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Abatract 7

If a group G has.a Cayley diagramJPC E2, then the
word probiem for G can be solved by 1nspact¢one

Masohkﬂ [87] determlined all finlte groups on three
‘_or‘fawer independsnt generators with a planar Cayley
dlagram, Al regulablpavinga of the plane {which glve
rige to Cayley dlagrams of some infinite groups ) are
ciaésically known. A visual examinatlon of these two
c]assos of Cayley dlagrsms yleld the fact that they
ars all point symmetric { the clockwise ordering of
the edges at each vertex is the samo) or weakly point
gymmea trlo (lif'vl and ve are any varticas in{* ; then
the clockwiss ordering of the edges about vy 1s the
- same &3 elther the clockwlse or counterclockwlss
ordering of the adges aboutb vg)o However, no resultg
have been obtained to show that every Cayley diagram
f’c B2 most bhave aﬁ“iaast s weakly point symmetrilc
embsddin g, yet no Gxample exleats of a Cayley diagiam
with ho such polnt symmebry. This papor, theréf@rﬁs
deals with embaddLngﬁ of Cayley u¢agvamu which are
assuned Lo be at least weakly peint symmetric.

Foy finlte groups, 1t 1s determlned directly

which g”oups with thres or more independent




gengrators have Gaylaﬁ'diagrams in Eg. It is also
shown that all such groups must have a wéaklﬁ'pqint
symmetric Cayley uiagram.

. Results for the case of infithe groapq Ine¢lude ' ' .
the following extansmons :oftwo theorems of Nasohke
for the finlte case,

No two edges of one color can bs crossed by two

edgés of mnother color.
Any polygon of one color determines a component
of the complement ofr_)h'i in EB if ] is locally finlte
fevery finite reglon of the plane containg but a finite
pumbenr oflverﬁic@ﬁ ijﬂ Je
If=b is a connected component of the complement
of ' in E2, then the boundary of D | §(0)] cannot
have two consecuiive edges of the same color unleas
all edgss of () have the Same COLow.
In sdditlon, §(D) ig a Jordan Gurve undeyr the lash
named condlilions.
| The maln result of this-pap@rp'Théerem Jed, glven
a mothed o datermine (under_cewtéin conditionsa)
whethelr % group G has & planer Cayley dingram ' with : '7_
a woakly peint symuetyric smbedding.merely by looking

at the presentation for G. In addltlon, under the
|
\




conditions of this theorem, weak polnt symmetry
is shown to imply polint symmetry, ahd the word

problem for G ls reéuced to finding the order 4

of a certain eleoment (xlxzmwxn) in G,
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Section l-Graph of & group

Let G be a group which ham a finite presentation
on the generators al,ag,eaaah. Kach element g & G

will carrespond to some distinqt and unigque polint

v e E . Cortaln palrs of points will be joined by

or;entad odges of colorsgéi;{each color éi correspondling |

to the generator a. Speéifipé}ly, 1f | |
gs8y = 85'} ‘ék&_{" = gk"%"?;, ,

the polnts Vj and vjf wi%l_?@,;oined by an oriented edge

of' color ¢4 beglnning at vj and terminating at vj'o

Th@ points v, and ka‘will be. joined by an oriented edge

of color Cy beginning atkaﬁ-énd terminating at vy. The

édée of color ¢y is poaitivelﬁfdirac%ed from vj“to vj',

is negatively directed from vi. t0 Vi'e
' This system of points:and edges is called ‘the
Cayley diagram (in short;'gréph)of the group G. Call

the points vy the vertiéesrof;the Cayley diagramfﬂra Es,
If w(al,ag,.o..an) is gny element 1n G, gjcaG, and

gj;w(al,ag,.oaan)::gk, then v, is jolned to vy by a path

w(al,az,...an)cf’}(corraqund;pg £0 w(ay,85,0048,) @ G)
ofroriented edgos beginn%ngggtivj and terminating at vy,
by regarding multiplication on:the right in G as the
sucession of edges in]”"¢That“is |
gjoai'ak: gj' (-T:;-vj-ai'akE_vj.-ai,ak“.;_-vj' .

Qbviously, w(al,ag,;o.an) is a relator (equals 1-;n G)

ifge w(ai,azj.j.an)‘is'a'cldaed path 1pjﬂ .Call a closed

path a cycls.




o

A cycle iz a Jordan Curve if It has no maltiple points.

It will be assumed throughout that the generators$<ai:}g
avre independent, that i1s, it is not pousible to express
any one by the remalning generatorse.

The edges a; in )’ will be assumed to mest only at
the vertlces vjﬁijj o Of course, this immediately
rogtricts the spéce in Whichjimay e embedded. For exampleg
it is-impossible wnder this reatriction to connect each
of five points o thé other four in Ez, whersas 1% 18
‘gimple to do 80 in £3, Some graphs , such ag the one con-
siating of & single point, may be embedded in any spate
T¥¢g ”

A Cayley diagramf%; E2 18 locally finite 1 every

finite rogion of ER conbalns but a finite number of
veftices of]ﬁa.Compactifying % to the sphore, a finlts
reglon 18 aimply anhy reglon not contalning the point at
infinity. Every local "graph ( some subsefb éffw at song
v&}j ) considered wlll bs assumed Lo lle in a finite
reglon of E. Obvioumlyg the greph of a finite group is
Locally iinitee |

Eff%; Ez ia a Ca?ley'diagram of the group G F/R,
and we B 1s 1 in G, and W 18 a Jordan curvs, then w
separ&t@aﬁz inko two open connected componants, e
finiﬁeg one infinite. If either of these componehﬁé
containg no vertices or edges ca;f‘}wa then Lt will be

- ke

called a disk, and W bounds (determines) thils diske. I¥ w

v &

13 a Jordan curve, lot wC denote the [finlte component
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of E°-W., If W° is a disk, it is called a finite digk.
Call & vertex interior if 1t is not on the boundary

of some infinite component of the complement of ST in B,

Por example, ln the followlng, vy is interior whils

v2 is not.

Let O, De the clockwise ordering of the edges about
1 | |
the veriex Vieg/7,80 that #0, 1s the counterclockwise
VAL s |

ordering about Ve _
to denote that a positively

'

. Use the arrows > 5 €
diracted edge ls leaving or coming into a vertax. For

example, if ve/ looks like this:

then 0 =~ a=> Wa-;— ™ otc,
0 (2] (557
- + b - T b = k0




WSBD‘G’
\l’fi\i,:

{
C
b)

and =0 = S
4

if Gv o, for all v&)7 ,then [ is sald to be

i3 ‘
point sympetrie, II 0v :Hi'Ov_ for all v»zr"‘,'tl'nmlrT S
i

i said to be weakly polink symuetric. Obviously,point

symmetry implies weak point symmetry.

If the order of any generator, say &, is 2=(o(gi)=2),
the edges of color ¢4 will be undirected so as to avoid
ngigons. " That is, there will be but-an@ edge of color
ci'at eaéh vertex. This approachﬁ while not necessary,
will permit point eymmetiic or weakly point symmetric |
~embeddings in EC in certain cases where the axiat@nca
of digona would not. Considsr for axanple the group G
presented by @<= (al,aE,al,az;a1aza a2f> This group
hag no poinm gymmetric or weakly polnt aymmetric
embedding in E2 if the edges of color cz(single~do%£éd
‘1ines) éprresponding to a, are directed. To see this,
‘aasuma that there 1s at least a weakly point symmgtric
@mbeddinge | .

At the wvertex vear%orresponding to 1 ln G, there musti |

be a triangle corresponding to ;?;“'

Without losa of generality, agsume the edge a2 from 1

enters the infinite region of the plane determined by

~



the triangle, and that the ordering oI the edges about

1 is as follows;

7
q a-dt”

.Obviously agFay, 8;#a) since a3 and a,:.are independent

of each other.
If the edge a, from &, enters the finite reglon

Getermined by the triangls, the local graph at ay ls;

So there must be an edge "I from a;8, 0 &g. But this

cannot be accomplished in .a planar fashion. Therefore,

the local graph must be; ,aa,




Pp® e e

20 00 b
» Lrd

g and we insist that "'Oa =+ 0,

— . Lt
1 :.‘C ,in.ord,@r th.at Oal____ Ol’

the complete ordering asbout a, must be a1 - .
8g -
ag &

Sinse 0a

-ra-:a'?‘\»

a
a
a
&8

0o WO

2
1

The &m0 argument holds at the vertex a., and so the

‘local graph must be; ,a\c:;_q

Since apl 858, = 1, there must be an edge a, from
8,8, to_az. This can be accomplished in one oOf two ways;

1




fo
=3

4,

y
Vo¢

There must also be an edge aiJ frou a, to a a,.

Therefore, the two choices for the local grapﬁ are;




80 that la either easeéiov = a3 %_J

By &

and O ¢f0 , and jﬁ is not even weakly point symmetric.
Vag vy )

‘ Howegver, if the edges‘corfeeponding to a, are
. undi?éctedg a weakly point symmetric graph iz easily
cbtained; ' |




Section II-Some Properties of Finlte Planar Groups

Proposition 2,1. If G::(als&g@“.,an;Ri,H.-,Rnk? s
and ¢ hsa a planar Cayley diagram f? sthen at moast 2
edgea of any c;n@ color can meet at ant vertex. In addition,
they mast have opposlte orlentation.(This property, )
while ineluded in most definitlons of Cayley di&g}f&m&sa
is easily obtained from the delitlon glven above, )
Proof.bssune that more than 2 edges of colov i;i
meet at some verbex vell o At least two must have $he
same ori@ntatione Without loss of generslity, assume

that they are dlrected away from Vg. Therefore, we have;

Y

But this implice vo"é"f:':; VY voggif. Voo That is,
8. = S B e [ '
Thevelorae, £ o & <% V. Vv .8 codfiredictlon.

