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ABSTRACT

Jackson Theorem states that given any function r(x)
continuous on [0,1} and any positive integer n, there 1s
a polynomial of degree < n such that |£(x) - pn(x)] < 12wf(%)

where w(s) = max |2 (x4t) - £(x)].
x,|t]|=8

on. Mintz showed that for any increasing sequence of
n
nennegative numbers {nj} the linear combinations of X J are
dense in C[0,1] if and only if 1) n =0 and 2) the series

o]

1 .
j=l'ﬁg diverges..

In 1965, D. J. Newman combined thé two. theorems, e
proved that for any given r(x) ¢ I?[O,l] and & sequence of
nonnegative integers {nj} such that n_ = Q,nj+l—nj =z 2 and

o0
jél'éL —~ o, Then for every natural number s, there is a.

.8 n .
polynomial H:(x) = jéo ¢ yx J guch that

£{x) ~ jio cjxnjn2 < Bw;(es)

5 1 3
where & = Jﬂl(nj vaj/(nj + )
* _
wh(s) = max [[1 |T(xre) - £(x)|%ax1Y/?
|t]<s “0
The result we obtained here is to extend Newman's
result to continuous functions with the "unirform approxi-

mation". We showed the rollowing theorem.




Theorem:
Let n, = 0, n, = 2 < Ny < Ng < ... be a sequence or
real numbers satisfying the conditions jél ﬁL = o and
J
nJ+l.' n‘j =z 1.

Now let £(x) be any continuous function in [0,1].
Then for every natural number s there is a polyhomial

a8 n

ey S J
m,(x) = 120 V¥

such that ’ . .
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INTRODUCTION ;-
A classical theorem of Welerstrass states that to any
function f(x) defined and continous in [0,1] and any given

€ > 0 there is a polynomial L (x) such that
(1) £0x) - M) [ <

for O = x = 1.

There are different generalizations and improvements of
this theorem. The first is the question to make a "quantita-
tive" statement of .the above theorem. More precisely if we
restrict the degree of the approximating polynomials, how
small can € be chosen. This question has been cleared in
19212 by D. Jackson [1]. His result 1s as follows.

Denote wf(é) the modulus of continuity of r(x), that
is, ‘ '

wel(d) = max [f(x+h) - £(x)]
X,h
|hi=s
‘then there is a polynomial of degree = n such that

2)

(1) |2(x) - 0(x)| <K ug (&

K being & numerical constant.

__Weierstrass theorem can be formulated 80 that the

linear-combinations of the powers of x:

(2) lJ x.‘l XEJ XSJ -8 e

are dense in the space of functions continuous in [0,1].
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Another question is whether the same is true of a
Eubsequonce of (2). 8. Bernstein [2] showed that &
necessary and sufficient condition for the denseness of

the linear combinations of {x J} in C{0,1] is no = 0 and

4 8

' 1
(3) Jl'r"%"=°°.

As a generalization of Bernstein'!s result Ch. Mintz
[3] showed that rfor any sequence Q = N, <0y <Ny < ... of

real numbers the condition (3) is necessary and suff1c1ent

in order that the 11near combinatlons of x J should be dense‘

in ¢[0,1]. (That is he dropped the condition that
. Ds04,N5, ... should be a Subsequence‘of natural numbers, )
~ There are different proors of Mintz'! beautiful result. Here
L mentlon that of O, Szész [4] based on & determinant
Tormula of Cauchy reproduced also in Nafanson's book [5]
and that orf Paley%Wiener, reproduced in théir book [8]
based on their fesult on éomplex Fourier-tranéforms.

D. J. Newman [7] combined the two generalizations
of Weierstrass theorem, aSking about the accuracy of
approximation to f(x);by linear combinations of xnj. He
rroved the followling theorem.
- Theorem;
let f(x)‘e I?[O,l],'given any positive integér s and

& sequence of nonnegative integers'{nj} with the properties

1) 0 =n, <n, <ny < ... 2) the series Jél'ﬁg diverges




" - v 2 2-
and 3) Dy = By

Then there is a polynomial

s n

J
jéo cjx Such that

o ,
le(x) = B, egx dy < 3uk(e,)
where w;(é) denotes the "I®-modulus of continuity” orf f(x).

