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ABSTRACT

Our object in this work is to show, using results of
Douglas and Howe [1] and Gokhberg and Kregn [1], that Toeplitz
operators on the guarier ?lane with matrix valued continuous
gsymbols and which are Fredholm form a dense ppen suhset of
the set of Toeplitz operators with continuous matrix valued

symbols whose determinants are nonvanishing and homotopic to

a ceonstant,




CHAPTER 1
ON TOEPLITZ OPERATORS ON QUARTER PIANE WITH MATRIX VALUED SYMBCLS -

§0, Almost since the beginning of this cenbury various linear
problems have arisen in various contexts. Splution of linear
integral equation is one of them. They can bewclassified into

two different types, namely the Voltera type and the Fredholm Gype.
Wiener-Hopl integral equations belong to thé later kind. An

equation of the type
£(x) + Jox(x-t)£(6)at = g(x),

the well known Wienér—Hopf equation, has been studied in

various contexts by various authors. Although the name is

derived from an attempt by Hopf and Wiener to solve certaln
‘problems in radiative equilibrium (cf. Hopf [1]), its orgin

an be traced to Hilbert and even Riemann (cf. Plemelh [11).

The problem of Rlemann was to find n functions which are

holomorphic inside and outslde a simple closed curve C, so

“(z) of the exterior

hat the bhoundary values fi(z),f%(z),a.o,fn

functions and the boundary values fi(z),f;(z),n.‘,f+

Il(Z) of

the interior functions are relabed, for each z in the boundary

s in the followlng manner:




where the coefficlents wij are constants which change their

valueg fron secltion to sectlon of the boundary C.

2
Now 1if LD(TD denotes the gpace of norm square-integrable

measurable functions from the circle group T(={z : {z|=1}) to

2

the n-dimensional Hilbert space €5 and Hﬁ(Zi) is the correspond-

ing Hardy space of functiong in LE(TD with Fourier transform
(series) ' supported on the semigroup Za— of' non-negative
integers, then it is clear that the space Hi(ZQF) is a cloged
subspace of LE(EU and that we can define a projection operator
P from Lﬁ(ﬂU onto HE(Z%“)& Iet p be an essentially bounded
function from the circle group M into the algebra Mn of
endomorphilsms of e”, i.e. the algebra of nxn matrices with

complex entries. We defilne the Toeplltz operator Tcp with

2/,

bol B o . .
symbol & on Hn\&%) by

T@f = P(ef) . (0,2).

for every f in Hi(%ﬂ¢

'Now it 1s clear that sgolving (0.1) is equivalent to find-
fhg a non trivial element f of the kernel of the Toeplitz
berator Tgp with symbol ¢ when the simplie closed curved C is
_hé unit circle T, Moreover, Devinatz [1] has shown how to

aentify Toeplitz operators T@ wilth matrix valued Wiener-Hopf
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pperators, so the study of the two classes may be consolidated.
(Also see Rosenblum [L1]}.

The study of solutions of Wiener-Hopf equation (0.,0) in
the scalar casge has been studied in detail (c.f. Paley and
Wiener [1]) for certain classes of kernel k (also see Rapaport
[1], [21). It is interesting to note that the Toeplitz and
Wiener-Hopf operators also arise 1n many other contexts like
stochastic processes (c.f. Grenander and Szegd [1]), and
prediction theory (c.f. Wlener and Masani [1], [2]). Of late
their study has been found interesting in examining convergence
of certain difference schemes for solving partlal differential

equations {Osher [1]).

