4)  the algebra of automorphilc forms, and

5)  the universal cover X.
In fact, starting with complex conjugations on 1) or 4),

we can 1nduce a complex conjugation on U. We conjecture

that, under suitable agsumptions, the same 1s true of 3).




2.

Finally, we give the condition which added to 5) is equi- ' é
valent with the existence of a complek conjugation on U.
Tt is the classificatlon of complex conjugatlons in symme-

tric domains whilch is the concern of the rest of the

paper . We think of these as "real forms", and for each
we determine the "real points", as a Rlemannian symmetric
space, When the conjugation arises from some map ¢ On
gome quotient U, this space of fixed points is locally

ispmetric to one of the components of U+, the real polnts

of U with respect to 0.

In part II, we comns truct for each irreducible hermitilan
symmetric space (not compact, not flat, and not exceptional),
a standard complex conjugation. We do this via the Lie
algebra § of the isometry group of the symmetrlc space X;I
this is a standard technique, after-E.r Cartan. Also, by
Cartén, the fixed polnts X+ can be determined as a Riemannian
space from the corresponding sub-Lle algebra, Q+.

1) so(p,1) #G¢" c So(p,2)

2) Rx 8t (R) ~ § < 8p (R) 1

3) so(n,c) = gt « so*(en) | }

1) So(p,a) ¥ G < 8u(p,a).
We note that all Q+ are simple, except for 2), which is ‘
reductive. |

In part IIT, we define an equlvalence relation on :

complex conjugatlons,. and for the spaces of part I, we



determine the set of equivalence classes. Denote by

C the get of all conjugations of a symmetric domaln X,

and G(xo) the subset fixing a base point x . If "

the ldentity component) and g

the isotropy group at X9
thenGh acts by conjugation on C, t{nducing an actlon of
k™ on C(xo). We call a set of representatives for C/Gh
a get of elementary complex conjugations of the spﬁce X.
We prove this 1s biljectlve to C(xo)/Kh, which is actually
what we compute. Let Gal = [l,oo} be the group generated
- by our standard 9y from part I for ilrreducible %, and for
reducible. ¥, the appropriate product of standard conjuga-

tions. @Gal acts by conjugatlon on Gh and Kh. We identify

the sets C and C(xo) with the l-cocycles Zl(Gal,Gh) and

!
denoteg the group of holomorphic automorphlsms (293 Just .
J
i
Zl(Gal,Kh); the quotients ildentify C/Gh<———> Hl(Gal,Gh) |
and €(x,)/K" <—> 7+ (gal,k"). We show that the map ‘
1 Hl(Gal,Kh) - Hl(Gal,Gh) defined by the Inclusion |

Kh c Gh 1s a bijection. In point of fact; the surjecti-

| i

vity is trivial and the injectivity eventually follows §
|

|

|

from the computation of Hl(Gal,Kh), but we glve anyhow an

they turn out to have non-isometric real sections XE and

X; , and this prevents 0q and Oy from being_Gh—equivalent.)

a priori proof. (1f 07595 € C(xo) are not Kb—equivalent, _
At the end of part III, we list a set of elementary conju-

gations for irreducible %, and we give the corresponding



4.

fixed-point-sets X* by the Lie algebrasof thelr lsometry
g rougs,

In part IV, we compare our regsults agalnst known
isomorphisms between the types 1) — 4) of part IT in low
dimensions. We check the computed cardinallties of
G/Gh, and also matech up the corresponding complex con-
Jugations by thelr K+.

In part V, we show how to obtain G/Gh for reducible
symmetric domains (exceptional ones included) in terms
of that for the irreducible factors. We have shown that

the cardinality 1s finilte, at least when there is no

exceptional factor.




Part T.

1.0.

Generalized Complex Con]Jugatilons

Let V be a complex vector space, and 0 :

VoV

an anti-complex linear (conjugate linear) involution of

V. Denote by J the endomorphism of V wlth square -1 gilven

by multiplication by the complex number 1.

We have

geJ = =Je0. As a real vector space, V decomposes into

V+ ® vV, the +1 and -1 eigenspaces of g.

Jv € V since o(Jv) =

v € V implies Jv € V+, so that J defines an isomorphism

(over R)

—va = —JV.

vie v, If aim,V

If v € V", then

Conversely,

n < o, then dimRV+ = dimBY

Moreover, V 1s naturally (via J) the complexification

V+ ®R ¢, obtained by extendling the scalars from R to €.

We can look at our involution o elther as (+1) & (-1)

in the decompogition vt e vV, or as (+1) ® (complex conju-

gation) on V" e .

R-cubspace of V, say W, such that the complex structure J

Now conversely, 1f we are given an

gives lsomorphisms V=W & J(W) =W ®: €, then we can

define a conjugate linear involution ¢ by (+1) & (-1)

or (+1) ® (complex conjugation). We have Just seen that

evéry ¢ arlses in thils way.

In case V is an algebra over ¢ (for example a fleld)

in which the gcalars € are an embedded sub~fleld, and ¢

is a conjugate linear algebra-involution preserving the

subfleld €, then we can say more. The subspace V+ fixed

n-




6.

.

by ¢ is a,sub-R—algebra {containing the scalars R as a
subfield), V = v ® v~ (as subspaces), and V 1s again
the complexification V+ ®B ¢, ag R-algebras.

The involution ¢ ig complex conJugation on the sub-

field €, and is (+1) ® (complex conjugation) on v e ¢,

this time as algebra morphisms (over R).

Definltions

(1.0.1) We call such an involution a complex conjugation

of V, elther of V as a C-vector space, or as a C-algebra

if the conditions of the second paragraph are satlsfled.

(1.0.2) Let V be a complex vector bundle over a space U,
and or : V ~+ V an involution which anti-commutes with the

complex structure J., That is, if ¢ : U~ U 1s the involu-
tion induced by o', then we have c'oJu = —Jc(u)vc' for

each u € U. We call such a g' a complex conjugation of

Vv, and such a ¢ a complex conjugatlon of the space U.
(See Atlyah, [1]).
(1.0.3) Tet U be a complex manifold, and ¢ : U~ U a

differentiable involutlon whose differentlal o, 1s a

complex conjugatlon of the (complex) tangent bundle of U.

Then we call ¢ a complex conjugation of (the complex mani-

fold) U. If, moreover, U happens to be a complex torus,

then we say ¢ 1ls a complex conjugatlon {in the sense of

complex torli) if it is also a group homomorphlsm. Denote




by U or Fix(o) (or U+(U) 1f need be) the real sub- .
manlfold of fixed points of o. ‘

1.1 ILet U be a connected'compact conmplex manifold, and
¢ : U-= U a complex conjugation. Denote by M(U) the field
of meromorphle functions on U. The scalars for this ¢-
algebra are of course the subfileld ¢ of constant functlons.
The mappihg m(uy) 3 £~ foo0 = £° 18 a complex conjugation
of the algebra M(U), in the sense of (1.0). 1In case U

1s d projJective algebraic variety (that 1s, Urcan be
embedded holomorphically In some projective space PN(G)),
then a complex conjugation of M(U) insures that U has
some model "defined ofer R". This means that complex
conjugation in some PN'(G) preserves the submanifold
Mo

U, and in fact some embedding exists with UT = U N PV (R),

l.e. , we have a commutative diagram:

u -2 PV (q)

o] ¢ = complex conjugation
h'Y v

U~ PV (¢)

We state this well-~known fact for completeness:

Proposition (1.1.0)
| For U a projective variety (smooth), the following
are equlvalent:

1) U has a complex conjugation o, with fixed

points U+.




2) (U) has a complex conjugation.
3) U has some model defined over R, with real
points U+.

Proof: We give a proof later for the equivalence of

1) and 3) for a special case of U, the only case in which

we will be Interested. See also Well's article [15].

1.2, The conjugation ¢ : U = U induces an lnvolution
(R-linear) of the cohomology ring H*(U,R) for any ring R.
First let R = ¢ and suppose U 1s compact Kdhler. The ' |
¢-vector spaces HY(U,¢) decompose (Hodge) as

® Ha’b(U), where the Ha’b(U) are the spaces of complex
i:?;gnic forms of type (a,b). We study the indwc ed map o

on cohomology by composing it wlth complex conjugation (of

a form). Let x € HP(U,t) be represented by 5 wa’b,
: atb=p
and define x° to be the class of the form
r———— ettt s ! \
b oxp®sP U*Zwa’b . The map x - x° thus defined on

H*(U,¢) 1s the complex conjugate of o*, Since the pull-
‘back 0% commutes with complex conjugation {of a form), the
map x - x° is a complex conjugation of H*(U,¢) (as an
algebra over @, in the sense of (1.0)). Each of the ¢-

a’b(U) 1s preserved, and recelves a complex

a,b(

vector spaces H

conjugation. The elements of H U) fixed by the con-

jugatlion are forms w, with o*w = & € Hb’a(

o*(w) = w, and Ha’b(U)+ spans Ha’b(U) over ¢, we see that

0% preserves the sum Ha’b(U) ® Hb’a(U) {1f a # b) and

U). Since |
g
I




has a matrix representation

g %). Therefore, on 3 Ha’b(U) ® Hp’a(U),

a>h

g% = (

the map ¢* has a simllar matrlx representation. We have
the

Proposition (1.2.0) Let U be a compact (connected)

Kénler manifold of complex dimension n, and ¢ : U~ U
s complex conjugation. The map 0* on % (U,&) preserves
n
the subspaceg € Hi’i(U) and & Ha’b(U) @ Hb’a(U),
1=

0 O0<z+b<2n
a”b

and has zero trace on the second subspace.

