On the rationality or the zeta-rfunction or a set definable

over a rinite field

A Dissertatlon presented
by |
Catarina Isabel Kiefe
o

The Graduate School

in partial fulfillment of the requirements
for the dggree of
Doctor of Phiiosophy
in
Mathematics

State University of New York
at

Stony Brook

Tune, 1973




STATE UNIVERSITY OF NEW YORK
AT STONY BROOK

- THE GRADUATE SCHOOL

Catarina Isabel Klefe

We, the theals committee for the above candldate for the
Ph. D. degree, hereby recommend acceptance of the Thesls.

foo,

Henry Laufer, Chalrman

Stanley Osher) ///5Z422>4L\

Chih Han Sdﬁ

C. C/Q\.QAAM// ) /

J@hn Cherniavsky, extra epartmental member

The thesls 1s accepated by the Graduate School.

Ly

Herpert welslnger, Dean




Abstract of the Dissertation
On the rationality‘of the zeta-function of a sel derinable

over a rinite rfield

by

Catarina Isabel Klerfe
Doctor or Philasophy
in

Mathematics

State University or New York at Stony DBrook
1973

Tet k be a rinite fleld, ks its unique extension
or degree s, K its élgebraic closure. If Us KF 1s a set
derinable over k, let U, =UnN ksr and NS(U)=#US; then

CU(t) = exp ; 'féégl— t° and

L =1 ' .

d

WU(t)_ﬂ t g 1og gU(t) .

Dﬁork.has_provea the rationality of gU(t), hence
of WU(t), in case U is & variet&. We prove that'rU(t) is
pational ror any derinable set U. .

The result is achleved using model-theoretic
tools: Shoenrieldt!s Quantlrier Elimination Theorem 1s

generslized to yleld a semantic characterization or the




elimination or quantiriers. This is then applied to:

| 1) Produce a rirst-order language in which the
elementary theory of C((t)) admits elimination or quantiriers:
the theory discussed is.an extension by derinitions or the
theory or C((t)) in ordinary valued-rield language.

2)vProduce an extension by derinitilons of the

eleméntary thedry of finite rields which admits elimination
or quantifiers. This ylelds a simple characterization oY

sets derfinable over & rinlite rield, and allows us to

" obtain our main result.
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118t or symbols

Q ~ rational numbers

7 - rational integers

Z>a - rational integers greater than a
¢ -~ complex numbers

LT - language or type T

St - sentences im language ol type T

L

a}:g - G is a model of the theory =

{g| - domain or the strucuture G |

Gq1< Gy - Gl is a substructure ol Gy

Gls GE - Gl is an elementary substructure or Gé

alaﬁz - Gl is elementarily equivalent to Gp

akelagsea] -G satisries g at (al,...,an)

IT,G - language of type <rv,0>, which means LT with a new
constant for every element or G adjolined

‘Diag G - set or atomic rormulae and negations or atomlc

formulae in I._r satisrfied by G.

»a

af ~ interpretation in the strucuture ¢ or the rfunctlon,
predicate or constant symbol £ » |

%% - multiplicative group of units of the rield &

F - residue class rield of the valued rield J

{rred(a,F) - minimum polynomial or a over F
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I - Introductlion

A semantic characterization or the rfirst-order
theories admitting eliminafion or quantifiers is giveng
thig is done by generalizing Shoenfleld's Quantirier
Elimination Theorem to a necessary and surricient conditlon,
vie ultraproducts. This sl then used to prove the possi-
bility or eliminating quantiriers in two cases:

1) The elementary theory or c((t)) (the rield
~of rormal power series over the complex numbérs); the
theory ror which the existence or an elimination 1s
established is an extension by definitions or the theory
or ¢((t)) in ordinary valued-rield language. The proor
invoiﬁes results found in the AxﬂKochen papers.relative
to the Artin conJecture.

2) The elementary theory of rinite rields; here,
the theory ror which the existence of a quantirier-eliml-
‘nation is establlshed, is an extension by definitions
of the theory of finite rields iﬁ ordinary fieid language;s
the extension is obtained by adjoining a countable set of

predicate symbols {@nlnez>o}, where each ¢n is a n+l-ary

_relation symbol; ror each n€Z_, we introduce & derining
axiom which essentially says that for any model & of our

theory and rfor all ao,...,an§3 , We have

3F=¢n[ao,..,,an] & the polynomial anxn+ou.+ao hag a root in &.




This theory is then shown to be model-complete
and to satisfy a weak lsomorphism condition sPecified in
our semantic characterizationi this si done using methods
contained in Ax's papers on finite rields. )

The existence or an elimination or quantiriers
a8 described in 2) is now used to establish the.main result:

Iet k be a rinite rield, and k_ 1ts unique exten-
sion rield such that [kszk]:s. Let ¢ be a formula with r
free variables in ordinary rield language and constanﬁs in
k3 let U be the set derlned over k by . We define

U :-;{(a.l, ...,ar)EKSr[kS [=cp[al, ..a,a.r]} s

ngU)z#US s

exp 5

¢yt
() =($g log ¢,(t)) t.

Dwork has proved that ir U 1s a varlety, ;U(t) is rational,
hence so is WU(t).'We prove that WU(t) 1s rﬁtional'for'any
derinable set ﬁ. This sl achleved bj first eliminating
quantirfiers from 0, 1.e., considiering it reduced to 1ts
guantirlier-rree rorm in the extended rield language3 then,
arter variﬁus reductions, the main result boils down to

to proving that 7. (t) is rational in the case where U is

2t 7yl
derlned by the atomic rormulsa

@nng(XlJ..n,xr)f’Q.t,pngxl)-.w]-}{r) 2y With piek[xlj 'COJxr]‘




The proof Involves some moderately invelved computations
and ﬁwork‘s result.

As an illustration, the main result is used to
establish the rationallty of the Polncare series or the

image or a variety under a morphism,

The terminclogy is standard, at least where not

specirically defined in the text. In Chapter III, the

terminology and notation is as in [lO]ﬁand [11].




IT - A semantic characterization of the elimination

ot quahtifiers

Let T be a type, LT,the first-ordér language of

type T; let A be a theory in language LTo

Definition 1: We say that A satisries the isomorphism

condition ir ror every two models g and g' of A and every
isomorphism g of substructures orf u and %', there is an
extenslon or § which 1s an isomorphism or a submodel of

9 and a submodel of 9y'.

Definition 2: We say that A satisries the submodel

condition 1f ror every model 2 of A, every submodel 9 orf D,

and every closed simply existential'formula ® or LT.M’ we
. ¥

have A o & !1]=gp o

The rollowing theorem 1s well-known [6, p. 85]:

Quantirier Elimination Theorem: If A satisries

the isomorphism condition and the submodel condition, then

A 2admits elimination of quantiriers.

The Quantirler Elimination Theorem gives a surfricient

condltion for a theory to admit elimination of quantifiers.

However, this condltion is not necessary, as 18 established

by the rollowing counter-example, due to Allan Adler:

Counter-example: Let ' denote the "theory or




independent events", described as rollows:

Language or I": no constant symbols
.no runctianSymbols
a countable set.{pnlneﬁ} or unary predicate
| symbols
Axioms or I': rfor every orderd pair (S,T)lof finite subsets

orf w such that SNT is empty we have an axiom

AgS,T) : (“)(.né‘s o (%) A ngT-—wpr;(_X))

T admits elimination of guantifiers: indeed, by [6, p.“SB],
it suffices to show that ir w 18 a simply existential

rormula, g 1s equivalent In I" to an open rormulai so let g

be of the rorm (@x)y, with y aﬁ open.formula. By a standard
reduction we mayAassume that ¢ has a conjunctive matrix, 1. e.