» é}l 2:;—::5} :l'-ulxr~ 8.? . b ©

Q.0

_P:f‘opa::zaitj’,m 2,2 IT Gﬁ{alsagpMeamgﬁ.hﬁgﬂwﬁq‘:}

.4 Ly f i 2 (] 3
sdmits a Cayley dlagiﬂarnjﬁ*; B¢, and for some 1&(Ll,2;..0)

dom, 24 mes, guch that a?“:ﬁ“ , then the path &% from

any vertax "JG@)? La oo Jordan Curve, 1T m ls assumad

minimal.

+




—-— i f 1 fa— ¢ m — 3 g3 T rytn g
V)T VR Therefore, in G, B Boly i B Therefore,
Vo= vy, 8nd vog? is a ecyele. If this cycle has

& double polnt, say Vg, then there must be at leaakb
& edges of color ¢y at vy, which contrediets |
Proposition 2.1,

- : | _ R.B D

Propoaition 2@5‘[§§;§g15qgif G iz a finlte group;

and G has a planar Cayley diagranm ff s, bthen two oedges
of one coloy are not crossed by two edges of another

color.

Proposiltion 2.4.[0z:Poa8TVIF G5lay 805 ccapifyecely ">

is & finlte group, and G has o Cayley dlagran/’ € EZ,
then for any Vee)' and any ai sueh that k¥ olas)»r g,

the oyele v, ? defermines a dlsk.

(These propositions will be proven more generally.

in sectlon III to ineluds the caas that o(G)=o o)

A& visual exeminstion of Maschke's(finite planayx)

Cayley dlegrams yleld the following fectaj

V * 2 oy
1, If G-x<ialpaggﬁlee@Rm:? and JTe BT, and

olay)r 3, clag)z 3, theny

all | A c%}ﬂ.f %

10



b.The disks at each vertex ve/ are thoge wnon

determined by precisely; alokal) s 320(32)
(81855707 (aFlag)¥. ,some Y, 1<feee

c. There exists at least one interior vertex.

2. If G%{al,aé;RiQoaRm>gﬁQ 32, o(ag) 23,
o{ag) =2, then; ‘
| L |
_C‘;\_.Q Ovi:-— OV 9,&11‘? w .
b. The disks at ‘each vertex v&|! are those

ds ter*mined by precisely;either;

aloialj,(alaz)\({ 3 (agal)rylé’(’s@ s OF

S _ _
4. 71 D,Eialagjyﬂ » Lagay l:_lb’, 1€ §aon.

c. There exists at least one interior vertex.

lc and 2c will be proven directly in propositions

2.5 and 2.6. We flrst noed the

Lemma 2.1, I G is a finite group on the generators

&y and 855 olay)=n=3, olag)=mz 3, and 1f G has a

for all v&ﬁ o
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Proof. Since there are 4 eodges alt each vertex, there

are 3! 6 possible orderings of the edges about each

vertex;
i € 2
7/ 'v |
— \
-a-\'/?/ ~
/ \
¥} | 4
v/ N
AN /N
/ \ v, K
/ \
5 8 |

5 and 6 are lmpossible({Frop 2:5)
"l and 4 are caso @ above.

——

2 and 3 are case b above.

Q.E.D.



Propogition 2:5. Lot G be a finlte group on the:g

generators a, and a, such that o(ay)=>n 23, olag)=mzd .,
Assume G has a Cayley diagramrﬂcl_Ez.‘Then‘ff has

2t loumat one interior vertex.

Proof. Pick any v045]7a Without loss of generality,

{Lemma 2.1) assume

<
i

Since G is finite, n,m< <0, and &b, a5, deseribe

Jordan curves at v,{Prop2.2}. I the local graph

N — —
—— e A T e

at v Isg

\/o.'.

then vy is interlor. If the 1oca1‘graph at v, is;

then vy is‘intériora

So assume the local graph at v, 1s;



V,

¢ o s

Since o(G)<e0 , and aj#as~", wo have;

(a8 )B" = (a,8 )K“—-‘: 1, 1<)<ad
1=2 -~ 2Rl s *

So, vy{ajag) | vq volajag) .

' Assume‘ that the path (alazh’-ﬁ from vy meats
one of the vertices vga%, 1% 1€ m-2. Since all

vertices of the form vyah already have two edges
of color cg, it must do 80 with an edge of color
¢q (Prop 2.1)s So, (alaz) al‘:‘:a%. Since al¢a%,
we mist have-1<£< Lo,

e

But, vzialagjésal = vza%, 80

v, (ay85) (alag)‘sal = vz}.:g . 8lnce vo= Vjajag.

Therefore, vl_(ala'z)é“alﬁgal':-vgaﬁ :é |
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.L)“

TN ‘@‘-\""‘“‘ - T =i
vl(alaz) al,,vg(azal ag

e - 4 .
Since (glag) a3™= &g, We have,

V,85= Vol,dy 8 o~
" But, slnce vlaé

Irom vy 0 V4. As above, this im@li@s that elther

= . . —
Vg, Or Vgoag is interilor; —

SV, there is a path of color ¢y

=~

>

An identical argumentd ﬂhows‘%hat the path

(alag)ﬁ“gf?om 2 does not meet any of the vertices

vlai“ﬂ , 14 34 n=-2,

‘8o there are two cholces for the local graph;

iz

, ,
AR Y
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If a,is the case, then vgagm"z 1s Interion..

So assume that b is the case.

By considering the path (al“lag“lﬁ {agay) ¢

from vg ;vo“a‘«i“;, and arguing identlcally to the abovey

there are again bub two cholces for the local graph;

e

In case §a._9 vy is interlor. In case b, v, is interior.

Q.E.D.

Proposition 2.6, Let G ’be a finite group on the

gonerators al and ap such that ola;)=nZd, o{ay)= 2.
1L G has .a Cayl‘ey diagram fc. Ez; then /W hga an
interlior veﬁtax; ”

Proof. Eick any *urﬂ?«e'_jW » Without }oss of generallty,

assume that the local gragh at v, contalns;




(If nocessary, replace a; ‘by al"l in the following

argument’)

: : Y ¥ '
Since o{G)< = s{8q85) & (mgag) T 1,s0me Y,148<wn gand

- %’T - i o . -
(azal l):’: (al laz)f - Wl'-, gomag, 1*‘4;?{-*‘ e

Thamfore,vziagal J¥=v,, and so vl(agal)é"-lz.vzn

If the path vl(azal)g'i meots any of the vertices

Arentm———p

viaqd, 0% j4n~2, it must be with an edge of color ey,

so 1t must be the case that vlalﬁ«:_—vl(agal)z 80, 1<§< K/e

So, alj.m_—(agal) B But, slince vzﬁ'gé“i:‘-vl,

sk

Vlajj_ = Vz(agal)éaz =vg(aga))(aga) ) a, so that,

vlaij = vz(azal )-"S\azalaz = vzalja;ag.

£

Thevrefore, sj.nc@ aa"::.az“l, Vqay ApTmVgay .

Since jJ+17 0, vlaljag-y"’va. Also, vlaljaz cannot be a .

‘ f o K
a vertez on the 02 polygon atb voAas azg, 81" 580 there

are only 2 choices for the local graph at V&,' both
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of Which gontaln an lnterilor vertex;

- or

Y

o,

I the path vi(azal) -1 doey not meet any of the

vertices vqaj3¥, O j n=-2, we have two possible cases;
1877 n-2,

e
=2

Vﬁﬁﬁh~/

.In case 8, #ialn"g is interlop,
Asaumé'éasegg. An argument identical to the above

-'yields 2 posaibilitles for the path vg(agal"l)§ 3
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In case a, v, is interlor. In case b, v, is interior,

QWE QDB

For Brﬁpesition @7 we néeﬂ;

&g@miugégﬁgﬁﬁ P@GQTEG Lwtf?be the graph of a group G
on the ganeratcra Bl e8os8msees o LI the edges of ?
corresponding to a, are deleted, maanfid@comp03es into
dlsjoint, lsomerphlic connected subgrapha. The var%icaﬁ
of 8 subgraph consist of elements in a lefhs coset of
H, the subgroup mf G generated by an,8z,004 o (Noboj
"disjeint” mnlj if independence of generators is assumed.)

Proposition 2.7. Let G be & Tfinlte group on the

gonerators ajy, 8o, Bz. Assume G has a Cayley dlagrem




FC. ‘E2e Then e.lz = 322: 52:‘:1&
Proof, Assume a;’m 19 n®=58, {n ¢w 8since G

1 finite). As in lemma 2.2, delete the edges of
e{orres’ponding to @.59 Thrs;:c‘-eafc:::r:'é:aT‘ar decomposes into
4is joint subgraphs, the vertices of sach éqbgraph
congistling of 'tha slements of some left coset of H,
the subgroup of G generated by &) and 8ge Pick one
gubgraph, 8a&ay that of He. Call 1% Pﬁo Since a]_’gaz and
Bz are independent in G, a) and ag are fndspendent in
H. By propositlon 2.5 or 296.3 ﬁH containa some |
ingerior vertex Ve
_ Restore the edges in ;ﬂ corresponding to ay, and
conaider the vertex vl:v_oag‘” | '

~ since ag 1s not oxpressable in terms of aj and ags
-vlgff«:}"HQSim@ v, 18 interior, vy must be in a finite
compqnent of the cgmpl@m@nt (::fl.')",7 HcEg? and this

'componen_t {5 determined by some ecycle P in }—'H;

// \\
AV
e, | .!Pc.);
!
N /
N ~

20
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But 1f vgﬁff$ g€ G, then g 8za BoazH, and so

. ' e Py J
Vola @ Fgoaﬁﬁ? Therefore, v, ;‘goa&’aﬂ’ the graph of

‘the coset gyuzi. Slnoe gu¢ H, H sHg,"t. Therefore,
slnoe agg H, ggaze H 0 that gyazil #H. '

herefor i VyE =
Therefore, 3 neg 1\..? %QSHE&H{? _]ﬂgoasﬁ must

be entirely contained in the finite region of B
determined by P since the graphs of the cosets are disjoint.