1.2.1. Suppose now that U 1ls a Hodge manifold, so that
py {1.1.0) we may assume we have a holomorphic projective

embeddling ®, and a commutat lve diagram

U —> P

o) c

U —ng—-> P

Denote by 1 € Hl’l(PN(G)) the (1,1) form assoclated to the

l’l(U) the restric-

etandard Kdhler metric, and w = @*n € H

tion of 1 to U (equal to the (1,1) form assoclated to the

inducéd metric én U). We want to show that o*w = -W.
First let J : PH(¢) ~ PY(¢) be incluslon, so that

jec = ceJ 1f ¢ = complex conjugatlon. Since



10.

¢ o Pl(w) H‘Pl(w) 1z orientation reversing, and
dimGHl’l(PN(w)) = 1, we have c*(J*n) = - J*n and
N

therefore, c*n = -N. (Consequently, c : PN(G) - P ()

1g orientation reversing if and only if N is odd. )

Proposition.(1.2.2) O*w = -w,

oxw = a*(e*n) = o*(cxm) = px(-n) = -o*(n) = -u.

Hi’i(U) 5 Pi i(

Proof.

Denote by t, the trace trg(d* U)).
i _ €

We have to - +1 sutomatically, and the proposltlon says

tn = (--l)n since w" generates Hn’n(U). We generalize

thege facts in the

proposition (1.2.3). t; = (-1)% t 3, (1 # n/2)

Denote by T : H*{U,¢) = H¥(U,¢) the Lefschetz

Proof.
Tt is known (Well [17]1, p. 75)

operator & = L{§) = un&.
that 221, Hi’i(U) - Hn"i’n—i(U) 1s an isomorphism.

aince O%w = ~w, we have that o* and L anti-commute as

endomorphisms of the C-vector space H*(U,¢ ). Therefore,

.G*uLn-Ei _ (_i)n-EiLn—Eio g¥ = (_l)nLn-Eio g*, The trace

statement Ffollows immediately.

Remark (1.2.4), For k such that 1 < n-i-k < n-i, the map
i’i( n'-i_k’n"i—k(.U) The trace

U) -

R21-K 44 4njective H
n-21-k 10 Hn—i—k,n—iwk(U) ig

of o¥ on the image of L

( 1)n kt 12 50 that in some cases we may not have to compute

all t; for j £ n/2; some of these may come automatically
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from "smaller" ty.

Proposition (1.2.5) The Lefschetz number

n .
L(o) = = t, 1s equal to the euler number E(UT) of the

fixed-point~get of ¢. Specifically, 1f n is

odd: L{o) = 0.
n/2-1
even: L{o) = 2( io ti) + tn/? .
Procf. It may happen that gt = g3 E(g) = 0. For odd n,
n/2-1
we have L(¢) = iEO ty +t,4 =2 % -t = 0. Incase

Ut = @, the proposition follows. If u € U+, then by
looking at the differential o, at u € U, the discussion
of (1.0) gives that dimRU+ = dimU which is odd. The
euler number of the odd-dimensional manifold U™ 1is zero.
For even n, ¢ 1s orientation preserving and an lgometry
(restriction of the isometry ¢ : PN(®) - PN(w)), and the
Lefschetz fixed-point formula gives L(v) = E(U+). (Kuga,

[9]). The formula for L(o) results from (1.2.3).

1.3. The map o* on H*{U,f) restricts to the subrings
u*(U,R) and H*(U,Z). For x € H*(U,R), 0*x = 0*t, so that
the restriction of our conjugation x - x° to H*(U,R) 1is
o*., Tor p odd, consider (followlng Weil, [17]) the
guotients gp(U) = H’(u,r)/H°(U,2Z). These are tori, and
o* induces lnvolutions o, onlyp(U), in the sense of

real Tie groups. Moreover, since p is odd, the operator



¢ of Weil [17] p. 82) defines a complex structure on

the R-vector spaces #{U,R), and thus the gp(u) are complex
torl (in fact, abelilan varieties).' Sinece o*w has type
(b,a) whenever w has type (a,b), o¥* : # (U,R) - B (U,R)
'anti-commutes with the complex structure C, and 1ls thus

a complex conjugation, in the sense of (1.0). The in-

duced map o

D is thus a complex conjugation of the complex

torus gp(U).
. P o :
The system {c; : ¥ (U,R) = H (U,B)}Odd D is compatible,

in the sgense that o¥

p+2°L = (—l)Loog . (1.3.0.)

Conjecture (1.3.1) TLet U be a compact Kdhler manifold,

and suppose that (all of) its Jacoblans Ep(U) admlt com-

plex conJugations cp, which are compatible 1n the sense
of (1.3.0). Then U itself has a complex conjugation o

such that 0; on Hp(U,R) induces op for odd p.

Remark. (1.3.2) The Jacoblans given in the form

a”b
at+b=p

g,(0)1 = E(UPNT (0,0) /5P (U,2), where H)(U) = @ 5P ()

can also be glven complex conjugations. (Note that

———

yp(U) # QP(U)'). Our map x = x° = O¥x on B (u,t) pre-

serves H(U,2) since 0¥ ltself .preserves 1 (U, 7Z)

and the bar has no effect. If x € Ha’b(U),'o*x € Ha’b(U),

so that the space HE ig preserved. Thus QP(U)‘ has a

complex conjugation, Qb. The maps x - x° on HY(U,¢) are
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compatible (1.3.0), and we can make the obvious conject-
ture (1.3.1)' about the gp(U)‘. The following would be

a corollary of elther {1.3.1) or {1.3.1)'.

Conjecture {1.3.1}* Tet o be a complex conjugation of the

algebra H*{(U,T), preserving the Hodge decomposition, and
preserving the sub-rings H*{(U,Z) and H*{U,R), and equi~-
valently anti-commuting with the operator I or sending

to 1tg negative the class of the (1,1) form assoclated to

the Kihler metric. Then & = 0* for some complex conju~-

gation o of U.

1.3.3 The conjugation o : U - U induces a conjugation

on the Picard varilety of U, [6]. If & is a holomorphic

line bundle on U with zero Chern class, then o*% ig also

holomorphic, with zero Chern class. § - £ = 0% i3 a

complex conjugation, in the sense of complex tori.

1.3.4 Tet U = E be an elliptic curve and o a complex

conjugation. Since we can identify E andrgl(E), B has
another conjugation, which 1s a homomorphism (as a real
Tie group). With this information it is not hard to show
that E = €¢/(Z+Z7) with T elther .

1)  purely imaglnary and |7] = 1.

2) T=e'l, w328 7/2 |
or 3) Re(T)=1/2 and T'Tabové{the unlt circle.

Conversely, each B wlth such a T has a complex conjugation.
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Geometrically, the elliptic curves-defined over R are

thus precisely the points of (upper h&lf-plane)/SLe(Z)
invariant by the involution induéed from z = -z 1in the
upper half-plane. One would like to know how much of this

18 true for higher-dimensional abellan varletles.

g:fi Now suppose U 1s a smooth guotient (and compact)
7+ ¢ X~ U of a bounded symmetrlc domain by a group T of
holomorphié automorphlsme acting freely and properly dis-
continuously. Then 7 1ls the universal covering of U and
T ig the fundamental group. Denote by K the cénonical
line bundle of U, and k¥ the tensor power K ®§?2®K for
=1, and K° = U x ¢, the trivial line bundle. TLet
Ar(U) = u°(U,kY) be the C-vector space of holomorphic
gectlons of the line bundle Kr, r 2 0. Then

A(U) = & Ar(U) is the ¢-algebra (1.0) of holomorphic
automor;;gc forms on U [8]. The algebra A(U) can be
t1dentiflied with the classically defined algebra

Al(x,T) = & AT(X,F) (87, [13], [14]) of "automorphic
=0

forms on ¥ with respect to I'". For that, let w & Ar(U),
go that 7*w 1s a holomorphic section. of the rth power of
the canonical bundle of X. Sance we have global coor-

dinates TogsesesZy in X < @n, the form 7*w 1s expressable-

- as f(dzlA...Adzn)r with some (global) holomorphic function

f + X~ @¢. Since
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¥ Yo %

'IT\I l/'ﬂ'

U

commutes for all vy € T, 7*w ig I-invariant, or equlvalently

flyx) = £(x) + J (x}™Y for all x € X, where JY(X) 15 the

v
complex Jacobian (determinant) at x € X. This is the
classical definltlon for an.automorphic form f of welght
r, with respect to ', 1.e., T € Ar(X,T). The mapplng
w — £ 1s the desired isomorphilsm.

We wish to show how A(U) and A(X,I') can be given-
complex conjugations, assumlng U has one,. Thus, 1f
6 : U~ U is the conjugation and w € A_(U), then
o*w € Ar(U) also for any r. The mapping A(U) > w = o*w = w’
1s the complex conjugation (in the sense of algebra over
¢, as in 1.0). Now the isomorphism A(U) = A(X,T) of course
gives a complex conjugation in A(X,I') automatically. We
examine this one explicltly.

The composition X T >yfsevy 1lifts over ¥ ¢+ X —» U.

since 7 is the universal cover, i.e., we get a commutative

diagram
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The map 50 fhot unique) is automatically anti-holomorphic
since 7 is a local holomorphic lsomorphlism, however 1t
need not be an involution, and cannot be unless U # @.

(The anti-holomorphic involution 30 would have a fixed

point, as we will show later, implying that 0 must have

had one.) Since 502 covers the ldentity on U, we have

G < = Y, € T, and therefore, 30 is a diffeomorphism.
Suppose 31 was another 1ift; then Eglo 51 covers the

“1dentity, thus 1s some Yq €.