¢ has the form
. r
() AACA o)) AN =pp() AA (A —gu(w,))

A p
n 1=1 neT,

nes - iI=l-nedy T neT

where y1:-¢-:yr are the rree variablés or g and

s5,T,S Ti (i=l,q,°,r) are finite sets of positive intégers.

i X
If SNT 1s emplty, then by A(S T) we have

r r
ThFow A(A oy )) AA{ A =ply))
A nes, ° *' i=1ner, ° 1

Ir 50T is not empty then we have




To eétablish our cbunter—example all that remains to be
dOne.is to show'that

I’ does not satisry the'isomorﬁhism condition: indeed, wé
derine two subsets M, N or [0,1] as rfollows:
(

First, we derine sequences {Mh]new’ h}new or

MO=NO= {O } k)

ir MO’ ._..,Mn,NO, ...,I\Tn are known, choose IE ""g2n+l,

rinite subsets of [0,1] inductively by:

'nl""’n2n+l in [0,1] such that all are 1lrrational,

n+l
)

2

gomy €0(3-1)/2%H, 372" (3=1,...,2
all are distinct and none are contained in Mn or Nn.
We put Mh+l=MhU{§l,...,§2n+l]', Nh+l=NnU{“l’°"’n2n%l}'
We ﬁow define - M=y Mh N= Y Nn
: new g new
We make M, N models of I' by interpreting pn(x)
to mean that the n-th binary digit of x is 1. The akioms
then'éimply require that M and N should each have non-
-empty intersection with each dyadic interval [J/27,(j+1)/2]
and are satisfied by construction. | | "

MG=N6=[O} are isomorphic substructures orf M and N.

However, any lsomorphism of submodels or M and N must take

an irrational number into ltselr. Since MON={0]}, the

l1somorphism conditlon rails,




The Quantirier Eliminstion Theorem is now going
to be extended to a necessary and surficient condition,
therewith yleldlng a semantic characterization of the

elimination or quantiflers. We need

Derinition 3: We say that A satisrlies the weak

isomorphism condition i1r ror every two models g and G'!

of A and every isomorphism § of a substructure of ¢ and
a substructure of G', there is an elementary extension
G'! orf @' and an extension of g which is an isomorphism

of a submodel of ¢ and a submodel or g't.
We then have

Theorem 1: A.admits elimination of quantirfiers if
and only 1r A is model-complete and A satlsfles the weak

isomorphism condition,

Forthe proof of Theorem 1 we need the rollowing

three Lemmas:

- Lemma 1: Let @ be a closed formula in LT. Suppose
that ror every two models ¢ and ¢! of A such thaf rfor
~every varlable-rree rormula § in L @ = v e a' E ¢,
we have G =g o G' | ®. Then g is equivalent in

A to a varisble~free rormula,

Proor: Done in t6, P. 83].




Lemma 2: Let A! b2 obtained rorm A by adjoining
a new constant. If A satisries the weak 1lsomorphism

condition (is model-complete), then so does (i8) A.

gyoor: immediate.

Lerma 3: If A is modsl-complate and satisries the weak
i1somorphism condition and contains a consatant, then avery
closed formula in-LT 1s equivalent in A to & variable-free

formula.

Proof: Let @ be closed. By Lemma 1 it sufrices
to verity that for any G1> G, k= A such that for every
yarisble-free formula y, le=¢ # Gyl y, we have
GIFQ o Gg]:@"

So assume alk=n and a2F=A and that for any
variable~free § we have Gil=% @ G,k ¢ For 1=1,2,
Iet ﬁi be a minimal subsﬁructure of Gi’ 1.8., a substructure
obtained by closing up under the functions of ai the set
obtained by interpreting in Gy all the variable-~free terms
of LT; sinée A contains é constant, ﬁi is non-emptys by
the asSumption on Gy and Gos it is clear that we can
construct an isomorphlsm = 01 ﬁl-—m4> 8o By the weak
isomorphism condltlon, g can be‘extended to an isomorphism

g! ¢ cl —> Cy where

. f
B,5C, G > c1|= A, Cyk A and BsCocG] with G,<G}.




_ Because A 18 model-complete

. t
Gli-—-g e cll-—-”@ and GEFQQ o CQFQ o 62|=$
‘and because g' is isomorphism cll.:g & c2|=@

de €. d.

Proof of Theorem 1@

< : We want to show that every rormula g in L.
is equivalent in A to an open rormula. Let w! be obtained
from g ﬁy replacing each variablr free in in % by a new
constant, and say A' is the theory obtained rrom A by
adjoining these new constants (or by adjolning one new
constant 1f ¢ ig closéd)o From.Lemmas 2 aﬁd 3, &' ié
equivalent in A to a variable-~rfree rformula; so by a
Theorem on Constants [6, p. 33], ¢ 18 equivalent in A
to an open formula. | |
= 1t Let G, GEF=Af G

1
to prove that A is model-complete, we need G

SG,23
=Gp

se

1
so let @ be a formula in L, wlth rree variables X ;ses,X ;

we mgst show that given any gl,.c.,an € lal[,
Gl[;:$[a'll‘cc:a~n] A GE-F@[al: ..4,an] s
§§ hypothesis, A admits elimination orf quantiriers,

hence we can rfind a quantirler-rree rormula § equivalent

in A to @, l.e., such that

A F %Xl‘ . .Vxn(gﬂq;)




But then

ay F(ge>y)[ags.ensa ] (1=1,2) , so
GiFQEal:ua-:an] e Gil=1[;[al, --.,&n]

and since § 1s quantirier-rree and G,s G,

al#=¢[al,...an] » a2}=¢[al,...,gn]
and hence

qll——-@p[al,...,an] & G2|=q9[al,...;an]
which establishes that A 1s model-complete.,

We now show that A satisries the weak lsomorphism
condition:

Let Gq» GEF:A and let

be an isomorphism, with B;S Gy (i=1,2)

Let 7' be the type obtalned rrom by'adjoining as new

_constants a set enumerating [@].

Then, if ]ﬁl| = { ,.and

P3lseln, |

I8a] = (8(P))yc g,

J{b} [ and > b.
‘< ERL se |8y | > < Gy {8 J)}

) >
jele |
are structures of type t!'.

Claim: < el,{bJ}J€]ﬂ1|> = < Ge’[egbj)}Jelall>

« Say the new constants
!

Indeed: let @GStL




occurring in ¢ are b, ,...,b .
' J3 In
3 }C,...X
Iet @ be Sub, T nooe
. b _’-!‘,b-
Jl In

Since A admits elimination or quantiriers, we can rind

‘¢(xl,...,xn) gquantifier~rree such that

A b o>y

s, BoO
,ai}= vxl...Vxn(@* <> ) (1=1,2)
In particﬁlar, _
a F @*é-?q; [b 1,...,bj ] and

n

)]

n

Gp k= (g*e>y) [e_(bjl) see-s0(b,

but 8.2 G (1=1,2)

1 , and since ¢ 1s quantirier rr

1

| Gll=q:[bjl ]

n

]

n

L4

,-c&,bj E)

i, = b Jooc-b.