In addition, ﬁ hag gome Ilnterior vertex Vo3

goagﬂ ‘

s

: i
R, /
A7
N o : /
~ ,-«/

Therefore, vo must be in the finite region of B2
: ‘ g 7 '
determined by some cycle P c:_)"go%ﬂg where Ph, is in
the finite open region of E? determined by P;

- e,

-~ S,
| nz\ \
[

-
o
iR
oF



o : 22
g _ ‘ | L
(Sincaf and J are dlisgjoint, PAP' =P ¥
| H )—ﬂgoasﬂ s HaE fé
FH ﬂP" Alsos P"{‘,P because both}ﬂ H and Fg ham

connected. In addlition; the indepemd@nce of 815&2933

imply vpay Q‘Fgéag o) TN o

SRS
\oNC

\ /
~ e

Thcmeforog since v2a3 e};_/ﬁ g aSHg Vols ;5.‘19!9 and

. 30 Vgagc Fﬂ“

8o v2a3 mast begin at vy an& terminate at soume

-

third coset graph which also has some Iinterior veriex

Vo This process can contlnue indefinitely;

Bug iﬁnis £s impossible since o{G)< s

Q.E.D.
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The necesalty of insisting on the independence

of generators is obvious in the following example

f&i—_lga

whera 8 falaza in this case the proposition

G :(algagsasg alﬁyagasasggalagaé”l

Lomma 8.5 Let G+ <&19a2ga5; al?‘gagg,asz >.‘ Assume
¥hat G has a Cayley diagram J° embodded in B2, "*I‘h‘am

fo;" any Vl, VE (-:ﬁ 3 O\;l"_'_'ovz or O lﬂ "Ov2¢

Proof. The proof is obvious as there are only

two possible orderings of the edges at each verbex;

al
pF i

. '(-19 !

’
i
i
!

Q-’E tD,a
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L@Iﬂm& 2@40 L@t G,"'(&lpaggagsal 3&2 3&5 "g(&laz) oow;é"(@a.

Assume G has & planar Géylay dlagram /7o Then, ia1325€
bounds a disk at every vertex v&/? Lf and only if
Ovl:ruovz'for ever'y vi?vﬁ%V(alagi, such that vy and

vy are one edge aparte

':-’?9 Proof. Since &, ag, § # 1o Therefore, 1< Yoo,

_-,Qééume that (ai8,)0 determines a disk at every
vel', and. that vi,vp /T , vi and vp are one edge
apaﬁto Without losg of generality, assume that the
adge is of color o1, l.e. a single solid edge.

v |
=
| Vi -
By assumption, the path TEIEETgfrom‘vl‘bounds a disk.
Without loss of generallty, assume that the disk is a
' finite aisk. The proof Lis identical if the aisk s the
infinite weglon debermined by TE{EET?:
?hargforag the local graph at vi iss
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8ince D i8 a disk, the edges correspondling to asAat
v, and Vg must enter the infinite reglon of E?

dotermined by (aya,) ¢ » Therefore the - subgraph is;

\
\

and inspection shows that Oy = =0y . :
o 1 2

Gpos psswne that o :':--ov for all vy,
1 2.
Zala K such that Vq and‘ve.ara one edge apart.

Vo On & path

Pick any V@rtex vy on any path | lazi eﬁssume
that the edge a5 at v, entars vhe infinit@ roglon of
the plane determined by (&j&g) (The proof ia identical

if G enters the finlte reglon.)




Since Oy

- s &nd since v, and Ve 8re ons
1 1

_—] by assumpitlons

Similarly, Oy - mO —
3

A similay argument for ¥ms V, 0%c. ahows that overy

arems

26

8, odge meeting the path (ay8g)T mus b enter the Lnfinlie

raglon af 12 deternined by that path. Therefors the

finlée reglon must be a diske
QGEeDa

Theorsm Z.i. Lot G @

xf‘{al&%gyﬂgﬁ B

u

(agag)jg (ﬁgaljkg?g Sl ke, 1,0, minimalgtgg

baesume that ¢ has o Cayley dlagrawm TC/,E“Q Then, tho

disks in)ﬂ are dobermined proecisely by (&1m?§f§
1%a

3 NE L o e e e A
{aonsg)d, (aoﬁj) . A.aog_ﬂvjm movo for v, Vo one edge
e - (2]

, ] . N .
apart, and /  hag et least ons Interior vertex.

2 8 L
sBa 89 9(&1&2) »

55
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Proof, The proof is symmetric on aj,sa, and -339
2lnce the ai'?s are Lndependent, i,J);k = 2. Conslder
the path (ajas)‘from soms vertex vig/' » Let vp |
be one &y eodge away from vi. By lemma 2.3, Ovl:,;-‘_‘ vy?

Bo assume OV~ Oy « In addlilon, without loss of

generality, assume that Oy =5a;,/ and th@réfdray
’ 1 8o
53
oy =(a1} and the local grapa at vy is;
z E}.‘\B ‘
P

The vertex Vs = v2§§¢ vl(alag)T since .tha agis ara
independent. Likewlse for v,=v,Bz.

Since (agal)k: 1, and kZ 2, we have;

Ve =g ('asal-‘)k =vglagaag)e(a)as )1"","": a1 ;‘véc'alﬁgi‘%"?&l-

(k=2Z 0, since k¥ 2.)

Thefez"oreﬁ the path (alas)k"gai from vy must meet the

path vl‘(&lag)i at some V #vq, and it must do s0 with

an 8z odge since 0(.9;_1)::2“‘7 and every vertex.on V15(a'.18;-2')3:"
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alecady has an &; edge. Let vy bo the first vertex

on vé(al%)k"'g a; such that Ve vy{ajag)t. Thereforse

the local graph 1g;

Lot Vg = Vgazhy = v533"1‘:&1'ie

Fopr gome g <k-2, we}have; vl(asal)qas =vg, and for
some, w(ajng) s G, vy wlajp,) Tvg by inspectlon.

If g= 0, viBg Svg BVyWiayag) o 8z ~w(aiag), waich is

| impossible since the aifs are indep@ndén{‘.o Therefore,

04q <k-2, and v, #v5, and (agay)dag =wlaipz).

Since v_l-(asal)qas =Vg, vaasa.l(asal')qas-;%s {bocause

Wi: Vg&g&léoa

Thorefore, v5:‘..v5(a3a1)‘?1a3a1a5, go that .

Vrazhy =V3 (azay)dag ,ﬁ.-"llio@ o g vz azay J9azg .



But, since {agay)9az=w(ay,as), we have;

However, this ls impossible since mo path consisting

of only 2y and Eg edges can cross the path (ajag)t
which also consists of only &1 and &g edges. Thorefore

it must be that Oy = =0 .
- i V2

~ Then, by lemma 2.4, vy (a1ag) > determines & diske

AT T

Similarly, the paths_(azaﬁ)j anad (agal)k_= determine
digks atb @verych;jjy¥ﬁm' | | '

In eddition, sinc@'avery_vart@ﬁ've;fi has but
three copcurring edgea, . there can be ab ﬁost three
dlsks at V. Therefore thése disksz at v are precisely

the onesdetermined above.

I% will now be. shown that|7? has an int@riofliertaxa
A% each'vertex-vﬁj{i;th@re are two cholcess
- 1, Every disk is Tinite.
2. There @xigts=an infinite disk at vo '

If i, 1s the ocase, the local graph at v 1s;

29



gnd- v iIs inberior.

If 2. is tho case, withoud loss of generallty a5 5UIo
that. the infinite disk at v is determined by (alag)in

2

Therefore, the local graph at v isj

LS

(Vl m%{? V(ﬂlag)i _Siﬁcﬁ th@ &1“8 ar@ indap@ndanto)
Theuvgfore, vi_is interior. ’ | -
| Q‘E -Dn

“
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o7

) GQ:E'OE,K&Z”S 26)1(} IJ@';; G‘ :<&19&29€LE§ R19R230°°RYG>*
Lesume G 4s a finite group, and the G has a Cayley
diagram FCEQQ Taen, Oy « =0y IoF Vi, Vg one 'edge
. 1

2
apart, and the disks ave determined precisely by

{alag)ig (agag)jand (aSal)Egaome-i,j,k such that

1 A8,0k Leoe " |
Proof. Since G 1= finite, .foyr some i,J,k

(alag)i;: (&gaE)j: (agal)k?le Since the ai's are

independent, L,J,k #l. By propositlon 2.7,

alﬁ ::a22 ;ésgzla ?her@foéeg the result follows

immedlabtely Ifrom tﬁea}?@m Bele |

QDo

Note: The conditioné 81%= agl, az® -1 are not
sufficlont b0 guwéntea@ the conclusions of theorem 2.1
for in the followlng embedding of the Cayley diagram
of the group G :Q@.lpazsag;ailz,, 322, a:_:,_z, (alazag)2> »

Ov;:-i—o jfor all vi, vj el 3



¥}
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The following was proven in private communlcatlon

using different means by ."..Afthur White.