Now let £ € A (Z,T), and denote n = £(dzyA...Adz )"

1
the corresponding secthon of the rth power of the canonlcal

bundle. Eo*n is also a holomorphic section of that
pundle, and therefore equals fo(dzlA...Adzn)r for some
f© ¢+ X~ C. Since 302 €I and n is I'~invariant, the
mapping £ — % 18 an involution, say Tps obviously con-
Jugate linear, of Ar(X,T). The sum ? o, A(x,T) - aA(x,T)
is a complex conjugation, in the sense of algebra over ¢,
(1.0). We need to know that |

1) @ 0, 1g independent of the cholce of 1ift 50

2} & o, is the'conjugation induced on A(X,I') from
the tsomorphism A(U) - A(X,I') given above. The first
statemeht follows becausge two 1lifts differ by an element
of I'y and the second statement follows because, for any
)= rrw,

1ift, say EO, we have Goy = WOEO : if n = £(dz co Az

lf\

then T *n = go*w*w = r¥o*w = ¥ (o*w).
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It is no trivial matter to construct a complex conjugation

in A(X,T); in fact, we have the

Proposition (1.4.0). TFor U = I™\X, the following are

equivalent:

1) U has a complex conjugation, with fixed points vt
2}  A(X,T) has a complex conJugation.
3) U has a model as a projective varlety, which is

defined over R with real points U+.

Proof': let 0 : U~ T bé a conjugation; we have seen how
1) = 2). It is a theorem of Kodaira ([9], p. 41) that the
cancnical bundle K of U 1s ample, in other words, for some
m € N, any basis [@o,...,mN} of Am(xgr) glves & holomor-
phic embedding o : U - PN(G): for u € U, let x € X be
guch that 7(x) = u. Define p(u) to be the class of
(¢O(x),...,mN(x)) in Pw(ﬁ). Now, by (1.0); we can find a

basis of Am(X,P) invariant by o , so we may assume
' 1 1
0 N

[mg,.",wN] has that property. Let F = X aios---giNKO’...’XN

be a homogeneoug polynomlal vanishlng on the image of
i i

@: we have an identity 3 8y 1 © O...¢ N 0. Applying
. O’l.l, No N

the conjugate llnear algebra morphlsm ®0r, and using

1 iN

o,...,iNCPO '...CPN

Then applylng complex conJugation in PN(G), we see that T

o, (®y) = @, for all 1, we get 8y = 0.

vanishes also on the conjugate of o(U), in other words,

the map ¢ : mem) - PN(¢) preserves the image ©(U),

inducing a complex conjugation on U.
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To get 1) = 3) we have to show that the following

commutes:

v 2> oV (g)

lc le.
v 2 p(g)

We need that for all i, @ e 0(x) differs from ¢i(x) by

|
the same complex valued function. Calculate the pull-~

o~ m ~ ~ m_ il
back chpi(dzl/\.../\dzn) = (g0 0,) (0 _*dzA..Adz ) —Cpi(dzl/\.../\dzn) >

by the invarilance. Also, Eédzlﬁ...Adzn i1s a holomorphilc

n-form g(x)dzlA...Adzn, with g : X = ¢ holomorphic. Thus,

conjugating both sides, we get (mfngo)g(x)}dzIA...Adzn)m

9y (dz)Ao.Adz )7,  which 1s what we needed: Py = (wi°30) © g

Finally, 3) = 1) because the map c induces on U
a complex conjugation. The fixed points are clearly

Un PYR) = the real points U'.

1.5. We have seen how a complex conjugation o of

U = I\X gives rise to anti~-holomorphic automorphisms (1lifts
3) of X.

Proposition {1.5.0). A conjugation o : U - U 1lifts to a

complex conjugatlon of X if and only if ¢ has a fixed

polnt. Moreover, for each u, € U+( = Fix (o))}, and any

€ X lying above it (w(x_ ) = u ), we can find a

‘glven x
g 0 o) o}

conJugation of X fixing Xoe.
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Proof': First suppose some 1ift T is an involution.
Then {1,5} is a compact group o Lsometries (of the
Bergmann metric) as we shall show shortly, so [1,3] has
a common fixed point. [Actually, we can givé an easier
argument: Plck any x € X. Then there is a unique geo-
desic segment from x to G(x), and this must be preserved
by the lsometry T. The mid-point of the segment will be
).

Now, conversely, Buppose o0 fixes some ug . Lift

X

il

fixed.] Now 1if E(XO) then U('fr(xo)) = 7(x

o? o)

0 to some 3, and pick X, 1lying above u,- T must permute
the fibre w—l(uo), and I' acts transitively (and simply)

on ths fibre. Therefore, we have a y € I', with

3(xo)'= Y%, .  Now Y_% ¢ 1s an anti-holomorphic 1ift of

o (since 1t covers ide g = 0). Clearly y“lo E(xo) = X

)2 = 1. But (vI3)2

O’

50 we need only show (Y'laa' is a

deck transformatlion (i1t covers l°0elsg = 1), and has X,

as a fixed point. This implies (Y“l*"c‘r')2 = 1.

Remark (1.5.1) Recalling (1.4.0) we see that the pair
(U,0) gives rise to an algebraic varlety, defined over
R, which has real points (U" # @) if and only 1if o lifts

to a complex conJugation of its universal cover.

Theorem (1.5,2) (Structure Theorem on (X,5))

Let G : X - ¥ be a complex conjugation of the comp -

lex manifold ¥ (1.0.3). Then
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1) T is an isometry of the Bergmann metric.
2)  The set of fixed points X (3) is a connected
totally geodesic sub-Riemannian symmetric spaces

. + s
dlmRX = dlmCX. |
3) %" is "holomorphically dense" in the sense that

a holomorphic or anti-holomorphic automorphisn of X 1is

]
hYa

determined by its restriction to X .

Proof: 1} From [7], for example, it follows that the
Bergmann metric 1s the invariant metric defined by a
Killing form (see the discussion in 2.0, p. 24). There-
fore, not only is the Bergmann metric invariant under
holomorphic automorphisms of X, but 1t is also invariant
under automorphisms induced by_automorphisms of the
group of holomorphic automorphisms. The function

f -G f 0 defines an automorphism of the group of holo-

morphic automorphisms, and this automorphism induces

9 on X. Therefore, we have the statement of 1).

2)  Let x_ € X" (5), and v a tangent vector to xt

at Xqs and ¢ the unique geodesic emanating from X, with

- ~ - | ) ~ )
v. Since T is an isometry, and o,(v) = v, we have
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Foc = ¢ globally. Therefore, ¢ © X, i.e., 3T 1s totally’

geodeslc. Let Exp+x be the restriction of the full ex-
9] ’ .

ponentlal map of X at Xq to the tangent space to X+; then

Exp+X (X+X ) © X+. Now let x € X+ be arbitrary, and con-
o o .
slder the unique geodeslc segment from X, to X.

Since

this geodesic 1s contained 1n X&, its tangent vector at

X 18 fixed. This shows x 18 in the image of Exp+x s S0

X+ is connectedz X+ is a globally sub-Rlemannian sgmmetric
space because 0 1s an isometry. For the dimension state-
ment we use (1.0) where V is the C-vector space X, .
d;mﬁxfxo = dimmXxo, and the fact that Exp+x0 Is & Qiffeo-
morphism gives the result. :

3) Let fy,f, be two holomorphlc or two anti-holo-
morﬁhic d1ffeomorphisms which agree on T(F). ‘Then flfg"l
1s holomorpﬁic, and therefore an isometfy ([i?],p. 62,
Gor. 2), end Le the identity on X'. Its differential is

the identity on the linearly dense (over €) subspace X+x s
)

and therefore, on all of X, . An lsometry whose differ-

o}
ential 1s the identity somewhere must be the ldentity,

S0 fl = f2.
1.6, (Some final remarks) We have seen how the
quotient U = N\ can be defined over R if and only 1f it

admits a complex conjugation o, and that such & ¢ lifts

‘to a complex conjugation @ of ¥ if and only 1f ¢ has fixed

fpoints.
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Proposition (1.6.0) A complex conjugation 0 of X 1lifts

(or induces) a conJugation o of U = I'\X if and only if

T normalizes T.

Proof: If ¢ is a 1ift, then Gy6 1s a deck transforma-

1
o g

tion, so 5 normslizes T, TIf oyG = v° €T, then
ay(x) = Ygﬁ(x) §0 0 takes T » x into T - G(x), and o
induces a o : U - U,

We can thus eliminate explicit mention of the wmap ¢
on U, that is, U has éome model defined over R (with R-
points) if and only 1f the universal cover X has a complex
conJugation which normallzes the fundamental group I' of U.
We want to take the polnt of view that if we can determlne
"g1l" cbmplex conjugations of all bounded symmetric domains
X, theh'we can find manifolds U definable over R (with R~
points) if we can find discrete groups I" (giving compact
smooth quotient) and which are normalized by a complex
conjugation of ¥. We begin, therefore, a detalled study
of the complex conJugations of X. Silnce the map
7 ¢ X~ U is a local isometry, we will always want to

determine X, and think of it as the local-isometry

type of one of the components of U*.
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Part II. The Standard Conjugation on X

2.0. We assume the reader is familiar wlth the baslc
facts about the symmetric spaces X of (non-compact)
hermitién type. These can be found in the books by Helgason
or Wolf, the lecture notes of Borel, or the papers of H.
cartan, ([7], [18], [3], [4,5]).

X factors Into a product of lrreducible symmetric
spaces, each hermltian., According to the classification of
Cartan, each one of these factors falls into one of four
"eclassical' types, or 1s one of two "exceptional® spaces.

We assume from now on that neither of these exceptional
‘spaceg occurs in the decomposition of our X. Our alm 1s
to construct a standard complex conjugation g, on each

X3 clearly, it suffices to do that for X 1lrreducilble. For
each 0_, we will determine the set of "real' poilnts X+,

as a global Rlemannlan symmetric space.