)]

P I I

l),...,a(b o Bk yle(

1
and 8o

3.&01b ]

aal*[_bJ I GQP@*Ie(le),-..,eng

which obviously implies '

&

< @l,[bJ}JElﬁll>F=@ <202:[9(bj)}j€1ﬂll>k=@

and so the claim 1s established.

Now we peove our theorem by applying Frayne's

Lemma [4, p. 161]:

bj))"" e(bj

11

ce

)]

n

)]

n
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we can find an ultrarilter palr < I, F > such that

< Gl: {b }

3 jelB |> is elementarily embeddable in
1

L .
< 62’{9(bd)}36|ﬂ1[> S/ P

But this naturally means that we can embedd Gl

in @, T / F Dby an embedding extending g , and since

GEI / F 1s an elementary exltension or Gos the theorem

is proved.

q. e.d -




IIT - A language in which the theory or C((t))

admits elimination or quantirfiers

Iet T be a type, A a theory in language LT‘

Derinitlon 4: Iet {gi}ieA be a collection or

rormulaé in language I%; let n, be the number or rree

varisbles or g, (we assume n,= 1). Iet 7! be obtained

1

rrom v by adjoining ror every icA an ng

symbol - say p,. Let A' be the theory in language L
Py Tt

-ary predicate“

obtained from A by adjoining the set of axloms

[pi(xl,..n,xni) > @i(xl,...,xni) |1eA} .

Then A' is called an extension by definitions or A, and

the axionm.

pigxl"..’xni) R @i(xl) ldo._,xni)

1s called the detining axiom for P, -

Iemma 43 Iet A' be an extension by derinitions

of A. Then. A is complete @ A' 1s complete.

Proor: immediate, using an Equivalence Theorem

as in [6, p. 34].

Iet C((t)) denote the rields or rormal power

series (in t) over the complex numbers. We now'describe

13
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a lariguage and theory or C((t)) inthls language which

admits elimination of quantiriers:

language: function symbols: + (field addition)

® (rield multiplication)

- (rield subtraction)

"1(field miltiplicative inversion)

i
i

predicate symbols: ¢ (being an integer with
| respect ﬁo hte valuatio -

unary relation)

'R (having order n - unary

relationj

constant symbols: O (rield zero)

1 (rield unity)

Axioms: 1) valued rield axioms

2) residue classifield is aigebraically closed
and of characteristlc zero
| 3) Hensel rield axloms, il.e., _
a) value group is Z-group [9, p. 612]
b) Hensel'!s Lemma

4) Defining axloms for o, (nEZ>O):

8) (%) <> (x40 A 6(x) A (xT) A Trle(y)a6ly ™) ~ 6(x"y)))

b) e (%) < wle(y) = oy X (x"Y)

gnez>l)




It 1s a knbwn ract that the theory of algebraically
closed rields 6f characteristlc zero is complete. It then
rollows rrom [3, p. 442, Thm 5] that the theory or Hensel
rlelds whose residue class rields are algabralcally closed
of charactersitic zero is completey i.e., the theory in
the language of valued rields whose axloms are are'l), 2)
and 3) above is complete, But the theory we have described
above 1s an extension by derinitions or the thebry in the
language or valued rields whose.axioms are i), 2) and 3)

‘above, hence it also is complete. Let us call it A,

Since ¢((%))}=A , A is the theory or ¢((t)) in

the described language, Now we can proceed to prove |
Theorem 2: A admits elimination of quantiriers.

Remark: Welssprenning [8] has exhibited an elimination
or quantiriers for C((t))iin another language. However, this
language contains a cross-section, which_is a runction not
elementarily derinable in the theory orf valued rieldsi hence,
his theory 1s not an extension by definitions or the theory
or C((t)) in the language or valued rields.

a Theorem 2 will be an immedilate application of the
‘Quantirier Eliminafion Theoreh, once we have ppoved the

Tollowing two Propositions:

Propoeltion 1: A is model-complete.




Proposition 2: A satisiries the isomorphism

condition.

If kA, |§| naturally becomes a Hensel rield,

.which we shall denote F, where @3 is the ring or integers;

we shall designate by G the value group thus obtained (which

is, or coufse, a Z-group), and by ord: F*¥ —s @ the
valuatlion; F will denote the residue class rield.
Fof the proor of Proposition 1 we shall use two

Lemmas

Lemma 5: Let 3fA 3 then then ¥ admits a cross-
-gection, 1.e., there exlsts a function w3: G —> Fx

which 1is a group homomorphism and such that ord.r = idG .

Proor: Let U be the group of units ih F, l.e.,
U= {ueFlord u = Ol |

Clalm: U is diviéible as a multiplicative
subgroup 6f ¥, 7

Indeed: let acU, nEZ>O 3 show xn—a=0 has a solution
in U: this 1is an immediafe congequence of Hensel's Lemma,
sinée_? has characteristic zero, and claim 1s established.

Now consider the short exact sequence

{1} —=> U —— F* Ord> G > {0)

Since U is divisible, the gsequence splits, and

we get a homomorphism 7 1 G ———F* such that ordew = idG

16




l.e., we get the required cross-section..

g.e.d.

ILemma 6: ILet A be a theory without rinite models

in a language or cardinality RO‘ Then: i
A is model-complete  ror any model Gl A of cardinality X, | I

the Diagram or g i1s complete- .

Proor: = : obvious, from one of the current - 7 |

derinitions of model-completeness.

< t let ﬂBl,lBEFA: ﬁlg B, .
By Robinson's test rfor model-completeness, it surfices to
show that ir g 1s a primltive sentence in the language orf

ﬁl and ﬁ2P=@ » then 81L=@. Indeed: in g occurr only a— ]

rinite set 8 or constants designating elements or [@l].

By Skolem-Loewenheim, we can extend S to a model 33F=A

such that Sg ]ﬂsl and @< B.c 8, o i |

By hypothesis, Diag B; 1s complete. But ' -

and card]ﬁSI = R

32}=Dia.g 8y  and
e ke , smo.
geDiag By s Ll.ed, Bs = o

and Bgs Bl = ﬁlF=@ .
dec.d.

Proor or Proposition 1l: By Lemma 6, it surrices




18 |

to show that FEA, cardla]:&o = Diag ¥ compiete.

So, assume F|= 4, card[3]=xo. By Loewenheim-Skolem, i1t
surfices to show that - | . i

81,8y FDiag §, card[g,|=card|e,|=x, = B = B,

We may assume 3Fg B (1=1,2),

ILet I be a countable set , D a non—prinéipal ultrarilter

(nap;uof.) on I3 it now surfices to show that

T
8,7/p = BQI/D (as valued rields) .

1t 18 certainly true that @lI/D and 32;/D have isomorphic
value groups (say by [ 3, p. 438]); they obviously have
1somorphic reéidue class rields or characteristic zeroj

- then, assuming the Generalized Continuum Hypothesis, our

Proposition rollows rrom the rollowing version or the
theorem in [ , p. 4917:

"let By (1=1,2) be y-pseudo~complete Hensel rields
of cardinality Rl with isomorphic value groups G, or
cardinality&1 and ilsomorphic residue class rields or
characteristic zero. Assume there exist normalized cross-
-sectlons Ty Gi'———> Bi « Let Fg Bi be a Hensel rleld
with ordF countable; then there exists an isomorphism

. "

dec.d.