Corollary 2.2, There avre no 4 generator finlte

growps with a Gayl@y'diagmmi Ego

Proofe ASswie G = < 1580s85s8g3 150 Ry > 15 @
finite group which has a Cayl@y dlagram T < ZD2 As
in lemma 242 d@lé}te the edges 1la )_u covrrosponding
to'aw Tﬂ dscompoaeé irﬁ:o disjoint connected  Llsomorphlc
subgraphe, the vertices of ocach subgraph correspondling
$o the elements of a left coset of H, the subgroup of
¢ generated by ai‘;’ agrami By Pick one such gubgréph,
say )ﬁa 0 {tself, H is finite since G 1s finite, ‘sé '
12“a92:a32 =1 by proposition & '79 and (alag)iﬁlr_
(azaﬁ)j_.. (aaall oy corollary Z2.l. BY theorem 2.1
)/g has some interior vortex v{ as do all Ygﬁgge G)
Restore the a4 @dga at Ve V&é;:(% TH EJiIlO@ the ai's are
indepand@n'to Since v 15 inw.@ioma)ﬂ He va, ia in some
bounded component of the complam@nt or ' ycB®
d@t@rmméd by souwe ”c'ycl@ Pc}ﬂﬂo But, vé";@j"-g%H
where g@G corrwponﬁs 0 veﬂ » and g€ Ec Since i,h@)ﬂgﬂ
are disjoint, ]'“%a g C B0, the inite component of the
c@mplement of f c_ﬁg d@t@rmima by Po In additiom Ea@i

‘f;‘haa gome interior ver‘tex Vis and vlaé Gj’]giﬁa As above,

Vi8¢ ﬁw& Hl o o
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/ "‘*.""'/x
P -n.a/ rf/ ‘/V\g ’. \
) e
S
WY .‘
=/
~. _7

ey
3

1

Since vy is ingerlom :inﬁg%ﬂ »4t 1s contalned In the
interior, P40, of aome cycle Py c)’“gaéﬂe Since the
soset graphs are dis“joint? PlﬂPZ(j) , and slnce vi& 29,
- o " -

PP

P~ TN

oy

In addition, there can be no vertices of [l y in Py
sine@”ﬁﬂ is comeptedo Therefore, vlé.:gq_ PH' i’his

process can continue indefinitely;.
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and this implies that there are an infinite number of
vertices in P°. But this is impossible since G was

asswned %0 bs a finite group.

Q.E.D.

v

Corollary 2,3, If the'groﬁp:G has 4 or more generators,

and ¢ is a finlte groupg.%hgn'Gnhas no Cayley diagram<;E29
Proof. The result follows Imnediately from

Corollary Z.2.

" Q.E.D.
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Sectlon III-8ome propertles of infinite planar groups.

L@I’flm?i 5@1} Iet G « 4&135’29@@;aln3?3e2?eaeaq> s Ny Q30

Assume that ¢ heg a Cayley dlagram/T¢ ®°. If the path

B

(glag)ra.f‘" 1&rdw E£=0,1 , from any vertex v&ﬁ

maets lvesly at soms poimﬁp%ﬁ s than (algzjfm 1,

v
aome 148 4o

- ) )
Troofs Note that ¥ must be greater then 1 shuce
&) and ay are Andependent of sach other,

One of the following four cage mugbt hold:

o Imagdlately lmplles (agag) 1

1o p oo
t ; K 3 E:%' ;
/li b S by inspsction
. <

o

rs
v

’
4

L

Q

|

W o

o |
7] . \t BN :‘!L ’i amnlay % - \ j - ey
Ylag® = (agag ) 8y e

g Eiw
COAN R
(aqa,) hes finlée order s8inoe a4

does

Yafm

w
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Beo (a“ ap=l(aay ) =ag™t
. o8y ) e =1 (agay) =3z
-e5(agay ) has finit@ order
L ns_sin@@ ag does —»_y(alaz) has’
S~ | Finite opder. '
Y
4, ¢ =3{a )'::‘1 b;\yf insp@ction "’}
f . (ala ) —'lo
Ve
7
/

If n=2, or m-‘::_‘;?_;,, represent the edges corresponding
%0 ay and &g ln- diagrams 1-4 by undlf@@t@d lines. The
proof is the same, bub With the followlng consideratmns,
_@_QI.{‘ nw=2, cass 2 18 imposaible, but each of cases
1y°8 and ¢ still yleld (alag)hri 1. ‘
b.If m¥2, case 3 ;m impoasibla bub oach of cases

1,2 and 4 yieid (alaa) ""le

ReEeDe

We now extend the two results of NMaschke, mentloned

by

in Section iI? to the case where o(G)=o0y




o8

Lemme 6;.29, Let G :<alga2, oo awa 3% nees
If G has a locally finiteé Cayley dlagram ﬁ(:- 'ﬁszy
then the two d; edges at any vertexz ve/ ' are
not crdsja@d by 2 edges of smy other colore

Proof. If all othey gelléz?ai:oz*s have order two,
then the result is vacuously true, Aso assume o{an)Z 3.
Assume thet ab some vertex Vjir.,. the two &y edgas'_aré.
crosaed hy *‘r:wo #y 0dges. Without loss of gonerality,
a8sume that the local graph at viyls;

A

2

i

% X
& e

Since e R= 1, 3% n<ed , the path @yl from vy

determines a polygon Piof n.aldes;

Y v
he o
‘\;\ b
Y,
hY IR
V.o 7 =3 v,
11 /] . G

Sinde a, and a, sre independent, aggf (ag), nnd zo

e

szq_:i; e PO,
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Since F ia locally finﬁ.‘s’:og V38, jcP for some j,9 1<j<eoe

Theref or% for soume k, 14 ged, vlcngi bvlalk

wBenarerray,

\f,m’i

-Thamfgms E‘nlk: agja But, .ai;gc@ vorvlag'fly_ | _ ‘

Y as .;-.-_vlaéj-l =v.{j=1 >0 since j>l.).

7y b B l{-—_ P | o k S— b i
Therefore , since aj _‘3239 W have Vo1t = v.-voa23.

30 there must be & path of gll &y édg@a from Vo B0 vy
and this would require fi»-?fi' odges concurring at sowme

vertex viGPa But this ls Impossgible by-?ropositioq 2.1,

| QUE.DO J

It was not necessary in this lemma to use the full
str@ﬁgtﬂ of the ass'umption that the -genaratbfa"‘cf G are
_iﬁd@é@é}&@ﬁﬁo Only ag #ali (Rl >1) was néede‘de

48 seen in the foll@wlng govrollary, oven this asaumption

ia stron@ax' than i‘t n@ed bes
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Corollary B.1l. The above result can be strengthened

' £1
$o inaist only that ai ~ # @ge

Proof, Assums a,wa;t, 241<n, and that two &g ‘ B

cdges cross two @y odges at some vertex v. The local

grepn at v gy A
[ e » 9
A

There mast consequently be an"E; edge positively

directed from vay ~ o Vi

In oither case, 1% is imposgible to draw the required

&, edge from val“l Lo vali"i without contradicting

Proposition 201,=f
. - . .Q'E‘Da .
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Wotes Tae regult falls ip the folliowing example

drEng & -
where 313&2 .

Theopam 563— Let G ﬁ{&lgaggase.o?;alnaeaﬁq} 3n LoD

Tf ¢ has o locally finite planar Cayley dia'g;ram,ﬁn_
“then any polygon T dévt@rminad by the relatlon aln
determlnoes & -disko .

Proof. If n= 0913237 the theorem 18 oﬁviously teue
since a pathn EF from eny vertex does not even
deternine & polygon. Let P be a polygon determined by

ot

alng &n<ead , and gasune that the finite region
determined by P {P°) 1s not a disk. Therofors, p°
st conteln some vertex ve)!' , since if it conbained

only an edge ?5.?&)1 thon aze (ay)e. It will be shown
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that PUPO containe every vertex of'/W, and therefors
the exberior of P is a disk. An ideatical proof would
show thet if the exterior of P wore not a disk, then
2° would be a disk, | |

Since there exisie some ve;Popjand since )7 is
connscted, vhere wust be ap edge from some vertex &
of P to PO Tals sdge cannot be an ag édg@ hy'
Propogition 2.1, S0 asswmne thab it is an sy edges

AN

. o \

_gf aga: ig we can conslder the ag_adgelfrom A to be

positively directed into 2% If agggél, then Lewmma 3.2
lmplies that both EE adges aéncu:ring at A lead to P°.
In anylevent there 1z an E; edge positively directed
from 4 to PO, Say A&, =B. B must b@loné to some a1 |
polygen P!, and P! must lie entirely within Poﬂ'for
ir n@ﬁ; shere would be more thanp 2 Ez ~odges at gsome .
point. Consider the path (agal};Z applisd to the point A.

This path will either stay inside POUP, or will cross P.