So now agssume ¥ lrreducible, and recall that the Lie
algebra § of 1ts isometry group G has a Cartan decompo-
gition § :;N + P; where ¥ 15 a sub-algebra, and P a
vector subspace. ¥ is the Lie algebra of the isotropy sub-
group K of G for a point x € Xj © is the orthogonal
complement of ¥ with respect to the Killing form. This
is the elgenspace decomposition of G for the Cartan in-
volution  (the geodesic symmetry'at the point xo) when

it acts as an Inner automorphlsm of G. Since our X 1is
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hermitian, there is an element Z in the center of X (unique
except for 1ts negative for our irreducible X) such that
(adz)lP = J defines a complex structure on the sibspace P,
therefore on the tangent space XXO, and therefore, a{%_
invariant almost complex structure (integrable) on X. In
the same way the Killing form of G, restricted to £,
defines a G-invariant metric on the manifold X. [It 1s
xnown [7] that X is (holomorphically) isometric to a
bounded symmetric domaln in complex number space, with its
Bergmann metric [171, and holomorpbic structure as an open
gubset of the amblant complex vector space. Conversely,
([7] algo) every symmetrlc domain 1s holomorphically iso-
metric to one of the spaces X of non-compact-hermitian
type. It suffices therefore, for our study of symmetric
domains, to use the language of symmetric gpaces. | The
group Gh of holomorphic automorphisms of X (nolomorphiclty
with respect either to the complex structure Jjust defined,
or to that defined on ¥ as a domain in a complex vector
space) is then a.subgroup of G. The isotropy group

Kh = Gh N K is then

{k € K|Ad(k)(Z) = Z) = (k € X|Ad(k)eJ = JoAd_(k)]P}.'

The complement of x? in K is then {k € Klad(k)(z) = -2} =

h

(k € K|ad(k)eT = - JeAd(kNP }, so that X - K is precisely

the set of anti-holomorphic automorphisms of X fixing Xy

Finally, the identity components Gg and GO are equal,




so that G is a non-compact Lie group With'éffiniﬁé}numbef
of connecfed components, half of these componéﬁﬁsubéing
made up of holemorphlc isometries of X, and half'ﬁéiﬁg
anti-holomorphic isometries of X. '.h 

The correspondence g — Ad(g) defines an isomorphiéﬁ
from G onto the automorphism group Aut(G). Therefore,
to construct a complex conjugation 0, 0n X, fixing Xys Lt 1s
sufficient to construct an automorphism of §,
of order 2, preserving the decompositionG = ¥ -+ ©, and
sending Z to its negative (or equivalently anti-commuting
wlth the endomorphism J on P).

For the problem of describing X+, let Q+ = ¥ + F
be the subalgebra of § fixed by the involutive auto-
morphism of § just described. Since global Riemannian
symmetric spaces with no compact factors are determined up
to lsometry by the Lie algebra of thelr isometry groups,
we can determine X as follows. Let G(xT) = M(X+) + P(X+)
be a Cartan decomposition of thie Lie algebra. Then a
homomorphisn of Lie algebras F : G(x") - g+ presefving
the Cartan decompositions, and whileh defines an isomorphism
P(K+) 2 Fﬁ,corresponds to an isometry between X& and{hesymmetric
space associated to G(X'), We will describe " by giving-
a §(x") and an F.

There are four cases to congider. (The notation for

the "type" is Helgason's.)
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(2.1) cagse 1. X = BDI(p,2), p=3. G = So(p,2)

= (5 g)I'A' € So(p), B € 80(2)]

&

If

(1 2 ®)Ix e r(p,2)}
by g ; /
(Wwe use the_notatiéh'ﬁ(m,ﬁ)'or ¢(m,n) for all matrices

over R or ¢ with m rows and n columns.) Define %y by

S I G P

o' ‘0 B
' 0 (X% )
o 10 Xy g O (X)) 4o 22717,
° 5 o - fx,x) o
-t(xl,xg) 0 2L
The center of ¥ is defined by setting A = Oy 80 that
GO(Z) = - 7.
K= (5 Q) € so(pr2)|a € So(p))
" c X
o - (10, ) e Plx = (x5,x), x € R(p,1)]
-"X0
Let.§_= % + P Ybe the Lie algebra of type BDI(p,1):
A O
= ((; o) € so(p+l)|A € go(p)]
P = {1(5 *VIx € ®(p,1)}. Define F : & - G
=X 0
by setiing
A Oy _ (ADO +
Flo o) = (0 o) & ¥
o 0 (x,x)
o X 1 4 +
: S s
el ey )7 2 gx o)
is of

"F is in fact an isomorphism, and we have that_X%

type BDI(p,1}.




(2.2) Case 2. X = CI (Siegel upper half -space).
G =8%p(n,R), n= 1.
Xl }:2
¥ = 8p(n) N Bo(en) = ((F P)lxy & So(n) )
' 2 "l X5 symmetric
2y 2o |
P o= {1 (22 _Zl)IZl,Z2 ¢ u(n)s 74,7, symmetric}
[Note: u(n) + symmetric « u(n) + purely imaginary]. Define
o, by '
o 1 | ) 1)
_XE Xl 2 1
zZ Z A -2 :
o, ¢ 1( 172y &g 1 2)., The center of ¥ 1is
4 ~Z -7 /A
. 1 2 1
01l o
generated by (J.O) so that UO(Z) = - 7.
Remark. When Sp(n,R) acts on the Slegel upper half-space

X by linear fractional transformatlons (X = {x € @(n,n)]tx:x,

Im(x) > 0}), the complex conjugation ¢ _ 1s described by

g {x) = - x. Then, of course, Xt = "generallzed Y-axis'.

o
. 10
Moreover, o, arises from the matrlx (O-J) € MQH(R).

The Subalgebra (?+ T ret 1g

¥ = (X2 € elen,2n)|x €8o(n))

Pt o= [1(5'39 ¢ ¢(on,2n)|z ¢ u(n), symmetrlc, pure
imaginary}

We claim X has type §4(n,R):
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A - B o A+ B o
F(A) = ( 2 A . tA) + 1i( 21 A+ ta ).
0 — 0 e

G2 (n,R) is reductive, and not semi-simple: X' = R x (AT)

- B x [SL(n,R}/80(n)].

(2.3) Case 3. X = DIII, G =8o0*(2n), n > 2.
Zo
¥ =8o(2n) NSp(n [gz ” )lzl €So(n) )

22 symmetric
X1 %
-Xl)JXl’XE €8o(n)}. Define o, by

1 22) 2y 'Za)

o - (
0 -22 Zl 22 Zl
X X X, =X
o 1 1 2) - 1 1 2). Both ¥, and the restric-
0 Xg —Xl -X2 —Xl

tlon of Oy to ¥ are the game as in Case 2, in particular,

10

go(z) = ~Z. Also, we note that G, = Q)-ﬂ € M2n(®)-

where

{( g g |Z ESO(n)]

il

P {1 [X €Sc(n)}. We give an
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F : go(n,t) = q+, ag follows:
8o(n,e¢) = {A + Bi]A,B € go(n)); Define F by
' _ A0 B O +
F(A + Bl) = (O A) + 1(0.49. X' is therefore of
type 80 (n,¢), and therefore,

x" = b for n odad,

n
X& = 6n for n eveﬁ.
(2.4} Case 4. X = AITII, G = Su(p,q), p 2 g = 1.
¥ = ((5p) € sulpra)|a € ul(p),B € u(a),Tr(A)+Tr(B) = 0)
0 Z
P = {1 i )1z € ¢(p,q)}. Define o, by
-7 0

o i 0 Z) ~ i( © Z). Since the center of ¥ consists
o t= t
-7 0 -'Z 0
of certain purely imaginary diagonal matrices, UO(Z) = = 7.
Q+ = K + P where:

W= (g 9)1a €80(p), B € so(a), Tr(adeTa(s) =

(5 )14 € 30(p), B € ()},

¢ X
(1( 5y o) Ix ¢ m(p,q)].

;Q+ ls precisely the copy of BDI(p,q) given 1in Heigason;
2" is of type BDI(p,a).




Part TIT. A Complete Set of FElementary Conjugations for X.

3.0. Conslder for the moment agailn an arbitraf§ : m
bounded symmetric domain ¥, and suppose 1t has on 1t 5 _fi
complex conjugation R which we have called standard. |
If X is one of the irreducible domains considered in Part é,
(resp. a product of such domains), then we take o to be

the conjugation already constructed (resp. a product of
these). We wlll use 0, to find all other conjugations

and will classify them according to the following

Definition (3.0.1) TLet C be the set of all complex con-

Jugations of X, 01595 € C. TFor any subgroup H < G, we

say 0, and ¢, are H-equlvalent (denoted o, ~ 0,) if
1 2 lg 2

‘01 = h 0, pt for some h € H. For any point x € X,
let C{x) be the subset of C of conjugations fixing x.
Denote the quotients wlth respect to H-equlvalence by
C/H and C(x)/H. Any set of representatives in C for

C/Gh will be a complete set of elementary conjugations.

Remark: (3.0.2) Let Gh(co) be the subgroup of G

consisting of holomorphic or anti-holomorphic automorphisms.
1 _

- -1 _ -1 h
Then 6, = g 0, & = = (gce)cz(ogg }) for g € G (co)
lmplies C/Gh = G/Gh(oo). We wlll eventually show (Cor.
(5.0.4)) that the notions of Gh-equivalence and G-equivalence
are ldentical for arbitrary X. This 1is of course, obvious

for X irreducible (since Gh(GO) = @), and, in fact, the
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general proof uses this fact. We do not, however, ever

get the stronger statement that an isometry between two
real forms Xl and X2 should extend to an isometry,-,ﬁ
(holomorphie or otherwise) of the domain X. We can |
only conclude that the isometry X{ = X; can be replacedﬁi
by another one which is the restriction of a holomorphic

automorphlsm of X.