Gokhberg and Kredn [1] have studied in great detail the

solution of systems of integral equations of the Wiener-Hopil

co

" .
L) - 2 } b-g g)ds =1 (¢ = Ly coevus 0.3
xp( ) o é{pq( b)xq( ) p( ) p n o |

fethods employed in the study of equatimhs (0,3) depend heavilily
on the technigue of factorization. In thelr work Gokhberg

ind Kreth have obtalned through such consideratioﬁs results

n the Fredholmness of the Wiener-Hopf operator defined by

0;3) and have computed its index. Simllar resﬁlts have also
een obtained by Douglas [L]. We feeall that 1 &£(¥H) +dis the
gébra of bounded operators on the Hilbert space ¥ and &G(ﬁ)

the compact operators on ¥ then £C () forms a closed ideal

i
|




A
of &(u).

The quotient algebra &(¥)/ge(y) is called the Calkin
algebra and an operator T on &£(¥) isg called Fredholm if w(7)
is }nvertlbie in £(H)/&G(ﬁ)
£(¥) onto £(£)/¢c(ﬁ)o There 1s algo an alternative way of

s where o is the natural map [rom

defining a Fredholm operator. An operator T in £{¥) is

Fredholm 1f 1t has a closed rahnge and hag its kernel finite

dimengional. T 1lg easy to see that thene two definitions

are equivalent (c.f. Douglas [4]). It can be shown thab
dim ker T <o algo, So dim ker T- dim ker T* is an integer
when T ig Fredholm. It is interesting to note that the integer

_j(T) = dlm ker T ~ dlm ker T* has cerbtaln imporbtant properties.

We recall that 1f T is Fredholm,then_T+K is aldo Fredholm

when X is in £C(#) and j(T4K) = j(T)» S50 whille invegtigating

the solution space of certalin equation of the type

t is important to know that the solutlon gpace hag no partlicular

dlgnlificance where ag the Index 1ig invariant under compact

crturbation, So in general we are interegted in finding the

ndex J(T) of T rather than the dimension of its kernel., In
gge T lg invertible 1t is obvious that it ig Fredholm and its
dex 1s zero., But 1t 1ls also true that there are Fredholm

erators of index zero that are not invertible, Bub in

taln caseg they coincide. In particular, if TCP ig Fredholm
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and of index zerc tha it 18 invertible in the =calar case
(c.f.Douglas [4]). Douglas in [1] showed that a Toeplitz operator
TtP with continous matrix valued gymbol g is Fredholm 1f and |
only 1f det & doeg not vanish anywhere on the unit circle T,
Murther more, the index j(T@) of the operator is related to

the winding number i (det ©,0) of the image of T by det & with

respect to the orlgin in the following way

J(T@).= - i, (det ®,0). (0.5)

This resullb was obtained by. Gokhberg and Kregn [1] for a dense
aubset of Cn(ﬂﬂ and in full generality by Douglas [2].

So 1t ig clear that in order ’L:lqajzi‘&1CJ be-invertible it is
necessary that det'®#()on ™ and det & be homotuplc Lo a
constant. We have sald before that in scalar case i.e.
when n = 1, thls isg algo a sufficient condition. But it is

not when n # 2 ag can easily be shown. In fact, we can have

1t

& with det o L yet have dim ker T@ =m for any m in %+_a

For examplie when n = 2 let @ be defined by

X0
o = Y (0.6)

0 X‘_m

16 ime

_ e
here Xm(e } = e and X_m(ei% = g "

. ) B O _ O
Then ker T  contalns fl = [1],f2 = {X]oeoof

@ m "
in their celebrated work Gokhberg and Kregn [1] have shown a
ery important relation between Fredholm Toeplitz operators

f index zero and invertible Toeplitz operators. In fact they
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have shown that the left (or right) invertible Toeplitz
operators form a dense open subset of the class of Fredholm
Toeplitz operators with continuous symbol and of index zero,

[We shall give another proof of thls in our work].