Lesume the lattere In order to cross P, it must firad
woot P, and 1t must do o with ani¥, edge by Rroposition

b

2ole S0 wo have the subgraph;

G f}‘é’}? ginco ag .}’alio G:?lg’i P by Proposition 2.1. Since
BeP®, Ceeoxverior P, BHC, so that A™ £ A, Therefore,
for some X, Alagay =47, k1 sinc@wél and ag are

independent. Also, 4''a 3’:@.. sSome O <j4ne
» 1 s 3 d

Therefore, 1«‘;(\*2&1)1‘ ay .._A”alJ-Ag s0 that (agal)k
a{js- o (agal)kalj::le Nowg since the polygon pv
liss @ntiéelyﬁi‘thih po, BreP®, But, Bﬁ(azal)E::Gﬁ
2ince wx a )kalun—.a.s we have Clay -.B" T™is :melieg

he c:vm“*cenﬂ@ of &an al path from Ct %o BE BPut this
iu impossibl@ by Proposition Z.l. ” L
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Therefore, the path (&8&1)A from & must remaln
ianQUE@ But aina@]#'ié locally finite, PPUP contalna
ﬁut a finite numbeyr of v@ftices@ By Lemma 3.2, the.

" path AEEE d=l,8.600 c&ﬁn@vax:crass P, and therefore
the path Ae,® wust meet ifself, so s, has finite ordere

Also, since the path A(Zzal); gtays in P GPoé % oo

mast wmeet 1tself, sc by Lemma 3.1, (&gal)yﬁflggemakg? 1s

“Theraelore, &(agal)_mlaéﬁralg aéd sa'th@ré ig a nepgatively
diracted Ay edge from Ay o PO,and Lomms 5.2 implies
that there ig a positlvely diracteéfgg @dgé from Ay
o PO, Similarly, hoth g edges from Ap lead lnto Po,
and so on for every vE P, Therefove, there 1s no
'cqnn@stion by Eg edges Irom P to th@_axt@riér ol Pe

Now masume that there 1s somes vertex Fﬁéjjﬁuﬁh that

p & exterior of" P Sinece /7i8 eonnected, there must be

gone édg@ leading from P %o the exbtorlor of P. Thia
edge, a8 ahown above cen nelther zbauﬁh'gzjadga'nar an

i, edge. Therefors it must be an odge corresponding

=zo By the above

to some third generator of G; say a

aropument, 1L any &z edge lsd from P %o FY, they all

wovld. Therelore all gg adpges meebing P wuet lead 6o

the exterioer ol P.

Lot A be say veltex of P. We have the fellowing subgraph)
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B &P? since ag:ﬁaliﬂ and CeP® since every az edge.

B
&
fi
i
il

ng ? leads to thé exterior of P. An argument
identical to the one above shows; |

1. ng haa finite order

2o (agas} ngs finite order.

Thereflore, we have the subgraphs;
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TR ATy

The path AGQRE is A(agas)g where S'QTQ(agaﬁ)@ R&P,

o
E":S‘% (ay)e

since an &, odge mesting P leads to PO, T¢: P since

Therefore, K@_wr(izégiqaégqéwg>&and @K::alkg B Mo

Bub , 3(&2&3EQagalkﬁfé(agaalqagjalkgrﬁalktzsg since

gcalkm;l¢ Therefore,

there must be an By path from R %o 5. But this 1s

iE Th is‘&_cycle'énd 80 (ana,)%

lmpozsible ginee nob more than 2 edges of any one

color can meot at any vertex by Propoaltion 2.1

Q.E.De

Notes Agaln the fuiiuaﬁfemgth of the independence
of generators was not heeded, only the factk
that aié(&l)sall 13 1. However, the fnportance
of these vostrictions ig apparent in the lellowing

o % nleg ha S 8 =2
oxample; G w(z\/:%lﬁugy -8 3&2&.1 }'m




47

5 of iloeal Tiniteness Ls algo cruclal. As

i

DOTHhOs!

The ny

wple, &3 nwed not determine a

7
A

wian

a4
=4

e
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;ﬂnﬂlﬁﬁ_&éw Lot G “—"<ﬁ1£&18@ﬁa&n$&ll Haflo ‘3aee!5=n n,’?s,
By <ot o Assume G admits a locally finite Caylay dlagrem
]1Q,E30 Then, 1f D lg a dlsk im,fia and D 1la determined
by some word weF, then ho two cohzequilve edges of W
have the same coloy unlass every edee of W 1s the sawme
color. That 1ls, elther w= a4 o WiIay a4 Covofis Dy

2 ‘;]ip

where © P A BN 51{?{‘ jl&;.}ls J1 jé'jﬁ"

_ | - ‘ .
Procf.Assuwne that D 1s a digk in /' and that D is

determined by s pabth W having fwo consegutive odges

of the same oolor. Let x be tho vertex on W as shown;

7 “

A N

/
\ A
N :
e, ){ “
o g, : %P moe
g Tl
Mg, 14

Re
If n=31, the lemma is obvicusly true, l.o. wway ‘]kg
! o
: k
sc asgune n 22, and thatw s net all of ohe colore

, z S -
Therafore, for soms g, EL<q4553 » x{aj )qgfwﬁ and let
o “k ko

g be the smallest such integer so that z{ay 14te, W,
' k




, ' m——
Similarly, for gome ¥, O< i @j s *“(aj )y E « W, but

W. 8o we have the subgraphj

Since x{ay, )04 W, the positively directed edge ay
ed X 1,_

Fi 8

YOI pust enter sither the finite or

infinite componens of the plense determined by w.

If the formey ig the cass, the local graph at




It the latter is the cage, the local graph at x lsj

‘n\
%
/

/

-,

S3nes a, has finite order, by Theorem 3.1, ihe

- it e ,
polygon #{a; ) 9% must determine a disk. So
V..
L?'

fcs
©




R

7 determined a dlask. In

But” 1t was gssumed thay
3. , thlg disk can only be the iafinite region

debormined by W3

diagram
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P

ed

o3
e
1~==

h 5

emanate from she Verter x., This ls impossibla,
nowevaer, alncs in olthepr dlagram 5 or &, the veritex

x 1les on a path bo?doflng disk“e

QEDs

To?f nitlon. Lat G-—{algagyeqo@qs Rlaﬂgsqgaﬂmj

Assume . ' |
1. The RS ave eyclically veduced and Non=-aMmpty «

2o For overy Ry, 1% j¥m, tho set of the Ry
also contains Rj”lp aad all eyelic L
| pormuta ations {conjugates of thé sSame
iength) of R, 2nd Ry~
duch & S@t‘will be call@n,the ”Ymm@t&iged sat of the st

and will be dencted .?g::aj"l o
L Be der §
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I¥ B, 1s mny cyelically reduced and non-sempty word

in ¥, the set conslating of R,, Rg™+ and all of

e} g
el o B kg msreptn T 8 m e bt e g a T LN e o g ?
snely oycllic permubtaiions wlll Do denoted 7 n®> R

Lemme S.4. Los G "5{ @‘1'5‘&290“ o&ﬂg ng Rggo ooRm ?o‘
- ’ - . »-\ﬁ Co N "
Azsunms G nag & Cayley daag?am,ﬁ(;}fw Let v&}7,

and svppose VRG is a cyede which 1ls a Jordan curve

of finively many edges. Then, vRY is a Jordan
curve fov ¢ny “V<_5 R
el ®

T L T e a= b " "—1
ool Letb wa ;‘flygv.oayioocy’tp Sfl“ 5!1{ 3 RO

& syelically reduced snd non-cmpty relation in G

If vR, 18 a Jorden eurve, then R has no

s 2 e ore. wle o W - wl =i
subrelations. Therefore, R, = ¥ losoyi 1«00?3 1?1

hes no swbrelatlions. Therefore, VR, is a Jordan

SUrva.

AgBume VS v Jifqoonylovaw is a Jovrdan curve, io@og
'S has no subrelations.

Lat 8! 5¥o¥zees¥goospyy and assume v‘? is not
a Jordan curve. Tnerefore, St conbtalns some subrelation
ToT 1o eVipa1Vms pgieg“méing and then 8 contains some
subrelation, contradicting the sssumption.

Using 8' in plase of R, in the argument shows thab

&9ﬂﬁ—yry 00ve¥y L8 @ Jopdan curve. Lad so on for all
o

such conjugates eé R'; @imilﬁrly for R,
o" T - o ° -
o ' Q,oi‘aDo



B4

- ; " S ' Fo
Theoran S.2. Lat G‘r:-:{ @y s8op000By 3 Gy 1, ag “..0

A}
& #jfl , -' s, R nen gy Iy b @
ay % ByeooR) , the 8y minlmal for G, n22, RSFEL I

’

Aegune that G hes a leocally finite Cayley diagram

gy == Gv for all vs.-f’ + Assgume
R :'L 3

)

[
:?.,
cr
<

e E‘*‘ SRk

¢het D is & disk ian /' and that D has boundary v W,

ra)

V& 0 (D}, W some cycle inﬁ wlith a finite number
of sdges. Then

_r_}»;o ﬁi%h@f‘ W= &E‘l‘g 3-":::.‘ (lgﬁpwoon):;’l‘o.?