Now let x € X be a base polnt, the same base point
as 1n Part 2 for those spaces already discussed, and

assume co(xo) = x,. The (maximal compact) isotropy group

at X4 1s K. We use the language of Galois cohomology to

discuss the relationship of C(x )/K to C/G
Denote by Gal the group [l,oo}, and deflne an action

of Gal on ¢ and KP (in fact, on all of G) by g - 0,89,

If we call the invariant subgroups GE and KE, and the fixed

points of o_, Xg, we have XZ = (Gh/Kh)Gal = gh Kh To each

g € C we can assoclate some h € Gh by noting ¢ = hco

for some unique such h; moreover, h € Kh 1f and only if

o € C(xo). Since 02 = 1, we see that an arbiltrary h € gl
is assoclated to some ¢ € C if and only if o ho = n7t,
O, ~ O

J.Gh 2

if and only if hlco = ghg Og—l for some g € Gh, or equi-

valently, hl,: ghgooghloo. Moreover, if 04505 € G(xo),
| _ -1
;g 02 if and only if hl = khgook %5 for some

Now if we have o, = hyo, end o, = h,o,, then

Ethen o
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We translate these notlons by the followingfﬁ_
Proposition (3.0.3): The assoclation C 3 ¢ ~ h € qh

h

(defined by o© =_hUO) gives bljections
1) C <«—> Zl(Gal,Gh) = l~cocycles of Gal in G

h

2) C(xo) <—-—>.Zl(Gal,Kh) = l-cocyeles of Gal in K

Moreover, Gh—equivalence on C, and Kh-equivalence on C(xo)

correspond exactly (via the bijections above) with cohomo-

logical equivalence in Gh and Kh: We have bljections

1)t /6 < wt(eal,a?)

2 C(xo)/Kh < Hl(Gal,Kh).-
| 1 hy 2. 1 h
‘Theorem (3.0.4): The natural map H (Gal,K ) -*> H (Gal,G ),

induced from the inclusion Kh c Gh, is a bljection.

Proof, (surjectivity) Let h € e ve a l-cocycle of Gal
in Gh, and ¢ = hco the conjugation associated to 1t. Some
polnt x € X is fixed by the map ¢, and since Gh acts trans-

itively on X = G?/Kh, we can find some £ € G with f{x) = X

Then fcf’l(xo) = fo(x) = f£(x) = x_, so that for ™t € C(x,).

This new conjugation is Gh—equiValent to 0, g0 the l-cocycle

h is cohomologous (in Gh) to the l-cocycle associated to

'fcf_l, and this last l-coeycle is in Zl(Gal,Kh). This proves

{ onto.

(Injectivity)  According to Serre ([12], Cohomologie

Galoisienne, Cor. 1, p. I-65), the kernel of ¢ 1is bijective

‘to the quotlent of Xg by 'GE; but we have Xg = GE/K? 50
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this kernel is precisely the trivial element of Hl(Gal,Kh).'
This fact alone does not give injectivity of L since the
cohomology gets are not groups. However, we do have that
no cbnjugation UeCKxO) is Gh~equivalent to the standard o
unless they were Kh—equivalent, using the second part of
the above Proposition. Since we were arbitrary in calling
a5 standard, the same statement is true of any two

01,0, € G(xo) : cléh 0, = 04 éh Tpe

to the cohomology sets, we get the injectivity of T,

Translating agaln

Remark. -We can use this theorem to compute C/Gh, and
obtaln a complete set of elementary complex conjugations,
at least for the irreducible spaces X of Part 2, using the
standard o, constructed there. The four cases are far from
Independent; look at the compacts ¥ and the restrictions of

04 to them.

(3.1) case 1. X =BDI(p,2), p = 3. G = Isom(X) = 0(p,2)/[*1}

(see the appendix of the article by Baily‘and Borel [21).

p_odd: In this case det{-1) = -1, so we can identify G

with the subgroup SO(p,2). Then K = {g € 0(p)x0(2)|det(g) = +1},
h

and X~ = K_ = S0{p)xs0{2). Recall the ILile algebra

= 3o(p)xSo(2), and that the standard 0, constructed in

(2.1) was (id)x(-id). This implies that the action of a_,

acting as an inner automorphism in G, is (id)x{inversion)

on ¥ = S80(p)xs0(2). -In fact, we can see that o, 1s the matrix




(-1) - e x - k.
0 1 -
1 0

tga1,x")

We have to compute the cohomology set H (Gal,K

Hl({l,GO],SO(p))<SO(2)). Since the action of Gal on K! 1sg

a product of its actions on SO(p) and S0{2), we get
*

Hl(Gal,Kh) = H Gal,SO(p))XHl(Gal,SO(E)), the action belng

trivial on S0(p), and co(l) =27t fora € so(2).

1) z'(ca1,50(p)) = {4 € 50(p)|a = &™), and 8y.hy € 75(Gal,80(p))

are cohomologous 1f and only if there is an 6 € SO(p) with
Ay = ©A2(© -1)00 = 6AP -1 Moreover, such an & exists

in S0{p) 1f and only 1if A, and A, are conjugate in 0(p),

: -1 . -1
for if A, =6 A2®' and det(®') = -1, then Ay = 64,0

with & = (-1)+6' € 50(p). Finally, any A € SO(p) with

A% = 1 is conjugate (1n SO(p)) to one of the matrices

T =
k,p-k k. even < p.

Therefore, Hl(Gal,SO(p)) = {T kik even, 0= k < p]

k,p
1 % -1

11) z7(gal,s0(2)) = {x € so(2)]x ° =17} = g0(2). Now

we show that all X € 80(2) are cohomologous to the ldentity:

o]
We have to find some 1 € $0(2) with A = n1(n™1) © = 12, ang

of course L does have a square root in so(2). Therefore,

i (Gal,50(2)) = (1],




Finally, we can ldentify the cohomology:s

H (gal,k?) with (I, ok even). The corresponding
3

elementary complex conjugatlons are:

(-1) - pok k even

O
O

‘these conJugations by 0> 0 £ k even < p. We defer compuAI
tatlon of thelr fixed-point-sets X; until we study the

case p even.

Q even: Now we have det(-1) = +1; -1 € 0(p,2)o, so the
group G = 0(p,2)/{£1} has four connected components, two
holdmorphic and two anti-holomorphic. Also,

K = [0(p)x0(2}]1/{+1}) has four components, the subgroup g
being [0(p}xs0(2)]1/{£1}. As when b was odd, ¥ and Oy
have the form 0 _ = (£d)x(-1d): So(p)x So(2) = 8ol{p)x 8o(2).
The action of Gal (1.e., co) on Kh 1s actually induced from
the actlon o = (1d)x{inversion): 0(p)xs0(2) — o{p)xs0(2),
because ¢, has the same matrix:

(-1) - [ 1
10 .

We have 7 (Gal,k?) = z(cal,[0(p)x80(2)]/(+1])) =

1
(A 9) e olp)xso(2) (A 970 = (A 91y = =(*) Q1)) 1.

» and we denote
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Since the condition B™+ = -B~1 ig absurd; we need only

consider (é g) € o(p)xso{2) with A = A—l, and no require-

ments on B.

By the same method as in 11), of the case p odd, we have
that (é g) is cohomologous to (g g). Recalling that the
actlion on the factor O(p) is trivial, the same reasoning
of part 1) of p odd gives that (g g) 1s cohomologous to

crie of the matrices

-lk

+1

s 0= k = p,

But since we are in the quotient [0(p)xS0(2)]/{x1l}, we neead

only consider those matrices for k < p/2: If k2 p/2,

Ty, p-k ’ Tp-k,k l

(-l) - 12 = ' ' _12 and

p~k < p/2. Again we disgpose of the ”~12" by the method

of part ii) of the case p odd, as above.

o Lo

and the elementary conjugations are

?) € [o(p)x0(2)]1/{x1}|0 € k = p/2}.
0

T 0
The result is H'(Gal,kK?) = ((’ Kopk )lo s x < p/Q},.
1
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We glve the fixed-point-sets X of o, for
0= k< p. The effect of O on the Lie algebra
G = 8o(p,2) is as follows:
41 Ay
Agq Ay

0O
¥ = € So(p+2)
o | =B

&4 Ae)

(AS A € So(p),B ¢ 80(2)}

L1 4op
Ay Ay Ay A,
o Ay Ay | O B ~Ag Ay | O
k 0 ‘ B 0 |~B
o (‘le X131
ot 1k o)~ 1 .
- - t =X.. =X
Ko X990
Then Q; %; + P; where:
A, 0O
+ 1 0
K = O Ay € So{p+2); = So(k)xSo(p-k)x{0)}
0 0
N 0o X Xy =X
Pe = [1{ty )X = (X2 X2) e_R(p,E), X, € R(k,1) J.
X, € R(p-k,1)

2

We define an isomorphism ¥ : So{k,1)xSo(p-k,1) = q;, as follows.
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A 1Ix B 1Y
«—tﬂ.X o ),. L4y oj € 80(k,1)xsS0(p-k ,1)

:[F

A O X -X
(OB O)‘F . o (5 ) ¢ o
o | o e -‘t(}y( ‘?) 0 k-

It 18 easy to check that F 1is an isomorphism, and thus.
we get an lsometry X; = BDI{k,1)xBDI(p-k,1). (Of course,
when k=0, thls is the same ¥ we gave on p 26 for the

standard conjugation 00.)