Remark: A 1s thus proved to be model-complete,




and the @n‘are predicates in 1ts language which are
elementarily derfinable in terms of the remaining ones,

ror the theory or C((t)); however, this theory is no
longer modelvcompleté Just in ordinary valued field

" language (hence does not admit elimination of quantirers
in this lénguage). In our proor of model-completeness we
use the presence of the predicate ©, when we allow "let
Fo B, be Hensel rields" to signiry that the prime elements
of F must be prime elements or Bi‘ Similarly, the exiétence
or the predicates S will be strongly used in.the proor
that A satisries the isomorphiém condition. We need some

more Lemmas:

Lemma 7: Iet G be a Z-group. H a subgroup of &
and 1€H (1 1is the identlty or G); then '

His a Z-group & H is pure in @ .

Proor': < : want to show (H:nH)=n:
€ : H/nH —~——> G/nG is a well-derined group-homomorphism
and because H is pure in G , ¢ 1s injective, hence

(H:nH) < (QmG)=n

.But the diagram
| B r o

Ty L lwrG,
. . J

H/nHg - 3 > 3/nG

commutes, and since 1€H, ke€H, for any k=1, ...,Nn.




But WG(J) fé WG(k) - Tor all j,k=1, sea 2 Jfék
hence T (J) # WH(k) for all j,k=1,...,n » JEk

50 (HmH)z n

® ¢ say H i1s a Z-group, leH, but H 1s not pure in G.
- Let h€H and geG-H, h=ng (nez>o) .

We have “(H:nH) = (G/nG) = n.

By the Euélidean aigorithm, we.can rind
h'¢H and kEZSO such that h=nh!'+k with 0< k< n.
But then n{g~ht)=k s g=-h'eG 3
gince k< h » this 1s only possible with. k=0, i;e.,

=h', which contradicts geG~H,

d.e.d.

Lemma 8: Ir FEAN, acF then

& has n-th root in F & nlord a 4n ord F*,

Proor: =: obvious
<1 take a cross-section ‘7: ord F¥%¥ —-o F
and let a'sr{ord a) 3 we have that ord a = ng, ror some
peord F* 3 also, ord a'=ord a, so a=ua't, ror some u
such that ord u =0 ., By Henselt's Lemma, u hsas an n-th
root, hence it suffices’to show that a! has an n-~th root.

But this 1s so because a'= 7(ng) = (wg)".

g.e.d,
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Corollary: Ir FkA , ac [_.;z] and 3]=@n[a.], then

a has‘én n-th root in %.

Remark: If §kA , ¥ 15 "more" then Just a rield;
however, to simpliry notation, we shall also denote by &
the value rield which is underlying, by .ord the valuation,

by ¥ the residue class rield, etec.

Lemma O: Let ¥|= A , < ¥, and let ¥ contain a

prime element of ¥ ; then

'3}=A g & 1is relatively algebraically closed in j.

=2
Proor: since F is Henselian, it surrices to show

that ord 3* is pure in ord ¥* and that F is relatively
algebraically closed in ¥ . ; the latter is obvious,
since ¥ 1s algebraically closed. As for ord F* being

pure 1n ord ¥#*, this is a direct consequence of Lemma 7.

< : ¥ 1s Henselian, lecords* 3 so, by Lemma 7,
1t surfices to show that ord F* is pure In ord ¥* :

asgumne acord H* , B = n g € ord Fx ., nAeZ>O H

let o=ord a s AcH .

B=ng=ord b , bex .

By Lemma 8 b has an n-th root in 3, hence b has an

n~th root in ¥ , so njord b 1in ord F*.

dee.d.




Derinition 5t Let T be the type of our language,

let 31,32 be two structures or type T 3 a rfunction
g 31'——1% Fs is derined to be & homo (epi, mono, iso)~-

—morphism in the usual way; ¢ willl be called a value-homo

(epi, mono, iso)-morphism whenever it respects the runctions

in our structures and the ¢ relation, i.e., takes integers
into integers. To be called a value-homomorphism § need
not take prime_elements into prime eleﬁents of elements

of order n into elements of order n, i.e., the concept

of value-homomorphism is weaker than the céncept or
homomorphism. However, a value-isomorphism is the same

thing as an isomorphism,

Temma 107 supposg.ﬁg ¥ic Hl and 3',Hl,£2F=A

and 8 F —> ﬁe 1s a monomorphism; then, ir we
can extend § to a valﬁe—monomofphism Bl Ft —> Hy s
which takeslat least one prime elemenﬁ'of 7' (or ﬂl)
into a prime element of Mos then 8(3') A , with g'(3?)
having the structure induced by Hy 5 1lee., 0'(¥?) is &

submodel of'ng

Proor: immediate.

Corollary: To establish the isomorphism condition

ror A, hence prove Proposition 2, we need only prove the

rollowing:




Given Hi}=A P 3i: ui (1=1,2) and an isomorphism
8 : Fq—> 3, we can rind JF! and §' such that:
a) FS 3t Hq

b) 3! is relatively algebraically closed in ¥y

c) gt 1 Ft —— Hy, 1s a valueémonomorphism
exténding 8§ and taking some prime element or'#l into &

prime element or uz.

Proor: Lemmas 9, 10.

We now prove three more Temmas allowing us to

carry out the dirferent steps required to extend 8 2

ILemma 11: Iet gi, Hi, § be ag 1n the Corollary
to Lemma 103 then we can extend 8 to a value-monomorphism

g : Ft —s By s where F.c F'a Hl and where g!' takes

1
some prime element oI'Hl into a prime element of’He.

Proor: Zgc ord “1*‘

Let Ay = { keZ>O]kEord31} (1=1,2)

- - .

Case 1: Al# /I

Then let 'n = min A and say ord r

1 =n, with r

1 1891
and let ré=e(fl).
Ir n=1 we are done, since g is an isomorphism,

not just a value-~isomorphilsm., For the same reason, observe
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that n=min A, and ord g(ry) = ord r, =n .

So we may assume that n>l.

By the Corollary to Lemma 8, r, has an n-th

1
root in Hl s i.e.,,‘xn-rl=0 has a solution in Hl ~ say a;.

"But alnzrl hence nord alzn hence ord a.=1, i.e.,

1

ay 1s a prime element of'Hl.

Also, xn-rl is irreducible over 31 3 indeed:

e{&l(al)/sl) < L%l(al):ﬁl] £n |,

but alsc the order orf the equivalence class or ord aq

in ord 3l(a)%/ord F* must be n  (by minimality or n),

hence nle , i,e., n=esn , so nzez[gl(a 3.1 .

l)' 1
But ¢ 1s an lsomorphism, so

Xn—fl irreducible over 31 = Xp;fé irreducible over 32

and because ord fé:n P Xnmfé=0 has a solution in 32 -

- 8ay a5, We can now define
} S —
ot : ¥, (a;) > ¥, by
g(a1)=a2 P
which is- obviously- an algebraic monomorphism.
It also 18 a value-monomorphlsm for the rollowing reasont

n-1 1

let bEgl(&l) : b=i§0 gial ’ giegl

and -i%J = . ord (giali) # ord (gjalj) 3

indeed: ord (gial*) =ord g + 1 orda, =ord g, +1




J) -

ord ;sjal

= ord g + j , and

14 = 0< |i-jl<n so

ord (gialé) = ord (gjai‘j) = 1-j = ord gy — ord g; € ord Fy*

J
which 1s & contradictiony hence

ord b = min {ord g + 1 | 1=0,.4u,n~1}
and similarly ord s%(b) = min {ord e(gi)+i]i=0,...,n—l}.

since g 48 a valﬁe-monomorphism,

Say ord b = ord g, +i1
. io 0 3

ord gi+i> ord gio+io = ord gi -~ ord gio > iO - 1 =

sord (g./g ') >4, -1 = ordelg/g, )>1i. - Jj =
VL io _ 0 1 io_ 0

= ord_g(gi) + 1 > ord e(gio) +1, sa

0

ord g'(b) = ord g (gi ) + i
RE N R

and since g 1s a value-monomorphism so is 8'.