BN Gi
W {3;3_:?:‘,&“;2&) 5 whore xj Tap s

A = = g u-l L
€, =X 1, 1K {aw aﬁq‘rﬁih , for a11 :

b

Q,;i & (1, v-goaoh.}o
I2 the latbter .a.s tho case, theng
I%. Bvery word w“ g(:ildc».,ww.f: )i dotermines &
path Wi ff{m any vertex v&/ such that vw’
vounds & di@l-:;"é;ll but at wost one of these
“4ig a finite d*‘sha and if o(c) =@ yall guch
disks are. finlie. B
I,I. : Oy =0y a11 ve/) o
Jeoooo

Proof.Assune that D is a finite diske TE@ proof
is identical if D is infinibe. Assume w¥a; o By
Lomma $.3, no two gonsscutive gdges of W hava
the same color. Therelore;

"&1.-., : "21{2

) B 1Y
WEay T Sy

Y klgkgq%(l_gzﬂwn)s&'ki:i 1,KqF kg
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Denote &,
- Lg

. o < 1z .
enote &y “L 0y Hye
i

k2 py X 8O that -

W SR HpEe Theprefore, tho local graph 8t Vg iss

L

inite ordev, and ainc@}ﬂ is

2
b

slly finlte, the pa@m@olay polyEons with edges

Thero AUSG also be disks
. . . .

o=

sy ahd Zg debermine AisksSe

b Ve gorrosponding 4o the other g

Py by Thoorem Je1;



8o that the clockwiss ordering of the edges about

Vi muﬁbu{uimu-«ei 28, all ie{l,2,s.00);

wnors g =7 1, Kok g 00 okp YE (1,850000) () (kbkg)i?@

=

i
Sencte oy, K by %o That 18 xyway =
g Iy J Spe iRE p=Ek, ¢

B

Tt

8¢ the odges at vy are renmmed, and the clockwise

ordering of the wenamed edges alb vy beginning with




&7

M 7
It will now by ghown thal the next edge emenatiag
Trom Vo on Ghe path W is mgTh..

Singe the X5 polygon ab v, is a dlsk by Toheorewm 3.1,
the clockwise crdering of the odges at vg boginaj

But, eince Oy =4 O , all vel' , we have Oy 2% Oy
1T - A 1,

and 80 the complete ordering of the edgos at ve must be;




o8

Taot La, @#'ﬂhéev . But, since D ls & disk, no edge
. o ,

2
san eater: D from Vg, 80 that the nexi edge on W
mst be the sdge immediately followipg§%2~é+i§ in
the clcekﬁise 0fdaring about vg, and that edge is Ege
To @ﬁt@ﬂd this 0 the general case, assums tha%

two consecutive agdges on W are xg andrxq¢13 1£ g n-2

Thorefore the subgraph ab Vg iag




- .

Theralore, the cloe

w8 et € m—) & g0
W»Lb{.iti.f,\q'}“. ‘}S »L 3
(}q,;. —_— >
k 3
@
But, since O - X0, the complete clockwlse

Vo Vi

ordering abt vy.; must Dej

g

E{}i{;’l "__} ‘
| gyl
L 2gpe —

2042 —

. A

Q
j e
VQ —

y?;n ¢
J 1 7

ey \ .{_._......
{ °

Q

Ry &
Therefors, as above, the next edge om the path W

mast be Xg_ o, and Oy =+ 0. o
. -8 v
e g+l 1
And so on untll weo arvrive abt g=zn=1, 1.0 g+l =n,

and the subgraph 1s;

59

wwlse orderlag at v, 4 beginning
4t
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Therefore, the clockwlse ordering at vy beginning
with v, — 1s;

a2y

ey

Bub, sinee Oy 4%-0v , as above it must be thai
n i

T

o

the next eodge on the path w is E; and ‘that Oy =+ 0 .

' ' ' hn 1
And 8o on. Since W hes finite longth, and w<=1l& G, the
path v,W muet termlnate ad vy, and the above argument

shows that 4% does 8o with the edge .

¥ Lo R, <] y v e o " - W ;
Theorefors, for some ¥, VoWT v (X3XoeeeXp )P ,and
. ‘ _

- . i ; . .
sa-wt:{xlxgoooxn} o 0<® gince W has flalte length,

and Y2 2 since the xjrzaii are independent.:
Moreover, Oy Séovl for all v &v,W,

81060 Vo{RyKgeseXy )8 = Vo 13 a Jordan curve, there



6l

are no proper subrelations in w. Therelore, for

any ve ) v{xlxﬁqqum)ﬁ'ia s Jopdan curve, and by

iz & Jorden cuprve for any vzij7'and

{xlﬁggoqxn)

Ly

»h

Ve will now show theb vw' bounds a dlsk. Plek

e
. o g :
any ve/t and aay WP ¥ (EyHg e oRpiye s okyal) &

. 27 -
R 4 1 " o ey fa o by o o )
é’(xlxgggoxn} § o Consider $he Jordan curve (and

thus eyele) vwl ;




R

Aesumo that Oy .= «0, - { Tho srgument and reasull are

X

Ldontical if wo wors bo mssune that Oyix-+Oy ol
: ‘ . 7 7 y
The iocal graph at v 183 ' ‘
-
.
“
N
AT
'{M%

8o Ynere are no connegtions 1&/ to v Lrom the

infinite open reglon of Eg Gotermined by vVWw! .
Since 0,, =X Oy, snd since the polygon at v!
with all edges buing % 4 st be a disk by
Theorem 3.1, the countercleckwise ovdering of the
edges at v musb begilng
T i

s
4L

Eypsg ——7

(2]

Ll
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Therelore, Oypo40y= wév_gg and similarly, there are
no copnections to v rfrim.;x the infinite regloa of B
determined by vw.
. This arguanent repeated at cach vic vWT shows that
thoere are no connectlons to vt from the mi‘ln.’iw ‘fégion
of B dotormined by VWU , akd thus vw' dotermines

an {fnfinite) disk. In addition, Oyl=+0y for all

<

IgvwT,

Wo will now prove pavh .Lif.; 1eGo 'Ovi:v’% {)vh Fox
ik VC) ’ i

Assume that there 1s some vertox }7@')‘7 gsuch that
Gy: o 1g(obv.s.ouu_,.;f 7 :évl) Tﬁe vertices y-ané Vl‘
corvirespond toe elements y and ';f\l in C'qa Therelore,

AAY _
there @::i:—:stﬂ some geC such that g 3:-\:"1 eyg EU-

There may be mor@ than one way' o wrelte g as @
1j.ni§:c:3 woprd in the <@.if';.'bu‘b pick one and fix it
Therefore, g cormaponds to soms Fized path g from
overy vertex inﬁ , and;, sp@aificailys V18 =¥« Slnce
Vi #¥, & has at ioast one edge.

Slince Oy :wov19 shers must Do SOmMe Vertex t on
l"c‘nea path lg guch that O, "Swﬁvlo Let %] be the firvst
such vertex ®, and call the verbtex immediately

preceding $1 on V9§, b,e By the cholee of €1,




wWo hava Ot::é-ov :T“Oyziwotﬁg and the subgraph isg
0 i 1
T G
% e B e s 7
ﬁ £ 2
\\\h“m 3
-
Since %, and %y are one edge apartyhﬁoxjf;z;tlg

gomo Je(1,8,.000)0
aad %, are on the boundary of
. e < T 1
some oycle ww! , vk€}7 s W“Q;E{Xlx2¢aaxm)Jg o Bui,
it was shown above that such a path bounds some disk
DV such ¢that O =40 for all v,,v.& gfbﬂ)e Thér@fores
. vy Vg 127 _
1% cannot be that Op = =0

o7 "%y and g0 Ovisrfov Tor

@

. 7
all vel .

To prové the sscond part of Il, we note that
saeh path P =v, Wi, vkeif7g Wéﬁgtxlxgaagxn)fg
determines a aisk Da.Th@r@foré, ngD has‘twé open
conn@cted_compon@ntsg‘a finite compon@ht N, and an
infinite componentlmp om@-of'which gontaing no vertices
or odges of}v o LID RN, fege P d@%@rmih@s an infinlte
aiek, thon /0 is in the closure of N, the bounded
compohentu‘Since;? is locally finite, Q(G)i.mﬁp and

there can obviocusly be only one such infinite dlsk.

This proves Theorem 3.8.
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.The.%heor@m'sﬁaﬁas that thére exists at moslt one
infinite dlsk if'o(G)ﬂtﬁf; Howsver, 1t does noi
prodict waich cjcie‘determines'tnat disk. For example
in the group presant@d bj'G_:<<alaz;a13?a23}(almg}8;73

mespivoncics ik

LG ihfinite disk can be determined by elther -alb

o (aiaz)gg




&7

The theorem may ‘fail if we allow soue generator

to be of order 2. For example, l@ﬁ G {al,nag, a143,82 2

-alaza 132>
\ o o -
o £ o ovp=e{ag )
\\ P . - ay (__
LAY _ s 2
/ Y A-x\ ' |
N . y ’ .
3 N : o :
: _ Ove . B A
TN o e 17
//'qa ' A I : 81 —
— 7 —7 _ 8 | . az ?'
q '

S0 that Oy = =0
TR TR T T

Even if Q-gOnS are allowed, the situation is not lmproved;

-
.

And here, even weak point symmetry is ilmpossible.
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Corollary 3.2. If G satisfies the'hypothesea

of Theorem 3.2, then if R<1 in G, R&
E" afi i(xlxzo“x ) gJF
Proof, Let Vel . Taen, v is a vertex on the

boundaries of the 2a disks, vai@i vwoi,
we g(:slxo.“x )B‘S , at v. The cycle viﬁ from any

ia’af’ sust therefore coinclde with ‘edges already
in the graph.
| o Q.E.D..

So., for example, the group G = 7
<31»3’23 3148 9249 (31&‘2)4» 312%27
does not have a locally finlte Cayley diagranm _-ini 52

guch that c)-gi...ovl3 for all vé]" s 8ince the ralation
.'(a12a 2)#[31 s 3245 (31&2)4} F |

Theorem 3,2 guarantees car‘tain results i1r given

the exis‘cence of some disk D such that g (D).—agi..»