(3.2) Ccase 2. X = CI (Siegel upper half-space).

¢ = 8p(n,R), n= 1. The holomorphic 1sometry group is
Sp(n,R) divided by its center: ¢l = Sp(n,R)/{*1}., Recall
that any maximal compact of Sp(n,R) 1s isomorphic to U(n),
and we embed U(n) into Sp(n,R) as usual by

A B

-3 A) € SP(DJ[R)-

U{n) 2 A+ BL ~ (

The effect of the standard o, on ¥ (2.2) is:
£ %o

¥ = —Sp(n) N So(2n) = {(_X 5 )IXl € So(n) 1}
2 X, symmetric

X, X Xy =X
ot (L ) = (G ). Then the effect of o_ on
2R 2 %
matrices ( 2 B A By o (& By,

-B A B A

B A)'p? Sp(h,R) is (



39.

Pulllng o _ back (by the above embedding) to U(n), we have

an lsomorphic action of Gal on Uln):

0
U(n) > U —2» .

Now, since G = Sp(n,R)/(+1}, we should conslder the induced
action on the quotient U(n)/{+1}. Then a set of elementary
conjugations for X 1s given by Hl(Gal,U(n)/{il}), with the

above action.

The result 1s the following

Theorem (3.2.1.):
1) If n is odd, Hl(Gal,U(n)/&l) = {1}
2) If n 18 even, Hl(Gal, U(n)/£1) has two elements

represented by the identity, and the matrix J = Qg_é).

Proof. The l-cocycles Zl(Gal,U(n)/[tl}) = {A € U(n)]ﬁziA“lbﬁill

Case 1. A =AY, There exlsts a matrix P € U(n), and a

diagonal matrix

pﬁ; > Where the A; are scalar :

matrices Ay © 1, and Ay # lj for 1 # J, and such that ' a

A=7pTta p, Denote by M, FP'l; then § = o™% implies

Tap = 5lep~Lip

il

MA = AM. Moreover, P~ P"l(MA)P, arnd

il

therefore, MA is a l-cocycle (with ML (MA)fl) cohcmologous




to A. Now the condition MA = AM (plus A, # x-jf')j.:ﬁj;_i_j;ng'j_'__j.__es

that M is a matrix of blocks,

rﬁ; , where the blocks are the saﬁéf

slze as the Ai'
Assume k = 1. Then A = P-lkP = A for some scalar matrix

(

A+ 1, A € U(l). Recall the computation of H {Gal,s0(2))

with the action given by inversion in s0{2), (3.1, p odd,
11)). By the same method we get that the l-cocycle A = X
is cohomologous to the dldentlty. These statements apply
also to the case n = 1, since k 1s automatically one there
also, namely, that l-cocycles A € U(1l)/(%1} with & = At
are cohomolegous to 1. We want to use induction on n to
prove that l-cocycles A € U(n)/(+1} with & = A"l are co-
homologous to 1. So assume this statement true for m < n.
-1 T _ (11,1 )—l

Arbitrary k. Now‘ﬁx = (MA) lmplies that M, MoA

;
for each 1, and that M/A, ¢ Z“{Gal,U(mi)) for some m; < n.
The induction gilves us that MiAi is cohomologous to 1 (in
U(m;)) and therefore, MA is cohomologous to 1 in U(n), and

therefore, our A also.

“Remark. So far we have proved that Hl(Gal,U(h)) is trivial

for all n, slnce Zl(Gal,U(n)) = {a e Un)|R = A 1y,
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Cagse 2: K = -p"L, Taking determinants (for example)
implies that this conditlon is absurd if n is odd, so
that when n is odd, the only l-cocycles are those in

Case 1. Therefore, we have the first half of the theorem:
Hl(Gal,U(n)/[il}) = {1} for n odd. We proceed with a
method analogous to the one in the first case, QOur A

is conjugate by some P € U(n) to a matrix A of the form

[K; s Where the Ai are blocks

01 | | .
of the form A, = Ayd ki(—l O)’ and A, # * RJ for i # J. E;
Denote again M = ?P—l (A = P“lAP); since K =--Afl we get

again MA = AM. Just as before we have A cohomoclogous to

MA, and therefore, MA = —(Mﬂ)_l. The condition MA = AM L

(plus Xy # & kj, for 1 # j) implies that M is a matrix
of blocks

s Where Mi 1s the same size
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1 P, with a scalar

1

Assume k = 1: Then A = P _2 é
1

A € U(l). A= -A" implies that Xl-A = p~

A (

JP is purely
real, namely, %-A € 0(n). Now A and %-A are cohomologous
in U(n), (the factor %—6 U(1) can be eliminated just as

in Case 1 {(k=1)). Therefore, we can work with B = % A € 0(n).

Since A and B are cohomologous, B = st (since B is

real.) 82 = 1 implies the existence of some 6 € 0(n) with

1

B = @“lJ@ = 6 ~J6, and the last equality says B and J

are cohomologous, and therefore A alsoc. These remarks
apply to the cage n = 2, since k is automatically one there
also, and we have that l-cocycles A € U(2)/{#1} with

A = —A‘l are cohomologous to J. We use induction on (even)

-1

'n to show l-cocycles A with A = -A™~ are cohomologous to J.

Assume this for (even) m < n.

' B -1
implies that MA, = -(Mif\i)_

Arbitrary k: MA = —(MA)-l

for each i, so that MA, € Zl(Gal,U(mi)/{:l:l}) for some even
my < n. The Induction gives that MiAi is cohomologous to
U{mg )

+71}

in , therefore MA 1s cohomologous to a block matrix

'[;; » where the J's are blocks of slze m,.

This last matrix is real, so that it is conjugate (also

cohomologous) by some 6 € 0(n) to J € U(n).
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We conclude the proof by showing J cannot be cohomo-

-1 15 for

logous to 1. If so, we would have J = P 1P = P~

some P € U(n). But P15 ig symmetric and J is not, so

this ls impossible. _ ) t
The theorem says that there 1is only one conjugation

on X = CI{n) = 8p(n,R)/U(n) for n odd {up to G-equivalence).

In particular, the filxed space of any antiuholomorphic in-

voelution is isometric to the generallzed "Y-axis" =

E}x [SLD(R)/BO(n)]. For even n, there are two possible

fixed~point-sets, associated to the standard o, and to

Oy, whilch is the composition of 9y and the matrix in

Sp(n,R) associated to J € Uln):

e Q9 om0,

It 18 easy to wrlte down the fixed Tie algebra Qi of 04,
as a sub-algebra of $p(n,R). However I have not yet
ldentifled its type, except for n = 2. (This was an acci-

dent - see Part 4.9

X X -
1 %2 X, € 8of(n), A By C D
J{r— - - 1 X (_ )3 Lo = ( - )
1. p X | X, symmetric 1 BA 2 D -C
. %1 %
Py= {1 2y -7, ZysZ, € u{n), symmetric; ‘
- ( P9 _ (R S
Zl - ("‘Q, P)) ZE - (S _R)




(3.3) case 3. X =DIIT, n > 2. According'ﬁ

[5], Thebréme H, p. 152 the group G is 00nﬁé¢ﬁé”

cages. However, this 1s contradictory to hils earl

paper [4], p. 459, in which he shows that when n ;¥45yX¥¥

is isometric to BDI(6,2) (at least thelr compact duaiﬁ,

but this is equivalent). He does not in fact state ékéﬁiég
plicitly that the spaces are ilsomorphic as hermitian syﬁmé;:
tric spaces, although this is automatic.- For if
F : X - BDI(6,2) ig an isometry, then it is elther holomor-
phlc or antl-holomorphic (for the same reason that isometries
of an lrreducible hermltian symmetric space onto 1ltself gare
holomorphic or anti-holomorphic). Then (if necessary)
composing wlth an antl-holomorphic map on either side (we
have constructed these) produces a holomorphic isometry.
K. Morita ([11], p. 195) actually constructs a holomorphic
equivalence. We come back to this in Part 4.
Sonown-=3orn >4, and a% is connected.
6% = 50%(2n)/{=1) and ¥P = [So*(2n) N Sp(n)]/(+1) which
1s preclsely the same group (contained also in Sp(n,R)/(£1})
as Kh for the Siegel upper half-space. Moreover, the action
of our standard Cs 1s exactly the same, and we have already
computed Hl(Gal,Kh). It is glven by the theorem in the
last section.

We give here the fixed Lie algebra Q; for the non-

standard conjugation 04 when n 1lg even.



)» 8s before.

)] Zy € 8o(n), Zq
22 symmetric

It

I

f) |X1,%, € So(n), x

Case 4. X = AITI(p,q), p = q = 1.

According to Cartan ([5], Theoréme H),

is connected except when p = q 2 2,

45,

G = 8u(p,q).

the group ¢

S0 eliminating that

case for the moment we have g = U{(

p,q)/U(1), where by

I mean the scalar matricesg l-lp+

K' = [U

o€ ex =1,

(P)XU{q)1/U(1)}, and the action of o, 1s defined by

complex conjugation of a matrix U = (

) € U(p)xu(g).
have to compute H'(Gal,[U(p)xU(q)]/U(1)) with this

action,.

(v=(A

The l-cocycles Zl(Gal,Kh) are

) € U(p)xU(q) [T = AU™ for some n € U(1)]/u(1).

First we observe that T = Ay~+ implies X

+1:

£ so that U = A(

Case 1:

Then we have A = a™% and B = B+

with A € U(p), B € U{q).

By the theorem in (3.2), A and B
are cohomologous, as elements of Zl(Gal,U(p)) and Zl(Gal,U(q)),

to the identity. This means. U 1tself is cohomologous to 1.