Case 2: Al =g .

In this case, because g is a monomorphism , Ag;ﬁ

Hence, ir ti-is & prime element of ﬂi? t, is

, 1
transcendental over 31, and by a reasoning perrectly

similar to Case 1 , we get gt.

ge.c.d.
Remark: Iet ¥, A , (1=1,2) , ¥.2 ¥ Henselian,

and 8 : % ——> H#, & value-monomorphism. Since char F=0, we




may assume Fg F by identirying ¥ with a subrield or ¥
maximal with respect to having trivial_valuation. We can
extend ¥ to a subrield Ei or ¥, maximal with respect to
the same property in ul, hence isomorphic to the residue

class rield or nl; 8o, we get

¥Fc 3Fc Hl s Fc ng ﬁl

Now 6(¥) will have the trivial valuation, hence may be

extended to Hé » 1.e., we write

8(F)e 5(F s oS Hy o

In this sense, we get

Iemma 12: With the above notation, let aeﬁiig , a

algebralc over F3; then we extend § to

8! : F(a) —> ¥, , a value-monomorphism.

Proor: Iet £ = irred(a,3)

irred(a,gj

, g
then f]gs let r® be the transrormed polynomial or r by §: .

¥ will ve irreducible over o(%), I‘e]ge and
%0 (F) [xlc ¥ylxle u,[x] 3
but ﬁé is algebraically closed, hence gP splits over

Moo ¥, , hence fe, which is irreducible over §(¥), has

& root in M, 3 let bek, be such that rP(b) = 0. Now we




can define 9! : ¥(a) —— ¥, by

8'(a) = 3
of course, §' is an algebralc monomorphism. It is a value-~
umonomorphiém becauée J is Henselian, "hence has the
‘uniqueness property.

d.e.d.
Lemma 13: Suppose JFe F < 31F=A ’ H2F=A,~3 Hengglian,
E’algebraiéally_closed, and g : F —> Ho ﬁalue- mdno-
morphism. Suppose q€divisible closure of ord F* 1n oxrd Hl*;
let n be the smallest positive integer such that ngeord F*;

then we can rind aeﬁl

a) a 1s algebraic over 3

and ¢! such that

b) ord a = g
)

c) 8' ¢ ¥(a) — ¥, 15 a value-monomorphism
2

extending g .

Proor: Say ord b = no , bex

then b has n-th root in ¥_ - say an=b, aEy

1 1

then ord a = ¢ , a algebraic over F.
Claim: 7(x)=x"-b 1g irreducible aver 3.
Indeed: éay g = irred(a,¥) , deg g < n.
Then; since ¥ is algebréically closed, the rield extension

F%{a)/3 1s totally ramiried and

1 s e=e(¥,(a)/5)=deg g < n,




but e-ord a € ord ¥* ,which is a contradiction,
So irred(a,g) = x"p s but
x".b irreducible over ¥ = x"-g(b) irreducible over g{®)

Claim: xn—e(b) has a solution in.ug.

Indeed: ord §(b) = ylord b) = wine) = nu(a),
‘where L 1s the ordered group isomorphism induced'bj 8
between ord F* and ord §(F)*.

So a{b) has n—th root in ¥,, say ¢ , and we

can extend § to 8 : 3(a) ¥, by .
g'{a) =c .

gt is obviously an algebraié monomorphism, Again, it is

a value-monomorphism because F is Hensellan, hence has the

uniqueness property.

q.e.d.

We are now ready to start the

Proor of Proposition 2: Iet-&i; ﬁiF=A, and let

1 > 32 be an isomorphism. By Lemma 11 we can

extend 8§ to eq : @ —>¥#, , where Fis Q= M, and 9

8: &

G

takes some prime element or Hl into a prime element or

oo Since ﬁl and u2 are -Hensellan, we may extend p. to

| G
the Hensellzation or ¢, &, i.e., we get

where 98 extends g, 31; ec nl , and ee takes a prime




and € is Henselian,

element in nl to a prime element in ﬁg R

Now, as in Lemma 12, we may consider

~ . )
€ denote the relative algebraic closure or 2 in Ei.

Using Lemma 9, by an easy transrinite induction we can
now extend 98 to

Gs P —— H2 , Where

:I'
£ = 828 c i

7 -
Note that £ i1s algebralc over £, hence § 1s algebraic
over €, and so § is algebraiéally closed in ﬁi 5 but
this implies that T is algebraically.closed. We may
aiso assume that £ is Henselian (otherwise, we simply
take its Hensellzation). -

We are now in a position to apply Lemms 13;

Well-order the divisible closure or ord £* 4in ord nl

and by transflnite inductlion extend 8 to

8' : F' —> ¥, such that | ;
¥e 3 ' ¥, » and 3! 1s algebraically élosed, and ord '«
_is pure in ord ﬂl*-, and Ft is Hensglian, and .g' takes
some prime element or ﬂl into a prime element éf HE.

But because F' 1s Henselian, ' is algebraically

closed and ord F'* is pure in ord ﬁl* » &' must be




relatively algebrailcally closed in Hl . Hence, by the

Corollary to Lemma 10, this proves the Proposition.




iy - A language in which the theory or rinite

rields admits elimination or quantiriers

We now describe & language and thedry or rinlte
rlelds in this language which admits elimination o guan-~

tiriers:

Language: function symbols: +(addition)
*(multiplication) .
—(subtraction)

constant symbols: O{additive identity)

*w

1(unity) .
predicate symbols: =(equality)

This language is the ordinary rield language; hencerorth,
we denote it LT. Now, we introduce ror every positive
Integer n an n+l~ary.relation symbol: @ . I%, denotes
the language obtained by adjoining the.predicate symbols
[@nlnéz>o} to L. |
We now denote
% ~ the theory of rinite rields in L (1.e.,
the set or sentences of Ly satisfiéd by all
rinite rields)

T - the theory of pseudo-rinite rields in L%

(1.e., the set or sentences or L satisried




by all the inrinite models or 2).

In [2, p. 255, Thm 5], we can rind a recursive
axlomatization ror 7. |

Neturally, Zc 7, i.e., Fkm = 3k= .