There have been several attempts at generallzing the

gbove results to the several variable case. One generalization

of this to the "hall pland case has been studied by Gokhberg
.and_Goldenstein ([x1], [2]), and more recently by Coburn,
Douglag, Singer and Schaeffer ([11, [2]). 1In-this case it

has been shown that the operators can be represented as

ordlinary Toeplitz operators involving & parameter. A

gignifilcantly different situation 1s encountered in the so-

called "guarter plane' case. Precisely let T denote the
L)
torus group W x T and Lﬁ(ﬂfﬁ the space of norm sguare inte.
to the

:grable measurable functiong from the torus group T

'dimensional Hilbhert gpace @n, The Fourler transform of a

function in Iﬁ(ﬂ?g) is a ¢"-valued function on Z¥2=:ZXZL

Agaln let Hi(zﬁ?) denote the subspace of functions in Li(ﬂéﬁ

wlth Fourier transform supported on Zﬁ% and P2 the projection
2)@ If @ is a contlnuous function

._l_,
2

2l 2,
*om Ln(ﬂﬁ) onto HH(Z§
to MhJ then the Teeplitz operator W@ on Hn(ﬁﬁﬁ is

. 1 RSN - DR - SN
W@i’ = Pz(npf) for f in Hn(zﬂ)
It was shown by Douglas and Howe ([1]) that w@ on Hiﬂzi)
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1a Fredholm if and only if the operators T and %
-5 Y P QP(",*W) CP(Z:")

(934} Hi(Zi%) are invertible for each z and w in W'. They also

showed, in case n = 1, that the collection of invertible
Toeplltz operabors on Hi(za) 1s a proper dense open subset
of the collection of Fredholm Toeplitbz operators. In particular
they showed there exlst Toeplitz operators W@ on the quarter
?lane which are Fredholm operators of index zero which are not

invertible. Thelr result on Toeplitz operators on the quarter

plane in the case n = 1 yields that the Fredholm albternative

holds if the symbol & is homotopilc to a constant and in the

alags of non~vanishing functiong on the torus. I the

Fourier serles of ¢7is absolutely convergent, then Strang [1]
.4 obbained an expliclt operator which is inverse of w¢

ulo the ideal of conpact operators. Simonenko [1] also
ytains a similar result in the quarter plane. It is also
sar that for n > 1, i,e¢. 1n the matrix quarter plane case,
ol every operator whose symbol is homotopic to a ldentity,

‘a. Fredholm operator. 'bouglas and Howe also conjeétured
iat a refinement of their argument for n = 1 could show thatb

‘generic case is a Fredholm operator and even in all

bility invertible. The recent work of LDouglas, Coburn
q_$inger [1] ehows that the last statement is false. In fact
:lshowed that in -case of n = 2 we can get Toeplitz operators
are Fredholm of arbitrary index. So 811l we have been

to ghow here ig that Fredholm Toeplitz operators form a

open subset of the clasg of Toeplitz operator with
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determinant of 1its symbol homotopic to a constant and non

. : 2
vanishing continuocug on the torus ',

We shall obtain the above mentioned result in two steps.
Flrat we ghsll filnd & necessary and sufflcient condlition for

the invertibiiity of a Toeplitz operator T where the symbol

w?

@ 1g a matrix valued continuousg function on M 1is of a certain

form and hag determinant homotopic to a constant. Now let

& = {Ww : det % homotopic to a constant and & continuous on T
and det & non vanlshing on ﬂﬁzj and

-

T ') 18 invertible for all w in 117}

@(”:W

il
——
=
o
3

= lg dnvertible for sach z in T},
2 ie} @(Z:”)_ aeh }

using the result of Gokbberg and Krein [1], of which we

shall glve an independent proof, we shall show that 31 and 32

. s 2

congisting of all Toeplitz operator WQQ on HE(Z&) for
* 2

and T are invertible on H (4 for each

(W) plz, <) ™ n(%,)