(1.e. wh(s) = Iﬁa:sca[f |£(xn) = £(x)|21%?) ana

1 3 s
fs T =1 \By “’?J/(nj + ). SRR

Further he showed that his result is essentially the best

=

{n

posgivle. The question for the accuracy of a@proximation
in "uniform norm" remained open.

The purpose of this dissertation is to give an esti-
mate Tor the best approximation in the "uniform norm™

We prove the following

Theorems

Tet n, = p, ny =2, ny <n, < ... be a sequence of

real numbers such that nj+l - nJ = 1 and jél o = w, Then
for every natural number s there is a polynomial H:(x)
satisfying
' 1
() |£(x) = M) | = Ko (exp (-, 2, L))
J

#
for O = x = 1. Here Hs(x) means linear combinations of

1t can be showed that for some more general choice of

{nj], we obtaln D. Jackson's result which is known to be

the best.




§.

The following proof of our theorem ig a combination
of" D. Jackson's theorem and a sharpening of some estimates

of O. Szasz, which were used in his proof of Mintz:

theorem,




§1  Lemmata.
Temma 1.1
Let £(6) be a continuous Ffunction in [0,201] with the
. n
period 2. Iet s (0) = 120 (a£ cos 40 + b, sin 48) and if
|s (8) - £(8)] < & for 0 < 68 < 21 then

(1.1) {|a%{ < 2(M+e)

]b,ti < 2(M+e)

where M = max [£(8)]. S
8€[0,21]
Proof, |
Clear.

Temma 1.2

m
~ 2
Denote by Tm(x) = 2 Cm,& x” the Tchebysheff poly-

nomials of first kind, that is,

D Tm(x) = cos(m arc cos x).

Then we have

32
(1.2) [y 2
* m,'& S’&'(L)l
' AT e
Proof.

As known, we have

T (x) = %[(x+iul~x2)m + (xnjdl-xg)m]

m

= 5 . (-*l)k( m )xm-*gk(l_xg )k_
OSKS'Z*

2k




= = (LR RmREC 5 (L) I BTy

Osks% 2k O=zJj=k J
- ¥Jj,m . /k ~2k42
= = = (-1) +J(2k)(J)xm +ed
Osksg O<J=k

Now set m-2k+2J = 4, we have

m-4 _
' 2 k LA
T(x) = 2 ((-1) % o3 (B E )b i 2] (mee).
Ost=m —g—sksy >
Therefore, we obtain
m—4, o
2 m k .
("l) =4, 2 %(EK)(m—&) 1T 2' (m"'b)
(1“3)%,& = ?
0 ‘ , otherwise

Hence it surfices to investigate Gm 2 only for the case
s

2] (m=t).

Case (i). - g

Since (éi) here takes its maximum for k’z'%~and

decreases monotonically for % < k s‘%; . Hence

e

() = (B < () < i

el

’

And since (mEL) increases monotonically as k increases,

“z
we have 2
2, @
(m%&) = (m—&) <
= = @




Therefore 2
2
L ()
‘ m k o om N2
Icm:'{J'S m—4 iSE (2k)(m—&) <§ 'T}- (&)l
T2 2 T/
3 3
4
_ m2& £ < 2ﬁg
- 4 4 4
Li(z) KAt 2ACIE:
. m £
Cagse (ii). > (mjg
Similarly, we have here (mﬁL) < ? and
N T
m
m m 'ﬁg' m% n? . .
(o)) = (ﬁ) < oY < 7y, Tor f(n) = o7 18 an increasing
2 27" 3
52
function of n, if n < m. So we have again [C_ | < =
. 1 L1(E) s