The same results can be gotten, however, 1f we merely

insist upon the oxistence of some R¥1 in G such that

R ?aiqg RGE{B ij P We first need three preliminary
results, the first of which states that under certain
conditlon.s any cycle C walch determines a disk is a

qudan curve., That eliminates the possibility,



complement of ['in E

20
R4

69

aimply connected domain D, in the



Proposition 3.1, Let G be a group with a locally

finite Cayley diagram embedded in E®, Let wrlé&G,

w of finite length, be such that for'some Voéjj s

ey

¢}

D whilch contains no vertices or edges of /... Assume

‘that v W does not meet 1tself except afb vertices. Then,

D is a disk, and w is a Jordan curvee

proof. It will be shown that if voW is not a

Jordan curve then D is not & connected component of

the complament-bf]1-in_E2°

A

Assume that vy

be the first vertex on v

y< G is not empty, and W “xyz, X,z G, and VX = Vl.
Suppose D s on the left as v w ls traversed counter-

clockwlse. The proof is identical if we were o assume

that D 1s on the right;

e \\

oo ]
- ' !

Ve N\
/ ﬁ\ L
~

By'tbe choleeof vp, vi? iS‘Q Jordan curve. I both

% and z are empty, then we are done, since then we

v ¥ is the boundary of some open connected region

w is not a Jordan curve. Lot vl

W such that vy =¥17, where

70
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would have w=xyz =y, and 8o VW =YW is a Jordan
curve since vyy is. Lf either x or 2z 1s empty, then
V) =V,e Wlthout loss of géherality; agsume that =z
i1s not empty.(If 2z is empty, and x is not, replace
W =xyZ= Xy in the following argumént by w“lzsy"lxml.
Since v1§ is a Jordan ocurve, viEIE is the same cycle
traversed in the opposite direction, and 1is thérefore

a Jordanh curve as well.)

e

Since W 1s of finite length, and since W= Xy&,
¥ is of finite length, say t. It will now be shown
that v1Z/1v{¥ =v,, that is, the boundary of D
described by voﬁ'has no multiple polnts at any of
Vg, VmpeseVye L | | “

Since v,¥ 1s a Jordan curve, the open finite
component N, and the opein infinlte component M, of

E24vi§ are well defineqd;
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Assume VyZ Avyy #vi. Let vy be the first vertex
on the path viZ such that v, is also on the path
nF (i 1).

Two cases arise;

1, The path v1Z enters N.

2. The path v,Z enters I,

In case 1.,where viZ enters the finlte component,

viz CN until it meets the vertex vy

But this creates & dlscomnectlon of D, which is

impossible; since D was assumed to be connected.
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Similarly, in case 2, where v1§ enters the
infinite component, it must be the case that

viZ cM until it meets the vertex vy;

But this too creates an impossible disconnection
of D. Therefore, v, W has no multiple points gt

any Of Vz, .vS,OOOVt‘ﬁ

If there were but 2 edges at each vertex of[7i,
then there Ls nothing to prove, as there could be |
to multiple polnts on any cyele in /' . So assume
that there are at least 3 edges at each vertex of
I, (Bach vertex of [’ nas the same number of edges.)
Asswne that some edge at vy (not onér(D))‘le&dé
into M.(If 1t leads into N;'the‘argpment is the
same with M and N switched.)'Sincé the number of
edges at vé is at least D, and by the above,

argument at most 2 of these can be boundary edges,

there must be at least one edge at v, not ond (D).
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Since the arc vivgvz 1s on é‘(D.)r,.all edges at v,

must lead into M.

If; In addition, some edge not on S (D) londs
into N from some verbtex vj€v1§ ,§=3,4,.04e%, then
all edges at vy not on & (D) lead into N, and the

local graph contalns;

Therefore, for some sufficlently small neighborhood

-2

5 about vy, ‘we have Dlz"—:l\{ﬁ SCD,since ViVgVsze S(D).
.Simiiarly, for some nelghborhood 37 about Vj' we
have D |

QES'NMC,D. Therefore we have ;-
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and thersefore, D is dlgconnected, a contradlction.
Thus, all edges .to vi? not on.(g(b) lead from

Vo, VaseseVy into NMj

Therefore, the only edges of [1 .-laadin.g into N
must do so from vq. If there are no odges frdm vy
to N, then v,y determines a disk which must ve
all of D slnce D 1s connected, and we are done.

So assume that therse 1s an edge from vy into
N, Call it ;:T; Since a T aj, soms 16(1,2;,.000;),
a #1, and so VI;]__-:]' ilvl, Also, vlﬁ‘iviévﬁrj’, since
all connsctions 0 the vy must lead to M Tﬁerefore,

Vla":t& N;
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Consider the path vi(a=1)¥, k=1,2,..0 o stnce /'
is locally finite,.and‘ali cohhections to vy & vi?
must be made from M, tﬁis path muat meet itself, But
this impliea that a=1, some q, 2£q«<w. If Q= 2,
1 follows immedimtely that the arc Vivg =D #8&. If
q 23, and Vvg =&, 1t is impoéaible-to complete tho
polygon vﬁ;ﬁ gince no & edge can lead from Vg VgseeoVy
to N, and the polygon v@Eﬁ must be a disk by Theorem
5.1, | |

Therefors Vivg =B -‘-‘Ej $8, some J&(l,2,...0).

glmilar argument shows that vlvtefa,' and that vla 7 &1,

and so, vla c N3

It will now be shown that (ab) has finite order.
If (ab) has infinite order, consider the path vm;i,
s 1.,2,.‘.. « If it meots itself, b has finlte order._
If it does not meet itself, the path must leave N, ‘
and must therefore meet v;y at vy, since‘vl is the

only vertex with possible connections to N. But thils



a4

implies that vﬁE :Vggﬁ for some p, which 1is impossilble
since a and b are independent. Therefore, b has finlte
orders | |

Now consider the path vi(E%TF, ¥=1,2,00s o Since
7 is iocally finite, thls path'must olther meet
itself, or must leave N. If the former case, Lemma Selk
immediately implies that (ab) has finite order, If
vl(m leaves N, it must first meet the path v,¥

and can only do ao‘gt the vertex vy, Therefore, in this
case too, the path meets 1tself (at v1), and agaln,
{ab) has finite order by Lemma 3.1. éo, (ab)d 51, deod ,
and /ol ¥ 1 since a and b-are independent.:

It will now_belshown that the exlstence of the
edge @ from vy to vy leads to a contradicﬁ?on, and‘so"
there can be no edges at all from vy into N, and so

the Jordan curve vi§ determines D, and D is a diske

Conslder the path vm(ab)“‘; which ends at v, since
&

.(ab = 1. Since;vmaﬁ ends ab Vo, and since}dl){l,‘

. el .
vz(ab) ends at V.

Therefore, the path vz(ab)d'l must go from M
into N. Taois can only happen via v1. Therefore, we

have;
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é.ba-)ﬁ;b;:‘agnda at vy, and 80
b Y1

and so for some !81111
(ba) b=1,8>1 since a and b are 1ndepenaent,
Let v, be the end of the path v{ba, Therafo:ce,
gince (ba)ﬁbf—’l the path Vk(ba)pb ends at V. Bu‘t ;then,
-vk( ba)lb =v *5‘ (ba)Fb -vl(m‘o =vy (&), |

since vl(EE')" ends in N, and v.l(EE) ends in M.

Therefore, vy(ab) =vy =v'1'('5a). But this is impossible |
Q'E.D'
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Preparatory to Theorem 3.3 we have:
Lomms 3.5. Let G :(gl,az,...an; Ry, Rz,.,.Rm:7
not a free group, aj #:19 Assume G has a Cayley
diagram)&.Ez. If ve/' , the path vﬁg determines at
least one finlte open region U whose boundary is _ -
a Jordan curve,. |

Proof. Since R, =1 in G, the path ﬁg is a

J
cycle beglnning and ending at v, 1If. vRJ is not
) a.Jordan curve Lltself, let v, be the flrst vertex on

ij which is reachad twlce, 1, e. jc:xyz, y=1 in
G, ¥y not empty, X and z not both empty. Therofore the

Jocal graph at v contains,

1

and U 1s the desired region. To show that U ls open
(in faét that UXP ) we need only show that y has |
length Se But this follows immediately from the
facts' that the (ajj are ilndependent .and aj ¢ 1.

) Q.E.D.




Lomma 3.6. Lot G-‘-(al,az,...an:"-Ri?,_fiz...-Rm> ,‘ not
a free group, ai‘e-"i 1. Assume & has ’a- locally finlte
Cayley diagram)_' embodded in ER. If v, E.]_’ , then there
exists some ve/ on the path voﬁj' such that v is
on the‘boundary of some dlsk D, -'Ihat ls, every
relatlion Rj contains some subrelation Rj such that
v'ft'g determines a diske |
~ Eroof. By Lemma 3.5, Volt; determlnes some finlte
connected qpen' veglon U whose boundary 1a‘a Jordan
curve. Iet v&S(U). By Proposition 3.1, it suffices to
show that v is on the boundary of some open connected
. region D which contains no edges or vertices. of/" s

" and that & (D)=vw, some w =1 in G, does not meet

 1tgelf except perhaps at some vertices on YW

The proof will be by induction on N, the number of .

vertlces in U, Since/® 1s locally finite, N<e .
Say N =0, This case wlll be proven by induction
on E, the number of edges in § (U).
Since ay 241, and the (ai} are independent, E" .'5.