Now, we let v* and 3! be the theories in the

language 1%1 obtained by taking ror axioms respectively

T U {rx, TEavx (@ (x O,..1,xn)<h—>ﬁy(xnyn+...+xo=0))lnez>o}

and
( (A (v y=v,))
2 U {VX s s VX "HY %-.Ey A y}‘éy’_Avy’ V) =y -
0 n 1 n-i,j:l 193 =1 1
i#J

(@n(xo)"".!x HEY yn-i--..-rX ‘—O)))

, n
ATV, Ty ( A VA7 Avy( v y=y.)) =
1 n i,J=1 o i=1 1

1A .
" 1
ﬂ(@n(xo, ') ;Xn)ﬂvy(yzoviilyzxo ) ) ) ) I nez>o}

Remarks s
a) X' is an extension by derinitions or Sy
glven 332, ¥ becomes a model of 5! in a canonical way:

Case 1: ¥ is inrinite - then we derine the n+l-ary relation

wn3 by

. .n
(ao,o..,an)egng «» the polynomial ay teootly

has a root in ¥




Case 2: F is rinite with k elements - then wn3 is defined
as before ir n#k , and mk?'is derined by

(ao*""ak)6$k? & a, is a generator or F*.

b) Fkr' & FEZ! and ¥ is inrinite
e) FEZ! = (¥ rinite with k elements o (,1,0’,...,0,1)5991{3)

Iemma 14: 7' admits elimination or quantiriers e

o' admits elimination orf quantiriers. o o ‘ !

Proor: <: obvious, since St'c 1!,
=: by Theorem 1, it sufrices to show that
i) 7! model-complete = X! model-complete  and
11) m* satisries weak isomorphism condition = =! satisries
weak isomorphism condition. |

* ! = .
1)t Let 3jj=z (j=1,2) and :;1; Fo o

Ir ¥, is inrinite , 3 J[='1r' (3=1,2) and ¥y<F, rollows _ ‘
rrom hypothesis. ' i

Ir 3;'1s rinite with k elements, ' ' %I

k

- &F &
Fl’o"..°’o’l)/€-cpk 1= @k 2 n ‘Jl = (l.’o:snt, O:l)gwkgg =

= 32 rinite with k elements = 31:32 - . i

ii) Let EJF=Z’ (J=1,2) and g an isomorphism
oI non-empty substructures:
If both 31 and 32 are infinite, EJL=W' s+ and 8 can be

extended by hypothesis.




Ir 31

is rinite with k elements,
(1,0,4..,0,1)¢g, 51 = (1,.t=,o,1)g¢k32 gbecause 6 is
an isomorphism) = ¥, 18 rinite with k elements.

Hence 6 is an lsomorphism o1 two subrings or two rields
with k elements, the subrings containig the prime rields;

80, obviously, § can be extended to the fields with k

elements.

Ir 32'15 rinite with k elements a similar reasoning holds.

q.eld.
Theorem 3: 7' admits elimination. or quantiriers.

Proor: by Theorem 1, this proof is immediately

reduced to the proor orf the rollowing two Lemmas:

Lemma 15: 1! is model~complete.

+

TLemma 16: 7' satisries the weak isomorphism

condition.
For the proors of ILemmas 15 and 16 we need

Lemma 17: Let ¥, Fw! (1=1,2), and assume that

31 is a subrileld or 32 3 then

. - S
§i5 ¥, (i.e., ror alln€z ., p 1=y %2 n 3y

n+l) -

© 31 1s relatively algebraically closed in 32.

v
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Proor: =: say 6€F.~F, , o algebraic over %.i
—— 2 °1 _ 1

n N1 :
let r= irred(a,&"-l) = X 48y, .0 X teeatt € 31[;:] (n>1)

F R n+l
then (ao,...,an_l)ﬁgn 1=g%2N Fqy because r has

no roots in ¥, but since 1(q)=0, (ao"°"an-1’l)e$n?2 n 3ln+1

which 1s a contradiction.

: & n
<t (ao,..f,an)egn 1 & a X +..otay = f(x) has
& root in ¥; » f(x) has a root in 3, (since F, is
relatively algebraically closed in 3, o
& n+l
= (aognoo,an)EQn 2 n 31
Jecad.

Proor of Temms 15: since 7' has no rinite models,
by Lemma 6, to prove that w! is model-complete it surrices

to show that .

FET! and card ¥ = Ry = 7%y Diag 3 complete:
Let 31,32%=W’ U Diag ¥ ; Wwe we want to show that

¥, = 3, Fin language L_,, of 7' y Diag J).
We may assume that 3o 3y (i=1,2) , and by Loewenheim-

~-Skolem, we amy assume card ¥, = R, (i=1,2) .

Now let D be a non-principal ultrafilter on

the set or positive integers I; let
: I _




Since ei 1s pseudo-~rinite, Ei 1s hyper-rinite; so we have

3:'315 ei » with ei hyper-rinite; by Lemma 17, ¥ is

relatively algebraicaliy closed in ¢

4 (1=1,2); and also

card €, = card g, > card F. Hence, by [2, p.247, Thm 1],

81 and e, are isomorphic as rields over F3 but this

implies that they are isomorphic as structures of type
T!'!', since the @nei relations are'algebraic", i.e., pre-
served under rield-isomorphisms. Hence

Q.€ed,

Proor of Lemma 16: Iet aiF=W' (i=1,2), ﬁi; ei

and 8 sl_———> ﬂg Ibe an isomorphism (of structures

of type t').

si 18 a substructure or Ei,

hence an integral
domaiﬁ. Let Si be the quotient rfield or Qi : 31; gi R
and certalnly g extends to a field-isomorphism -

8 : F) —> Fo
6 1g also an jisomorphism of structufes of type t!', as éan
be easily checked; so g has the rollowing propefty:

n . n
an; +,.,+aoegl[x] has a zero in al e e(an)x +,..+e(ao)€32[X]

has a zero in &

2 *




Now let ﬁf be the relative algebraic closure or 3,

in €..
1
Of course, we again have that

n . n
8, X +oeota €3, [x] hgs & zero in ?i ® B(an)x +...+9(§O)632[x]

has a zeroc in 3{ .

Hence by [1, p. 172, Lemma 5], we can extend 8 to & rileld-
~1somorphism
Mr ~
8 :31_—935

9 1s still an isomorphlism or structuresor type t! because now

5l e '~rn+l n
(ao, uto,an)E@n -1 = tpn 1 n 31 o a:nx +...+&O ha.S a,
n N Y
zero in 81 o anx +o ooty has a zero in 3i

n o~
" e(an)x +°.f+e(ao) has a zero in 3, e

! ) n 1
® ola )x +...+8(ay) has a zero in e,

: n+1 r
, e I e ¥
ﬁ'_ (e(a‘o):O")e(a‘n))ewn 2 n 32 = Fpn 1 .

Let q = card 62. By upward Loéwenhmim~8kolem,

let ¥4 be such that €, <H', and card ¥', = at |

+

Now, let H2 be such that & < ﬁf < £2 s, card ng = a‘

2

and ﬂa i1s satursted.

Then we have that
32 < ug s Hg 1s hyper-rinite, card Hy = ot and ﬁg is

relatively algebraically closed in Ky (because e % H,) .

4
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Let g = card Ei = card ﬁg_sa < of 3

By downward Loewenheim-Skolem, let Hl be such that
-l '
s ¥y S €, and card #, = B. Then we know that
- . b {
Hl is quasi-rinite (because nls 81 = ulkzv ), cardﬂl < card ng,
and §§ is relatively algebrailcally closed in nl.

So we can extend 8§ to a r'ield~-monomorphism

9t Hl — u2 such that
e(Hl) 1s relatively algebraically closed in Hoe

Ir we take @negﬁl) to be derined on e(nl)

through 8§ , we get , since W‘F=Hl, that w‘k:e(ni) .

But now Hg,e(ul)}sz, e(ul) is a subrield or ¥,, and is

relatively algebraically closed in ﬁg. Then Lemma 17
applies to show  that e(nl) < Hy, , l.eel,

with e(ul) defined as above, g(¥,) is a submodel of H..
Pn 1 2

Hence we have proved the weak 1somorphism condition.