Then
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Case 2. U= -U"l. As before (by determinants) we must
have both p and q even, because E = ~A-l, =871, m

that case then by the same theorem, A and B are cohomologous
to J-matrices of slze p, and ¢, and so U is cohomologous
J{O

to (6+j).
We have proved the following
Theorem (3.4.1): The space X = AIII(p,q) with p =q = 1
or p > q = 1 hasg:

1) one elementary conjugation o, 1f p and q are not
both even,

2) two elementary conjugations o, and 0, = (O J)O C

1f p and ¢ are both even. N

We glve the fixed space Xi of =5 above affer studylng
the case ¥ = AIII(p,p), p = 2, since 1t occurs there, too.

The group Gh 1s not connected here (Cartan [5], Theoreme H);

i1t has two connected components, Gg being U(p,p)}/U(Ll) as

2 s by giving an

automorphism of the ILile algebra Su(p,p) of ol

before. We give a generator T for Gh -G

Recall G = Su(p,p) = ¥+ P where

= ((5 )28 € u(p), Tr(a+B) = 0}

P = (1 tg “)

Z € ¢(p,p)}.

Define T by




t .
T+ 1 t? Z) - i(% BZ). First T representg a holo~-
_ZO R

morphic lsometry of X, since the center of ¥ 1is the set of
dlagonal matrices

1 O)
P)

R (5 4

and T is the 1dentity on such elements. Next, T fixes the

base point x, corresponding to ¥, so that if we had T € Gg,

h

we would have T € KO. But thls 1s impossible because of

the restriction of T to ¥, and hence its effect on Kg as

an lnner automorphism of Gh. Therefore, we do have

T & Kh - Kg. Finally, 1t ig evident that T and o, commute

c
on &, and therefore, T © = 7 when o, acts on K7,
(Remark: When p = 1, we can define a holomorphic isome try

by the above formulag for T3 1t is the Cartan involution,
80 we wotld have T € Kg.)
We can now gilve the elementary conjugations of

AITI(p,p), p > 1. The l-cocyeles of Gal in K- are

(A-O

(U = o B) € Ulp)xu(p)|T = yyt for some x € U(1)]/U(1)

U for = (5 Q)e Tla,B € Ulp), OT = ATU™L for some A € u(1)}/u(1).

By the above discussion for p # 4, we can reduce the first

set to Just the identity matrix if p is odd, or to the

Jd O

identity and (o e

) if p 1s even. The second set consists




) with B = £a~t,

A O

of elements UT such that U = (O B

Lemma 1: The l-cocycle (A _O_l)o T is cohomologous to

0 AA
10
(O i)'-‘ T.

Proof. Denote by by, any /& 1in the group U(p), and

by = be-l. Then we have

-1 _ '
(’bl Py 0 ) (.A 0 )
= . _ = o . Multiplying by
0 k(bllbg)‘l o xa~t

T on the right glves the lemma,

Lemma 2: (é(%)-- T is cohomologous to T.

Proof. Denote Cl = e
g, O o

The last matrix multlplied by IR

h 1 ©
element of X . This gilves (O N

T on the right as before glves the lemma.

represents the same

), and then multiplying by

Lemma 3: The l-cocycle T 1s not cohomologous to any 1-

cocycle U in Kg.
dl 0

) € U(p)xU(p) with
2

Proof. If so, we would have some (O a

elther




' d
‘or 2) T = eﬁX 5 d~l)U( é )T for some ej,e, € u(1).

2 2

But both right hand sides are contained in K., and T is not.

We have proved the following

Theorem (3.4.2): The space X = AIII(p,p) with p = 2 hasg

1) two elementary conjugations, s and Toe Oy = 0p

if p is odd,
2)  three elementary conjugations; 0 s0] = (O J)o o

and Op = To if p 18 even.

O’

-

. + _4T0y,
Theorem {3.4.3): The fixed spaces ¥ of 0,50, = (O J)UO’

and 0y = To  are respectively:

O
1) X = BDI(p,q) = So(p,q))
1) 13 = 011(p/2,q/2) =8p(p/2,q/2))
i111) x5 =0,y X R=gT x 8 4(p,r)
Proof. We have already done 1).

ii) We glve an isomorphism between Qi and the form

of CII given in Helgason (p. 351):

a, a b, b
0y o= (5 ) € u(p)xulq) [Tr(a)+1r(B)=0,4 = (;izai)aB B (-5; Ei)}
0 Z 7 ‘Z .
P; = [i(-ti O),Z = (~Z; Zi) £ @(p,q)}f Define




+
F : Gy~ 8p(p/2,q/2) by

A Oy aq O an 0
F:(yp)
0 by |0 b,
-, 0l4& o
. 0 z o 7| 0 1z,
Foalltg o) =/ 4, t
%7, 0 |*z, o
i —-- —
0 ~Z,| 0 7,
_ts -
Zy O (=240 .

- It 18 stralghtforward, although tedlous, to check that F i1s

an isomorphism.

111)  First G) for o, = ™ _ 1s given by:
2 2 o}

i = (5 918 € sulp))

PZ = [i(g g)lz € ¢{p,p), Z = -;Z}. Define an

+ :
¥ :-Q2. Q%p(m) by
A O 0 Z F n
(o a) *+ 4(5 5) > A+ 1z e_@(p,p) = G, (e).

F 1s a Lle homomorphism, injective, and sends P;

quotient Q%p(m)/u(p), and H; iscmorphically onto Su(p) < u(p).

ontoe the

An inverse to F is described (on the image of ¥ < GL(p,e¢)) by




E“tB B+ '8
5 0 O 5T
Gt (¢) > B - £ + 1 b
B-"B B+ .
0 ) 5T 0

. + 1
F induces an isometry X, = GLP(C)/U(p) = R~ X [SLp(m)/SU(p)].
We remark that the subalgebra of codimension one in

n+

4, defined by tr(Z) = 0 1s isomorphic to

s, (€) by F_lE{,p(@).
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Real Forms of Irreducible Hermltian Symmebtric Spaces.

X Number of real forms

So(p,g)(pjég) :
p odd

p even

SP(HJB)
n odd

n even

So*(2n}{n=3 or n>4)
n odd

n even

Su(p,q)(p=q=1)
p=g=l or p>q
p,d not both even
p,q both even
p=q = 2
. p odd

D even

i
+
]

{e
o[ 73
na

X+

$o(k,1)x8o(p-k,1)

0k <p (k even)
0= k< p/2

R x $4(n,R)
R x #{n,R),?2(cf.82.2)

So(n,C)
So(n,t),?(cf.§2.3)

So(p,a)
go(FJQ)sgP(p/EJQ/E)

so(p,p).R x8tp(c)

So(p,p),R x8 ’f'p((ﬂ)_r,Sp(p/g,p/gﬁ |
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Part IV. Isomorphlsms. B '

b4.0. Tt 1s known (Helgason, [T, p. 351-353), that

in low dimensions there are lsomorphlsms between certaln
Tie algebras of "different" type. This implles certaln
nolomorphic equivalences between hermitlan symmetric spéces
of "different" types. We can use these equlvalences to
check our compubations of the number of elementary conJuga-
tiong, and of possible flxed spaces X+. We can also use

them to determine the type of one of the X+.
(h,1) BDI(3,2) = cI(2) = Sp(2,R)/U(2)

We counted two elementary conjugations for BDI{3,2):

1 -1
= 1 _ -1
o, = 1 s 0y = +1

01
1o 10

Their flxed spaces were

+ 1

x} = BDI(3,1) and X; = BDI(2,1) x BDI(1,1) = BDI{2,1) X R
We also counkted two conjugations for CI(2):

co(x -+ %)

30
o) = (5 7)°%

Their fixed spaces were XZ = Y-axis = {SLE(B)/SO(E)] X Rl,
N _
and Xl = ynknown.

We can conclude that the unknown XE must be BDI{(3,1l), since




-1
(x » -x) must correspond to ( _l+ll ) in 0(3,2).
0 1
HE:
(4.2) ATIII(2,2) = BDI(4,2). We counted three conJuga-

tions for each of these spaces:

J +
ATII(2,2) : 0 ( J)o 0., T0_ with fixed X' of type
BDI(2,2) = BDI(2,1) x BDI(2,1), CII(1,1), and B X G,

respectively.
-1
. _ 1 _ +1

BDI(4,2) g, = 4 - \ > O = +l+}_

10 01
10
A + ively of

and Op = --l+l+l , wlth X' respectlvely of type
0 L '
10

1

"BDI(4,1), BDI(1,1) x BDI(3,1) = R~ X BDI(3,1), and [BDI(E,l)]g.

The correspondence is ag follows:

ATI(2,2) BDT(4,2)
00 < 5 02
ol < > co
02 < >3 Ul
(4.3) ATIT(3,1) = DIII(3). We found that each of these

gpaces has only one complex conjugation. The fixed gpaces
had type BDI(3,1) = 80(3,1) and 8$c(3,%), respectively.

We just saw in (4.2) that BDI(3,1) was isometric to
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Gl = 8L,(¢)/sU(2). Of course, So(3,¢) andégtg(@) are

——ra——

isomorphlc, so our calculatlon checks.

(4.4) BDI(6,2) = DIII{4#). Recall the article by
Morita {(p. 195), where this ig proved. We dld not yet
compute theJelementary conjugations for DIII{4), but we
can now; we have alreédy solved the problem for BDI(6,2).