“and w in 1T, Hence 31 N 32 congisgts of all Toeplitz operators
hich are Fredholm by the regulis of Douglag and Howe [1]ﬁ
cause of symmetry 1t 1ls sufficent to prove 31 ig a densge

en subset of Eoﬁ We organlze our work as follows. Tirst
hall obtaln a criterion of invertibility for a Toeplitz
rator TQP on Hi(za) when the symbol g 12 of the form é¢,
re the i,j%% entry ¢ij of ¥ is analjtic, i.e, each

lg continuous on ™ and has analytic extenslon to
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A |} and @ 1s a scalar valued analytic trigonometric

=
1

N
I

polynomial. Then we use thls criterion to give a different
proof of the result of Gokhberg and Kregn [11. In the next
gsection we shall use these results to show densglty of 31 in 300
The way to do that wlll be to first approximate every i
“continuous and det & homotopic to a constant by a trigonometric
- polynomlal ¢1¢ Then we shall show, using the criterlilon of
invertibility which we mentioned, that there ig a function ¥
from ﬂfz to Mﬁ with all its enbtries trigonometric polynomials

such that T¢<@ ) ig invertible for all w in T and

3

approximates ¢l¢

Before beginning with the proof of the results the author
?;shes to expresg hls sincere thanks to Profesgor R.G. Douglas ' g

ho first suggested this problem and without whose constant

neouragement thisg might not have been completed., The suthor
g0 wishes to thank Professor R. Howe, who made Two lmportant

ggestions regarding the proof of the main theorem, and hls

ggestiong,. The idea of proof of the first lemma was derived
m the paper of Douglas [3] on the invertibility of a class

oeplitz operators on the quarter plane.

We begin with the following lemma,.

have the Fourier expansion

|
; |
low graduate student, Mr. Allan R. Adler for many helpful
: 2
‘1. Tet g in % ()
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tY

.
3 ann’ where Xn(eie) = eine-for ele in 1. It '

p(—E) = 0, for some x in B = {u : |u| < |} then Gn = O for

Proof: Since |x| < 1 the Fourler expanslon of ('>{~?\)—:L ig
00

L . . . -1
n.1c So l%ﬁ%¢gnxn is the Fourier expansion of (%~%) ~g

r

¢ = 2 G (1.2.,2)

r+n+1

s Af P({(%-2)"Tg) = 0, then ¢ =0 for alln = 0. But from

Cp = X Cppa = Oppp (2e1s2)

Gn = 0 for all n = 1,

) o
If g in Lg(ﬂU has Fourler expansion 2 ann and

N==--00

*“(x“?\m)) = 0, wlth ki €D for i = 1,...,m, and

then Gn = 0 for all n ? M.

_I_ E

Assuming this to be true for m we shall prove it for

Since the cage m = 1 1g the previous lemma, the result

Wsiby induvction, Iet us assume that

g .
P( 'X_~A1 see (X")\m)’




1] -

implies Gn = 0 for all n = m, Now let h = g(%—lm+l)“l with

= - . . .
<1 ., Hence if 2 Gﬁxn ig the Fouricr expansion of

N=wto

|
Ikm+1|

o )
(X"Xl)fﬁﬂ(X“AmJ

h, then P{ = 0 would imply Gﬁ = 0 for all

n £ m., But

. .
ol = 3 o (1.2.1)

G 5
r=0 nt+r+1
And as in lemma 1, this lmplies G, =0 Tforalln=m+ L.

1 -1 -1 -1 ~1 -
But (X-2y ) () T e (=2 )T R = (R ) TR T (0 ) e

and hence 1g btrue for m -+ 1.

Corolliary: TIf I is Hg(ZiF) and

L )
(- TSR

P( =g for |A ] <1

\ 2 '
for 1 =1,...,m where g 1s in H (Zﬂ), then

_E‘ = GO + Glx '}'a&a—_+ Glll—lxrﬂ—l - (X"kl)év‘}(xhkm)gﬁ (1‘7301)

where GO,BGQ,Gm %re complex numbers,

We shall use the above corollary to obtain the necesgary

nd sufficient condiflon for invertibility of a Toeplitz

perator T@ on Hi(zg), when the symbol & is of the following

orme Tet @ =

he algebra, M,

5 lnside P.

constant.