It E=9, N-—-O, the subgraph must bej;

V.
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Since U contalns no vertices of‘)ﬁv , any edges In U
must be of lengthl.and mist Join 2 vertices of S (u).
But this 1s clearly impossible since a127'£ 1, and
the (317 are independent, Therefore, U cannot contain
any edges, and so Ve S(U), U a disk.

Assume that the lemma is true for N <0, E<n, and
- suppose that S‘('U) has length n. As above, any edges
in U must joinlz vertices vy, vjeg(U), 1 £35. Plek
any such edge, say ai. If v=vy; (or vj), the 1ocall

.graph at v is; Ve

Since §(U) ﬁsvvl.uvi_...v'nv isa Jordan curve, 8o is J“(Uo')
m, and so (U, ) does not meet itself. But, J(U )
must contain less than n edges, and by the induction
assmption, v i1s on the boundary of some disk DL U, ,cTUe

If v i—vi, v éfvj, the local graph at v is;
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and the same argument shows that v is on the boundary
of some disk .‘D':U C.U._ o L
Therefox'e, the proi:osi*tion ig true for N= 0.
Assume that the ,prdposition is true for N< q,
and that the reglon U contalna q \}e;*tices. Pick
one, say V., te (1,2,.,.q).."Since}1 is connected, V¢

must be connected o S(U) by some path, and so there

must be some adge, say x I,ﬁ from ‘some v € § (u)

to aome v,& U;
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Conslder the path ka5.39 § sufficlently large. Since

aie #1 #xiz, there are thres cases;

1l, The path P-::vk;c";? maeté § (U) at some vertex:
other than v, . | o |

- 2. P meets ¢ (U) at Vygo |
3. P does not meet g(u); | | |
Since ) is locally finite, P mu:at_eithex"‘_maet"';itsé:lf' o

.or leave the finite reglon U, If P";'neets itself,

imzl zasM, some m _Such thaﬁ 3.«‘.-1114:::6, 80 thaf vkxim
ends at vy. If P leaves U, it must first meet J’(U).

S0 in either case, S. 18 impossible.

Case L implies the following local graph"

lgss than 5 as is the nwnber of ver

veS(Ul) or ve S(U ) ( or both if v ¥

on the boundary of some oycle conta ‘ingl less than '
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q vertices, v is on the boundary of some disk
D LU, or DEUy, 80 that DL UL YU =Ts
Case 2. gives the followlng swbgraph; _ | o

where U = woljwl, and each of W ,Wl contalns less than

g vertices. In additlon, each of S(Wo), § (Wy) does

not meet itself except perhaps at some vertices(ﬂvk

for S(We) )s As above, since v is on the boundary of - :
some cycle contalning less than q vertices, v 'ls | o

on the boundary of some .disk DS U,

R-E.De

We ave nbw'ready to obtain the results‘of
Theorem 3.2 by assuming the weaker condit‘ion-G':-G'/R £G, - 1
G' a free product of finite cyclic groups of ordeéé@%@ "
wheréas in Theorem 3.2, we needed the existence of -

some disk D whose boundary( by definition a Jorden

curve) was not of one color.
, ! A
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- ., R ﬁr . PR - .o
Theorem 3. Sﬁ Let G e<a ﬁagzovs&nz &151 ag d,e,@agﬁn33;7

A &
4 @19%“”%5 By Ty 8g fyeedy ‘np, nze, 548 cw , By

the true order of a,. Assume that G has a locally finite
Cayley diagram,ﬁc‘ﬁg such that OV,FJQOV 3 allrvczjvg

e N
Then;

! K @_ ‘ .
Lo wk (Xleoo&Xn) = L& ¢ vhere xjy i8y i, %i2“ L,
lLX‘{‘D?'s .‘K ig'tl 3
L. For any v&]? s.and any wie ?(x-x PPy )25 s
: i7g o
v ' 13 a dlsk, and every disk ln}j is elther
viaiﬁi oy vjﬁ?, Vis V QJ\ 5 w‘ng(xlx?eegy )'i
All but at most one of the disa ke imfj 810
finite disks, and if o(G)4cd , all such dlsks
are flnlte.
ITT. 0y =10 a1l ve) .
Bentvbord . v, ¥
i J
gggggs-We will show that the hypotheses lmply
thet thers is some dlsk in]jnat of ona coloy, end then
the theovem will follow from Theorem S.Z2e :

By

If eny @xprasﬁionﬁ;of,thé form @y * appear Llin the
relation R, delete them and repeat uvntil none xemaina
Since this is mersly a.Tiatze Transforpaticn, we atill
have G. We obialin a new velatlion RY which is not the

enphty word.

Plel any v;ﬁp o By Lemma 3.5, volt determines akb

least ohe Tinlte eonpechted open reglion vhose boundery

wr
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is a Jordan cuﬁvéa If either the finite or infinite
regioh_ determined by. the boundary of this reglon, U,
contains no vertlces br edges of F s the theorem
follows immedlately from Theorem 3.2 by the definltlon
of Rte

| 'So_assuma;that-'g (U) does not determine a disk.
Thus there must be some edge, call it X, from the
infinite regién dotermined by S(u) to some vertex |
ve§(u), for if nos, §(U) determines an infinite dlsk.
call vx~1 vi, and so the local graph at v is;

oo w—

- ~
L N
7

y A
y \

[ T oy
v

————

Without loss of generallty, assume that x"= V' is

the first edge in-th.e olockwise ordering of thewedgea

about v after the edge Vvy.

By Lemme 3.6, v is on the boundary of some dlsk

D&U. If g(D) #vaje’j, then the result follows from

Theorem d.2y 80 assume that g(D)‘-"- vaj@_ , 8ome 3o
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. Without loas of generality, assume that the generator 8y
corresponding to the edge Vvy ils not the same as
the generator corresponding to the edge vhv. For If - /‘

' they were the same, the local graph at v would contaln;

- T

A —

L &, : _
. 8lnce g(UQ =vay i, and we could then conslder 1n the

_argument the region U', which looks likej

o

s =~

\

and now the 2 edges of S(ur) at v, correspond %o

different generators.




El

So Vv, TRy Vv ajﬁl, apd-thare is a aisk D, | ‘ ‘ﬁli

v& DG U whose boundary is Vﬁjﬁj. The local graph : |

at v must therefore contaln; ’ A

-~ : .

Considear the patb. P -'-'v(a-"l x4, g T1,2,00 o

.E'i: will be shown that P meabts s(U) at some veritex
other than V. Asswmne not. since )1 i1s locally finite,
U contalns but a rinite number of vertices of P. Since
P does not mest Stu), P cannot leave U U&(U),

that P must meet i't;self at some vertex Q. If the

s

local graph at.q contains either

or
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then (a»“lx’l) has finlte order by lnspection. Therefore,
P must meeb ltsel:f at v ( with an T odge), and 1t

must do so without first meetlng any vjeS(U by

assumption. But, if this x! edge comes into v from

U, 1% is impossible to complete the x pblygon at v

%0 be a disk, contrary to Theorem 5¢1, Andg by

. two waya,

ssswmption, the x™i adge.cahnot,come from vnng(U).

Therefore, P must meat itself in one of the following

L
n . .
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where q, s defined to be the first vertexe/)' .where
P meots itself, It will be shown that case 2.1s
'5.mpoas.ibleg The proof for case 1. 1s identical,

By Inspection caﬂe 2. ylelds;

(aj 1::“'1) aJ 1«'-;:1 , 8ome k7 1(slnce % and a3 are

independent) and x-(aj"lx"l) =g,

Therefore, r(aj~lzx~1}(aj-lx~1)k agmlzgy ==

) r(aj*IXNI)K aj“l(X“lﬁj“l)qub.

Therefore, r(aj"l:x"l)k" aj“l ":qoajx Es,

‘But, (a;~ix~ 1)ka- -l 1, 80 that r =8 which contradicts
.‘i
the definition of qo

Therefore, P must meet é‘(U) at some vertex other than v.

Say P meeta 5('0) with an aj odge at some ve:_t'ta_x zn.-'

The proof is identical ir P meets & (v) with an

x""l ‘adge. We thus have the subgraph;
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By the definition of X, Oy (T83¢
' ' 83 .

X A

@

and since O, =Z Ov s &ll vs.f' ; 1t must be that
i J .

-
0, =% 0,

and since the clockwilse ordering of the edges
1 : | ' .

at zy begins By fmmeem
aj__,__?,

the clockwise ordering of the edges at zj must be ("ay{f—
x &

—————

and 80 27Xx"7w 272 1s the first edge after aj—>

in the clockwlse uoydering about zj;

-y

P A
§




ga

Define the reglon U' as In the sbove diagram.
Mherefore, Zig ¢ (U'), and by Lemma 8.6, z) 1s on the
bouﬁdax'y oi‘"somﬁe DVYL TS, D a' disk. Since there are
no edges -from zl‘into'UV by the above argument,

v, Zq and gy are three consecutlve vertices on o¢(D').
Therefore, $(D1) has two consecutive edges which are
not the same eoloi‘*a,'i}her@fom, g (D?') ;f’zlm., any 1.

The result now follows from Theorem 3e2.

QE.D.

Groups of _the type described 1ln Theorem S.9 may
or ma'y not admit Cayley diagrams Cue where the disi{s
are. reg,ular polygons( all edges of each polygén has
’ch@ same length - a "paving" of Ez). If not, the
Cayley diagramﬁc E‘O‘ of G is obtained by firat drawing
the Cayley diagram'i“?,'cﬁz of G', the free product of
the finite cyclid groups, and then making the proper
identifications corresponding to the {(xlxg,;..xn)ag.

An example of each of theso two types is shown

on the followlng pages.
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