There are four elementary conJugations:

1 |
o = (24— : x¥ = BDI(6,1)
10
115 +
o) = (=224—-) : X; = BDI(1,1) X BDI(5,1) =
10 1
R~ x [SU*(4)/sp(2)]
T
On = ( 2,4 5 ) Xg = BDI(2,1) x BDI(4,1) = cI(1) x ¢rr(i,1)
10 = [8L,(R)/80(2)] x [Sp(1,1)/8p(1) x 8p(1)]
T
0y = 3.3 ) : ¥ = BDI(3,1)% = [SL2(®)/SU(2)]2.

=O
O M




Part V. The General Case: Arbitrary X

5.0. We return now to the situation"and pféblem pose
at the beglinning of Part IIT, namely, to classify.£ﬁg com-
plex conjugations, as well as thelr fixed spaces, oﬂ.grbitrarj 
bounded gymmetric domains X. We did this, via Galoiéf_
cohomoiogy,-for trreducible X (not exceptional). For:é
bltrary X {with no exceptional factor), the problem is
egsentially a corollary of work already done.

As a first reduction, we note that for a product
X = Xlx...x Xm of powers Xi of dlstinet irreduclble hermitlan
symmetric spaces, the isometry group G(X) is the direct pro-
duct of the lgometry groups G(Xi) of the various factors,
%

and the gsame 1s true of the group G (X) of holomorphic

automorphisms, Let 0,7 € C(X) be two complex conJugatlons. |

Then © and 7 are products 0 = Gl Keaok Gm, T = Tl KeseX T

of complex conJugations of the factors_xi, and ¢ and T

are conjuzate by some g = BqX e XB € Gh(X) if and only 1if
-1 .

oy = g;748; for all i. Then if we denote by Hl(Xi) a

complete set of elementary conjugations of Xi, we clearly

have Hl(K) = Hl(Xl)X...XHl(Xm), and the classification is

reduced to solving the problem for powers of an irreducible

space.

o

Next we show how to compute H (X™) in terms of Hl(X) -

of an irreducible space X. It is known (see Cartan [5],

for example) that the igometry group G(x™) 1is a semi-direct




5T

product of 1ts subgroup G(X)X§?2XG(X) = g(x)" with the

permutation group S, of the n factors. These permutations

are holomorphic (with respect to any of the a(x)*-invariant
complex structures of %) and the group Gh(Xn) is the
)1'1

subgroup Gh(X -8, of a(x™).

Remark. We have compubted Hl(X) for ¥ of classical type.
Tor X exceptional, If ¥ has any anti-holomorphic isometry,
then 1t has one that is an involution and does not.permute
the factors. In particulaf, ¥ itself has an anti-holomorphic
involution, and Hl(X) could be computed, by Galols coho-
mology as before.

We denote igometries of X contained iIn a(x)™ by over-

lined small cage letters: the standard conjugation of o

K

will be 0 = (co,...,co). Every lsometry 1ls g7 (gl,...,gn)T
for some g, € G(X), and T € S . The group Gal = {1,50}
scbs on G(X™), and on the subgroup Gh(Xn), of course, wlth

the inner automorphism

00 — -~ —

Ipt(co):gw ~ (gr) © = (6,86,)(6,70,) = (6 ,88,)T =& 7.

A set of elementary conjuzations of %™ 1g in bljective
correspondence with Hl(Gal,Gh), wlth the above action, as
we showed in Part ITI. Although we showed Hl(Gal,Kh)z Hl(Gal,Gh),
we will not need it here. The l-cocycles Zl(Gal,Gh(Xn))
are (g1 € Gh(Xn)](éT)go = (éT)-l = T'lé-l, and 2 = 1},
Note that gr is a l-cocycle if and only if %TEO is an

involution: éTioéTEO = 1, an equation in the seml-dlrect
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h(X)n

product @ ‘8. Since Gh(X)n 1s normal, we can divide

by 1t, and get the equation 72 = 1 in Sn' We can thus

write all of the follow%pg:
]

2t = (& e " (x| O = rg7]
_ _75 _ET L
= {(gr ea"(x™iz °=5° =z
- h - \C - i - -
= {&m e ¢ (x| (gr) © = vzt = 271z L (gL

Step 1: g7 is cohomologous to BT 4f and only 1f there
15 b= (by,e,b) € 6NDP with either

-—

_ G
hTb O, or

1) gt = pt

- -1

2) gr = p p~L

o
it “p  for some p € Sy -

Writing out 1), we get

-1 -1 % %
(gl""’gn)T = (bl :---:bn )(hl""’hn)T(bl""’bn )s

-1

o) g
or (gy5-+5z) = (b7 b ) (L n ) (b,

?l),...,bT?n))

since Eo and T commute. If T(1) = i, we get

-1 Y% % -1 |
* gy = bi hibi » with &y = &y .« In other words,

&y end h, are cohomologous l-cocycles in Zl({l,oo},Gh(X)).

If 7(1) = J for § # 1, then T(J} = 1, and we get two

equations
27l 0
(81 = Py byPry)
e i -1 Y% -
gj = bj hij(J) . Moreover, since gris a 1-
-1,%
cozycle, 8y = 8r(1) = (gi-) s S0 we can write
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_ =1 %
ox [BL T PiPiPr(y)
-1,% ~1 %
= b, h,b_7.y .
(gy7) 3 B4R (3)
But now 7{1) = j, and 1{(J) = i, so we have
_ =1 Y%
o [B1 7 P10y
-i % o=l %%
(gi ) bj hjbi .
o
-1, °
In case (hi ) = hj, one sees that taking the inverse and

applying O to the first equation gives the second one.

Furthermore, if hi = 1, then the first equation 1is

1,%

gy = b; bJ’ which can always be satisfled silnce bi'and

bJ are arbitrary. Then if h = (hl,...,hn) is such that

h, = 1 whenever 7(1) # 1, then we can say & is cohomolo-
gous to hr if and only if (*) 1s satisfied for all i with
7(1} = 1. Therefore, we can say gr ié cohomologous to an

ht with h = (hl,...,hn) and hy =1 1f (1) # 1, and

hiuco = one of the elementary conjugations claggifiled

by B ((1,0 ), ¢™(x)), 1£ 7(1) = 1.

Jtep 2 If h' = (hi,...,hh) is such that hj = 1 whenever

(1) # 1, and h and R' differ only by a permutation p
with p(1) = 1 whenever 7(1) # i, then h'T is cohomologous
to hT. To see this we use condition 2) of Step 1, with

1. We bhave required p and t to commute, so we have

p—lﬁpT‘: p"lﬁTp, which is precisely 2).
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Step 3: We note first that two involutions T15To € Sn
are Sn—conjugate 1f and only if they fixed the same number
of objects, of course, 1f and only 1if they can be wrltten
as products of transpositions wlth the same number of
transpogitions. Now suppose ETl is a l-cocycle with

h, = 1 if Tl(i) # 1. We want to define a permutation

1

p which will give pT = T 1f 7, has the same number

1P
of flxed obJects as Tl'

27 2

For all i with Tl(i) = 1, define p(1) by the condition:
i < j implies p{1) < p{(J), and Tg(p(i)) = og(1). For the 1
with Tl(i) # 1, first define p(1) for the least of these
i to be the least integer such that Te(p(i)) # p(1). Then
define p(Tl(i)) for thils 1 to be Tz(p(i)). Continue with
the next i such that 7,(1) # i, and define the value of
p to be the least integer not already Iin the image which

is not fixed by 7 Then define p(Tl(i)) for this 1 as

2.
before, Thls p has the property that
= -1 = =1 -1 =~ =1 =
phryp " = (php "ot 0 T = (php )T, = hpTg, where

RP = (hp(i)""’hp(n)) and hp(i) = 1 whenever Tg(p(i))_% o(1).

Finally, condition 2) of Step 1 glves that hr, and

1
are cohomologous (b = 1 again).

(5.0.1.) We have shown that any anti-holomorphic involution
in X% is Gh(Xn)-equivalent to one of the followlng sort.

The factors Xy,...,X first 2k factors of X') are

2k (
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permuted in successive palrs, and then the standard 9y
is applied to each of these coordinates. The factors

X are preserved, and 1in each we have one of

Dp+12 0o ky
the elementary conjugations, the order of these belng
n)+

irrelevant. The fixed space (X of such an involution

is isometric to X X (a product of n-2k = & flxed spaces
of elementary conJugations of X).
Clearly no two conJugations with different K can be

equivalent, since thelr fixed spaces are not isometric.

l( ™) in terms of

We can thus glve a description of H (X

Hl(

X). If E is any set, the permutation group §, ac ts
naturally on EL = E ngzx E. Denote the quotient by EL/.
We have proved

Corollary (5.0.2): Let ¥ be an irreducible hermitian
symmetric space (non-compact) and Hl(X) a complete set
of elementary conjugations. Then a set of elementary con-

Jjugations for x* is

1

" (x™)

= > Hl(X)L/
o=4i=n
t=n(2)
[Hl(X)O/ meang the set {1} where 1 € G(X), and the summation

means disjoint union.]

Corollary (5.0.3): ‘Let X be a (non-compact) hermitian

symmetric space wlth no exceptional factor. Then a complete

set of elementary complex conjugatlons is a finlte set.

Tts elements (and its order) can be written d own with




knowledge of these for the lrreducible factors of X, Tﬁe;

fixed point set X+ of a conJugation can be an arbitrary ;
product of arbitrary powers of the lrreducible factors ;
times arbitrary fixed spaces of conJugations in these
irreducible factors, so long as this candidate has

R-dimension = C-dimension of X,

Corollary (5.0.4): (Quasi-Witt Theorem) Let X7 and

X; be real forms (fixed spaces of complex conjugatlions)
of a bounded symmetric domain X, If Xi and X; are
lsometric {as Riemannian spaces), then there exists a
holomorphic isometry of X which restricts to XI to give

another lgometry XI = X; .
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