{ . . i
é, where ¥ 1s a continuous functlon from T to

of n x n complex matrices such that each of

_;lj;% entry ¢ij of ¥ has analytlc extenslon to D and Qis a

1ar valued analytic trigonometric polynomial with all its

Let ug further suppose that det & ig homotople

Then T iz Fredholm and hasg index

2 27
o O% Hn(ug

L)
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Zero. Now we shall £ind oul when such a T@ ig dnvertible.

Ag it 1s extremely complicated to wrlte down, without previous

inkling as to how 1t was obtalned, the necessary and sufficient
conditlon for invertibillty of 'l“EP we shall write the condition

at the end of our proof.

Becauge & = %, det § = QEEHE «

(@)
As index of det @(f') = number of zeros of det U - number of
zeros of (Q)n inside M, d.e, in W det % homotopic to a
éonstant mplies det ¢ hag as many zerecs in D as(Q? has in B,
that is det ¥ has mn weros in Dy (by abuse of notation by deb ¥
ve shall mean the determinant of extenslon of § to D) if @
nas m zereos inside D.  Since TEP is Fredholm énd of dindex zero
See Douglas [2]) it i8 sufficient to look abt its kernel o

heck its invertibility. If £ is in ker T, then

Plef) = 0 (1.4.1)

Af Q = (X—ll)egﬁ(X—lm) with Ikil < 1 for il =1,4cess,
n by (1.3.1) in the corollary

Ele_jlj = Opph Oy Xboeet@y o X0 (1.4.2)

n ( ( m-1 r }
f = % G (1.2
1 e i Z

<1, As mentioned before we write u.J(z) and fj(z)

zl <1 to mean values of extensions of Y, 19 and fj to B,
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respectively. Thus each fj 1s expresgsible ag a quotlent of

two analytlc functions in D

fJ = a""‘e*"t \!;' 3 ( l c,)i & 3 )
whers
( n m-i T
F.(z) = 2 {2G_,z ) &, .(z)
J i=1 r=0 °F L]

and ®,. is the cofactor of ¥, . in det V.
L 1

Now in order that each fj be analytic we require thatl each

has zerog at the points in B at which det V has zercs and

vith at least the same multiplicities. ILet o K= 1, 00,mn

note the zeros of det ¥ and supposge they awve distinct. Then
~ghould have

Fj(ak) =0 for 1 sk =mnand 1= j=n (LA4.5)

to determine guch F.'s we need mn arbiltrary constants

:j. = 15 .g{,&,n and r o= O)l; “ v &5 m"lﬁ-

2 .
Thus we have mn  equations

n m-lL >
% (2 G .o0)8

Ty ece,mn  (1.4,6)
4=l r=0 TEE R

— l;aea_;n

a, ) =0

k

< 7
|

15

mn - unknown Gri* But we know from linear algebra

of equationg have a non trivial solution 1s that the

mhg matrix

‘Greub [1] p, 35) that necessary and sufficient condition that




méiell(o,h),Me,@nl(ak),,”.,otil"l @nl(ﬂk;
@12(%)*““@ne(ak)’””"“nkl_l o)
@13(%)’“”@n:s(“k)’””ai—l gloyg) H
glj(“k)’°*°’%nj(ak)‘&°”’&§—l ;nj(ak) |
;ln(ak)’““°’;nn(&k)’“°°’u£_l %nn(ak{q
L.