Je€.da




V ~ Sets derinable over a rinite rield : the

rationélity o' thelr Poincare series

In this chapter, ﬁe shall use the rollowing
Notatlon: I% ~ ordlnary rield language, as described‘
in Chapter IV
.

rr "~ ordinary rield language with all the -

n+l-ary relations ¢, 2djoined (n€Z>O)
Z =~ theory or rinite rflelds in Lf _
2! ~ theory of finite rields with derining
axioms ror gp adjolned (as in Chapter IV)
k - rinite rield or cardinality q
ks ~ unique extension or X or degree s

X ~ algebraic closure or k

Derinition 5: Let Ues X 1 then U is called a

derinable r-set over kK & there exists aformula ¢
in I% g Wlth r free variables such that
. 2

U YET T

r ' |
e S N U= {(al,...,ar)éks lksk=¢[al,...,ar]} .

We then say that U is defined by o .

Remark: If U is derinable over k, the rormula 0]
derining U is not unique: in rfact, every rormula representing
the same element in the r~th ILindenbaum algébra of X will

also derine T,
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Derinition 6: Say U & ¥ is derinable, derined

by & « We have US = [(al,...;ar)EkSr|kSF=m[al,...,ar]] 3

The zeta~-runction of U is defined by

. « o N (U)
Cu(t) = exp 2y —5— ¢

5

where Ng(U) = #U, = cardinality or Uy -

The Poincare series of U 1s derined by
: L. d B - 8 .
Ty(t) = t 3g log ¢ (t) = Sil NsﬁU) v

The main result or this sgection is

Theorem 4: The Polncare serles or a definable

set 1s rational.

To prove 1t, we rirst reduce Theorem 4 to
Lemma 18: Let U be a derinable set, deflned by
® over the rfield k with g elements; let

m = max [-n€Z>Ol¢n occurrs in gl 3 if g¢>m , then the

Poincare geries of U is rational.

Theorem 4 1s indeed a consequence or Lemma 18 :
Suppose U 18 derined by g, m is as in Lemma 18,

but g< m3 say q:pt

» P & prime, amd let t' be the samallest
: . 1
positive integer such that t]t! and q'zpt >m. Then

Bt o5t/ _ 8/t and

g!' = p




, oo g5 t'/t g oo s
Ty{t) = I N(U) 7 == N(U) t7 + = NS(U) t
. B=1 % s=1 g s=t1/t+l
Now, ir U! is the set derined by v over k':kt,/t , We
naturally have s> t%/t = NS(U) = NS(U*) ,.and
by Lemma 18 FU,(t) is rational, d.e.,
B> N.(U) t° is rational. .But certainly
s=tt/t4l  °
= NS(U) t is rational, being & rinite sumj hence,

assuming Lemma 18 , WU(t) is rational, rfor any derinable
set U.

All our erforts will now be directed towards the
proor or Lemma 18. It wlll be accomplished by succesive

reductions and one rinal computation.

Definition 71 A definable set Ve kT will be

called a variety over k ir it can be derined by & formula

of type
o n | .
ﬁ . pi(xl, .. -:xr) =0 » With
pi(}cl,...,xr) € K[}Cl, -nt;xr] (i-—‘—-l,..,n) -

Derinition 8: A definable set Pe k° will be

called primitive ir it can be derined by =a formula or

type n
2 pi(Xl,...,Xr)=O A i‘El Cji(xl, --.,Xr);éO

1
With pi('}_{‘), qj(:‘E) 6 k[..}_c‘] (i=l,...,n ,. J=l; --t,m) .

1
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Derinition 9: A derfinable set will be called

constructible 1f 1t can be derined by a rormula which

is quantifief+rree in IL ‘.
S TTek

Lemma 19 : If Ug kr is a constructible set, then

U(t) is a rational runction. Hence, so is WU(t
Proof Dwork [5] showed that CV W(t) 1s rational,

Tor V,W varieties.

Any primitive set P 1s a dirference or varieties:

Lo

n m
- in ract, ir P is derined by A p.(X)=0 A A q.(F)£0 , we
1=1 "% =1 7
o, n m
have that =|( A 1(x) A A dy (x)#o) ( A (X) =0 A 5T 9 # 0)
| i 3=1 AR =
So ir V is derined by A pi(X)=0 and,
i1=1 .
m o
W 1s derined by ( 7 qj(x))=0 , then
J=1 Y. .

P = V-W. ©So the Lemma holds ror primitive sets.

" Now observe that the intersection or primitve
sets 1s primitive; on the other hand, any constructible
set 1s the union or primitive sets, iie.,.ir U is
constructible, there exist primitive sets Piseees P

n

such that U= y P and so U, = U (P, )
1=1 1 g 41 i’'s 3

1t is easily veriried that




N _
#H U (p))= = (-0 #(n(p)) , L.e.,
"1=1 Be{l,...,n} .1eB:
(W= 2 (0P om) - 3 () (ny,
: Be{l,..s,n} . 1eB Be{l,ees,n}- .
where Py = n Py ) , Tor all Bg{l,.;.,n].
. ieB
But Py, 1s a primitive set, hence o (t) is rational,
. B.
#B
and. so _ gd(t) = T ¢ (t)(-l) .

Bs{l,..,n} Tm
is rational. -
d.e.d.

We shall now reduce the proor or Lemma 18 to

Lemma 20: Let Uc k¥ be detinable, derined by
an atomic rformula in LT, x OT type |
. 2

@n(po(xlj .“,Xr),.."‘pn(xl, t_ol\_,xr)) 3 With
pi(xl,-..,xr) e k[XlJoo.JXr] (izl’ o&egn)

(obviously, we mean that U is defined by a rormula or Lo x
. 3

N

equivalent to 'mn(po(f),,;.,pn(f)) )« Suppose n>g=#k;

then 7,(t) is rational.

We state the reduction or Lemma 18 to Lemma 20 as
Temma 21: Temma 20 = Temma 18.

Proor: Iet U be a derinable sety it has been

proved in Chapter IV that ' admits elimination or




quantiriers, hence we may assume U defined by & quantirier-

-freé formula ¢ in the language LT, X ? 1.e., U is the
>

unlon or sets derined By formulae of type

. K v
*) A ( =0 A A ( x gosey -JE A
( RS ) 2 l@p nj o(.) pnj,nj( ))

4 n _ o
A qk(X)f—O /\ A —t@n ( Il O(X):u-:Pn n (X))
k=l m’ m’ m-

Again, since intersections or sets derined by rormulae

of type (*) are again derined by rormulae or type (*), -
it will surfice to prove that the (-runctions of sets

derined by rormulae or type (*) have the required property.

As before, we amy assume Ex< 1 by replacing

g — g —
A_q (X)#0 by W qk(x) A 0 3 similarly. we may
k=1 ' _

asgume n< 13 indeed:

—

n _. n n
S A= Bz(p,  (F)4e. .t (X) 2 ™) » -az( 7 (p, %)+
=1 Byps O s ‘mel T2 O

n
— m
Foo .+pnm,nm(X) z ) =0) .

we can always assume E=01

Furthermore,

2k a(D)£0 A 0, (26(%),ee0p (%)) = a(E)#0 A B2 (D, (E)+.. ot

—_ N
+Pn(x)z =0) ,

2 a(B) Aora2(po()+o 42, (F) 2°=0) » ~Fz(a(R) (p,, (%) 2%+ o404(%) )=0) ,




2t Hz(q(%) (p,(%) 2% 4D (%) ) =0 =, (A(X)py(X), ..o a(X) Pn(¥))

Should n=0, we can. always introduce the conjunct ﬂ@l(l 0).