}{-:l)ﬁ;eg, mhn

has rank < mn. So we get,

Main Lemma:

A necegsary and sufficlent condition that T@, ag degceribed

efore, is invertible is that the rank of the matrix (1.4.7)

Cmaximal.

srollary: If the rank of the matrix (1.4.7) is » < mn then

:é dimensgion of the null space of TGP is exactly mn - p.

nark 1. We can from the above analysils also compube the null

ace of T@’ lee. we can find mn - p linearly independent vectors
ni(Zg) whilch span ker T@. That 1s because when mn - p > 0O
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there are only mp-p.Lllnearly independent solutions to the
aguation (1,4.6) and with those gsolutions we can find, by

gubstituting then in (1.4, the Fj‘s and hence fj‘sﬂ

Remark 2, The lemma can be generalized to the case when det |

has multiple zeros in D,

if G 5Oy 0wy Gy BT the zeros of det ¢ with multiplicities

l,&aa,ké respacbively in D, then we replace (1.4.5) by

p(s) o= z oo = ] Nt
Ij (ai) = 0 ﬁor 0= s = Xk,-l. {1 451)

12 j=n

here ng) dencteg the s%% derivative of Fj and we get the correg-

onding condition of invertlbility of T@ ag maximallty of the

nk of a matriz of the type (L.4.7) whose 'entries will be of the form
L (278, (5)) (1h.71)
L4 Z:a. L o
k
e expllclt form as in (L.4.7) will pe more compiicated to

e down. We can also compute the null space of TEP exactly

escribed above.

We observe that the above analysis also gives a method

inding the inverse of T@e

T¢f = g and & ig of the form we have described then
llary to lemma (1.2) we get
n me-1

o _ r
> ¢..(4)fj(z) = rio G %" + Qgy (1.51).




. F.
. d -
Thus fj = gETTy (le,a)
whe re
n m-l T
r — Z 2 G, i T g..zg c
7yl) i:l(r:O ri® Q) FyE)e (1.53)

We can solve for Gri to satigfy the conditions
(=) - < = = 4
Fj (ak) =0 0= 8 Sk ko= liee.t
j - l,pe;a’n
hich g possible when the condition of maximality of rank of
1
(

1 ALT) or (L.ATY) is satisfied. The explicilt form of Té

3 too complicated to be writien down here but probably can

e used to find an estimate of HTél\

1

. Note that it is in all

ossibllities not necegsary bto find out exact zerocs of det ¥

13ide D to obtain an estimate of HTélﬂk

Now with thils acomplished we shall use it to prove the

ult of Gokhberg and Kregne

yrem 1 Let & be a continuous map from the clrcle group T
he group, GL{n,C), of the nxn invertible matrices. ILet
be homotopic to a constant. Then for € > 0 we can find

r continuous map & from T to Gl(n,C). such that

He»¢H < & and Te ig dinvertible,

I

{TO : 8 1s a contlnuous map from T to M with its

Fouriler transform supported on {-m,m]}
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et & = [Te € Jn o det 6 does not vanigh at any point on
3

T¢ and is homotopic to a constant].

. . -, X 2
Obviously J is a vector space of dimension n~(2m+1l) over

n,m
€. Hence we can identify Jn n with ¢ (2m+1)
i

with obvious
identification., ¥ow as determinant is a continuous function

in the Fourier coefficients of a trigonometric polynomial 0

and so is index, J is an cpen subset of J . TFor e > 0
n,m n,n

~we can find a trigonomeiric polynomial 80 in &n for some

such that H@—GOH < €/2, We know that &n:mi = ﬁn,mg if

= =T o @i AV
pl mg. So 80 is in Jn,m for all m > mo Congider the

function 1 from M to Gl{n,C) which takes every point of I
o the identlty matrix in Gl(n,¢). So 1 is in &, Tor all
g 2

» 0. Moreover eo and 1 are in same connected component U of

if m is large enough. We observe that the Toeplite

| . | |
erator with symbol 1 is obviously invertible. By the main |
- " |
mme., 1f we write 0, = ﬁg" we shall have 8, not invertible l

m
all the (2m+l)n x (Emflgn submatrices formed from the

+1)n x (2m+l)n2 matrix (1.4.7) or (1.4.7') have their |

S . {2m+1)n?

erminants zero. ILet M, i = 1,2,..., ((2m+l)n ) be the

erminants of the submatrices of (l.4.,7) or (L.4.7'). Now

e write a for the coefficients BysveesByoiog, ) in ¥, then

ig locally an analytic function of a because each Mi

function of ﬁij evaluated at the =zeros ais of det | in

ak.‘ But the determinant of | is @ polynomial in a.

ch of the zeros of det répresents an anatytic function |
|

when the zeros are distinet. Iet & in U have the
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" nm N
fomi . Let det § = X Ai(a)z (2.,1)
A 1=
where a = (8., ce0,8 ).
1 ' n2(2m+1)

It is clear‘that the coefficients Ai in (2.1) are polynomials

in a. TIet D{a) denote the discrimilnant of the polynomial (2.1).
The set of points at which the digeriminant D does not vanish
are the points where (2.1) has distinct zeros. But as D is

a polynomial in Ai's it is & polynbmial in a., Hence the set

of points S(D) in U at which the discriminant D vanisghesg in

a subvariety of U. Hence Ul_: UNS(D) is a dense open subsét
:of U and as U is connected Ul is comnected {¢.f. Gunning and
Rossi [1]). Because U’l is dense open in U we can find in the

ieighborhood of 1 a polynomial 8, in U, such thaj Ty s
: 1
invertible. Now if we write Mi(e) for the minors of the matrix

1 4.7) corresponding to the trigonometric polynomial 8 then
Mi cannot be identically zero in Uly' That is because el

in U, and for invertibility we need at least one of the

1
ors Mi(el) is non zero. Now for every a in U1 there 1is a

ghborhood Ua of . a where each Mi is an anaiytic function.
111 (cr, CGunning and Rossi [1] p..86) that 1f U; is a domain in

a subset V of U, is called a subvariety if for evVeTry z

1
there are a neighborhood U and functions Ml’“"’Mt

bmorphic in Uy, such that

00U = {0 EU M, (8) = M,(8).. =M _(8) =0},

a2t a subvariety V of Ul is a closed, no where dense

__df Ulo it Ul is connected, then Ul - V 1s connected.
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But by the mafﬁ lemma of section 1 V coneists of those
trigonometric polynomlals 6 in U1 for which the corresponding
Toeplitz operator Ty is not invertible. Hence we can find a
6 in U, \V such that fle-6.|l < ¢/2 and' T, is invertible.,
This is true because U, is dense open in U and Uy \V is

dense cpen in U,. Hence U,~V is dense open in U and 80 is

in U. So we get Lo-wll < e and Ty dnvertible,

:Theorem 2: Given a continuous function & from mﬁ% to the

.group Gl(m,@) of n x nrinveftible matrices such that det & is
%homotopic_to a constant and given € > O, there exists a
ontinuous funcition € from ﬂ%z Lo Mn such that the Toeplitz
erator T.( ) on Hi(ZZ is invertible for each w in T and

e s W +)

-l < e

of: Let J o and & De as before. Now because © is

A 5

imious on M2 we can for € > O find a trigonometric

omial 6, such thét nwmeoﬂ < €/2.and.det 0, from vanishing
omotopic Lo a constant., ILet eo have 1ts Tourier transform
orted on [mmg,mg] % [~mg,mg . We can alsgso assume that

is in Uy, where U, ia as defined in Theorem 1. Now for

'd:by B (w) = Tg( w) for every w in M, It 1s obvious
o2
Is a contlnuous map. We further know that choogsing m