So, we may assume £=0, m< l. We are now reduced to showing

our result ror sets defined by formulae of type

H Vv
(*x) AD(X)=0AA o (p (X) 5 e0esp (x)) .
g1t J=u+l Py B0 Dyofy

Indeed, ir we get it for this case, then ir we consider
the set U derined by |

M — v :
A Py (X)=0 A A o, (o00) A= (...) ,. we observe
i= J=1 73

that U=V-W, where V is derined by a rformula or type (#*x)
and W by ¢ (..a) , 8Q

N (U) = N, (V)«»N (v N W) ,where VAW is again

derined by & formula of type (**),

Now to prove the resﬁlt for a set U derfined by

(#=), 1t will sufrice to show thw rollowing:

Claim: Let V, be derined by.pi(E)zo (=1, vuusv).

Then for all Bc {1,...,v}, Vo= U V is & set such that
| V5= 1¢B *

d
T log CVﬁ(t) i§ rational.

Indeed: suppose we have proved the Claim: then

N (0) = & nl( v,).) ZB;u,’i.,vﬁ’“#B #(Vg),




B
> -1 .
B:[l,...,v}( ) ( Vs

Now to prove the claim:
Let By=BN{1,....u]

By=BN{u+l,...,v} : Vg=U V., U u ¥,

i
iEB 16332
but 'y V, can be defined by pi('f)——‘-o »  and
iEBl ' iGBl :
uv ' (7 ( g )
. can be defined by Zz( 1) Z Y4, 4P =0} ,-
5€B, 9 J€B, Tyt ng20

i.e., by @n(qo(?c'),...,qn('i)), where n=JéJB ng and the
SO . o

qi(f) are adequately computed.

Hence VB is derfined by

iGB i(x) =0 v @ (qo X),...,q (x)) , hence by

EZ('ITPi(-JE) qn(f) Zn-!-“.—i-'frpi(-i) qo(f) = 0 ) hence by
9,(10, (B 0 (B 5 0o, (D (B)), |

and ILemma 21 ids establlshed.

J.e.d.

Proof of Lemma 20: Let U be defined by

cpn(po(xl,.. .,xr), .es .pn(xl, censx)) s

U, = { (al,-..,ar)EkSri there exists b€k, such that

Pnga)bn+...+p0(.3) =0 }.
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4t

n
Let f(xl,...,xr,z)=p0§x1,...,xr)+...+pn(xl,,..,xr)z ek[xl,...,xr,z]

r+1

Let V be the variety in k derined by 1r(%,z)=0 :

v, = {(E,b)ek;r+llf(?,b)=0}.

= el —_ _ .
Let vﬁ,i = f(a,b)eks +1Pn(a)zn+---+Po(&) has i distinct

roots in ks and b is one of them}

(4=1,...0,n)

obviously, we h%ve
' and we observe that

'#Vé,i

i

=
]
S
I
S
<
H
I M3

i=1

Now Jet Hy be the constructible set in r+i-space derined by
N _
P(X,2,)=0 AwaoA £(X,2,})=0 A A 2z, -2 £0 .
(Fo2)=0 Aeih 2(Boz)=0 p R aynyf
A k#m

By Lemma 19, GH (t) is ratioﬁal. We also have
1 . :

'(\Hi)s = {(E,b)eksr_!'i]f('éf,bl‘:):O for k=l,...,1 and b #b ir k#m}

Our aim is %o compute #Vﬁ from NS(Hj); For thls purpose,
’ -

i

let E ;= {(E}b)e(Hi)S[f(E,z) has exactly i distinct

roots in ks]

F,p = {(E,b)egﬂi)s]fta,z) has >1 distinct roots in k)

Of course,

;Hi)s = Es,i v Fs,i

and also




{ rY #Vfﬁ
#{aek_T|r(3,z) has exactly i roots in k_} = L. 4m = 5,1
s "~ N S 1l s,1 1

L

" | ;
hence #vs,i_* TI-T)T #Es,i and 1r we can compute

$E, 4 = N (H) - Py adequately, .we ar through.

Indeed, consider the map
n

T, ¢ U E > H
i 141 S,k g,1

(E’bl, at._’bi; l.obk) i_'_> (.é—:’bljoss,bi:)

Ty is certainly surjective and also

kfk! = 'Wi(Es,k) N ‘n‘i(ES,k') =g

(indeed: (&, byseessby Yer, (ES w = fl2&,2) has exactly k roots)

S0 n -

Fs,i xk=?+l Wi(ES,k) ». ‘hence
z 4
, = = E .
oot Tt x
But ror ke=1+l,...,n T%:TTT #2g, K " #wi(E »

' 1
hence E = N (H.) - #F =N {(H,) = - E
# 5,1 *g( 1) u 8,1 s( i) el %J~i§£ # 8,3
but we also know that #E, = Nf(Hn) (rrom the definitions)
. s ‘ .

and so we get

#vé,h = Tﬁ%TTT.NS(H
#Vé,izti%TT&#Es,iz(i:%j}{Ns(Hi) Z (3-1): T )

J=1+1

(imlg 6o v,n""l)




This certainly determines each Vg ; 88 & linear
2

combination of the NS(HJ) (3=1,+..,n) with rational

coerficients (independent or s)3j hence
: ' n #v_

N (U) = 3z —$t

: I=1

1ls given by & linear

combination or the NE(HJ) with rational coerfricients,
independent of s, hence the rationality or X NS(U)tS ' o
. ' . _ |

follows rrom the rationality or 2 NS(Hﬁ)tS - :
qee.d.

Remark: This proor ylelds that TU(t) i1s rational

for any derinable set U. Certainly, CU(t) may not be |

ratlonal. However, this proor also shows that gU(t) is
always "algebraic" in the sense that 1t can be written

ag the radical or a rational function.

Example: Let us consider the rollowing:

t

Derinition 10: ILet @ 1 ¥X ———> X° pe a runctiong

suppose we can rind a t-~tuple of polynomials

X - I
fl,...,ftEK[xl,...,xr] such that ror all gal,..,,ar)ék ,
@(al;.c.,ar) = (fl(ahl_, o-o_’arr),Qs..,ft(a'lg-.co,ar)) _; then
@ 18 called an r-t - morphism over k , and the t-tuple

(fl,...,fe) 1s said to derine @ .

We can now state the rollowing

~ |8
Lemma 22: Ir Us ¥ is a derinable r-set over k, ky




and ® 1s an r-t - morphism over k, then @(U) 1s & derinable

t-8et over k.

Pr001° Say U is derined by the rormula e{x ,...,xr)
or L., and @ by the t- ~tuple (f (x 1"“’Xr)"“’ft( EERLIL " 3) .
Then it is trivial to check that @(U) can be derined by the

rormula &(yl,.,.,yt) given by

Exlll 'Exr(Y:L:fl(xl; ...,Xr)f‘\. - .Ayt=ft(x1, e .,Xr) Agpgxl, e ey XI‘) ) -

q.e.d.

In particular, we get the rollowing generalization

or Dwork's result;

The logarithmic derivative or the zeta-runction

of the image or a varlety by a morphlsm is rational.
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