1) and Tg can be in the same connected
1

rigometric polynomial 6, let us write E, for the map E, : m=J
| 6 P Sy

i
|
|

. |

n,m



-Tol

component U, of & nom where 81 1g chosen ag in Theorem 1. Now
J o

as | is continuous for each & we see that {T W € T
9 Go(‘*,‘w)

is a connected subset of Jn " hence contained in.uﬁ Now we
. 3

need oniy show that there is an EB for some 6 arbitrarily

near BO such that Eéﬁ?)misses the subvariety V of Ul because
if EL(T) migeges V and is conbained in U then each T
g il 0(.,w)

|

|
isg |
invertible where V ig the subvariety of Ul,as defined before, ‘
for each trigonometric polynomial € whese TFourier transform
s supported on the strip {[-m ,m ] x Z}] we can consider EB
5 a holemorphic map from,aflannulaz*r@gion A containing T tGo

Now let us denote by M the homomorphlc map from Ul to

- ( 2m+1)n2
T M(2mtl)n

W MoEe is a holomorphic function from A to CN0 Now we hold

where N ) whose zero set is the subvariety V. |

at for every trigenometric polynomial GO and € » 0 there is

other trigonometric polyonomial € such that H92~BOH < ¢/k

the set of zeros of MoEe in T is finite. Otherwise we

d get a limit point of zZeros of Mo o in W for every ©

n arbltrary nelghborhood of 900 This would mean MoE% 0

would mean EBCW) C V. This is impossible by the Theorem 1.

48 an i such that V2 = (W € T : M.E. (w) = 0} is finite.
. 92 i 81
g obvioug, for obherwlse each MioE8 2 0, Because
2

has a finlite number of zeros in T we can find a ©

1g accomplished this we further hold that for such a 02
at Heg_eu < g/l and M;°Ey has no zeros in M. This




2

(2) (2)

- - L & o3 YY " ] =¥ b Sl BT e S
- can be proved thus LI alJanQJa(2m+l)ng are the coefficients

in 81, then MioEe can be regarded as & functlon of (2m+1)n2 4 1
: 2
varlables including w. Now the let Waseees Wy be the zeros of

MiOEB in MW, Each of them can be regarded as a function of
2
the wvarilables al,n,o,a(2m+1)ng which we denote by a. Now we

hold that in the nelghborhood of-a(g) = aigzu,a §£+1) there

is a point a such that EUP a,-a (2)] < ¢/4 and none of
wﬂa),,pojwk(a) lie on M, It is sufficient to prove this for
one W, . Now Wy being a holomorphic functlon in a neighborhood
of a(g) it takes open sets to open gets 1T W 1s not a constant,
Since wi(W) igs open, where W = {a : sup |ai~a£2)| < g], we can
find a point p in wi(W) not in M. Now il a is a point in

“1(p) AW then we get what we want. Bub 1f w, ls a consbant

hen we would get MiOEB(W') = 0, This would mean Te(o,w

1 ) 1S

+

1

ot invertible for all 8 in a neighborhood of Gl which is

possible by theorem 1, So we can find a © such that TB( W)
v

-

invertible for every w in M and H8—91H < e/4, But

585l < e/% and |lw-8.]| < ¢/2. Combining these we get

se open subset of 30 = {W_ : % a continuocus map from ﬂ@

. ®
1(n,C) and det ® homotopic to a constant}.

Hw-olf < e.
ollary 1: 31 = [W@ : det & doeg not vanish on ﬂ? homotopic to
nstant and T@(D W) and invertible for each w in T} is a
, :




Y
o

Corpliary 2; § = {w@ ¢ ® 18 continuous function from ﬂ%a to

G1(n,C) and det © ~ constant and W

is Fredholm]} is a dense
open subset of EO the set of Toeplitz operators whose symbols
are Invertible everywhere on ﬂﬁz and have determinant

homotople to a constant.

Femark: We have not been able to find out 1ir &n n is connected
e k)

or not. Otherwise it would be easy to show the setb

O _ - . om . et
Jn’m = [T@ € $n,my' I$ not invertible]

‘18 a subvariety of Jn m Thils may be a better and shorter
e *

.way to prove the above results.,
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