Hence the proof is complete.
Temma 1.3

be a given finite

et © <.nl < Ny < ng < P < nS

gset of real numbers. Then for any nonnegative integer m
there exists coerfficients yl,yg,.ﬁ.,ys with

(L)

I3 :-ﬂ%a- such that the linear combination
s
! n.

p(X) = jél ij J

approximate x" in I?[O,l] with the smallest possible mean
1 8 nj~m

orror T st I

. . 1, m 5 nj 2 1 S nJ~m 2

i.e. min [~ (= “Jél 8 4% Yeax = DT ng(nj+m+l)

-a‘l,algj-.o’als O

L]
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where AS and Aél) are the Gram determinants of the rfunctions

n n n

2 n . Diil om ™

1 8 8
{x ",x “,e.,x V) and {x T,...,X L,X X S S
respectively.
Proofl.

See Natanson [5] vol. II, pp. 36-41,
Lemma 1.4
Under the conditlions of Lemma 1.3, for every natural

number m = 1, there 18 a system T sVpssvesVg such that

a n. - 3] n. -m
(1-5) Ixm Hjél ij JI = Jﬁ Sglhﬁg%ﬂjrl
Proof.

We apply lemma 1.3 with ¥ T and ny-1,05-1, ... n 1
which cbvicusly still satisfy the gilven conditions. So we
: . 1 |3

obtain that for some system yi,yz,;.o,ys the inequality

8 g nJHl 2 8 N,-m

: _om 2
—'jél YJX _) dx = el ng(nj+m—l)

jl(mx ~1
0
H
Now put yj = njyj.
We have by Schwarz' inegquality

m =) nj _ < M1 ) n'j-l
. T R L]

) Xy Ja=l 5 ns-lo 1/2
< x - [fo(mt -2y ByYst )Tat]
n.-1 s,
& 3 )Edt]l/z

1, .m-1 5
g [[T(mt =42y DY
I 321 Y5

5 .-
< VI FES] IEE%HZTI




and our lemma is proved.
Lemma 1,5
Iet O < Ny <Ny < Ng < .0 < n, and 8 =z 1 be given as

of lemma 1.3. We have for any given 6 = l+e

a8 n.-m
: 1
(1.6)  Hy b < K exp(-(ame1) = oLy
J=1 'ny+m- bm<n = s

K being a constant depending only on §.
Proof.

We have
& n,-m N, —m

o, | =< 1
J=1 n -1 bii<n =n,_ n -1

= exp{ = [log(nj—m) —‘1og(nj+m~l)]}

<. .
S nasns

= exp{ 2 [log(l - &) - 1log(1 + B)])
.6m<njsns J _ J

l,m\2 l,m 3
=exp{ & [(~= -5 - 56T - 0lL)
sm<n =n 1y E(nj 3 Ay _

= exp{ X (—- Hm-* -+ O(l)) - ('I_n_—__:l__‘ ‘+ O(l))}
am<njsnS J - J

< K exp{-(@m-1) = ?%Jw
6m<njsnS J
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§2 Completion of the proof of the theorem.

Now we are in a position to finish ocur proof. We
formulate our theorem again:

Theoren,

Let O = n, <n; = 2 < Ny < ... be a sequence of real

numbers satisfying

o1
J
and
(2.2) N, . =-n, = 1.

J+1 J

Further, let 7(x) be any function continuous in [0,1].
Then for every natural number s = 1 there is a linear com-

n.
bination of the x Y'g

- such that

* - 5 1
(203) ]f(x) - HS (X)I = O(wf.(exp(ﬂjél ‘ﬁ;)))
where w,(6) is the modulus of continuity ef r(x).
Proof.
Without loss of generality we may suppose that our

function is even; namely for any given contilnuous function

in [0,1], we may define it this way by setting f(-x) = £(x)

for O < x < 1. We then continue £(x) on the real line to
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have the period 2,

Now let x = cés O for -1 = x = 1. Thus
r{x) = f(cos 6) = 9(6) is a contimious function with the
pericd II.

Let k be a natural number to be determined later.
From Jackson's theorem, for every given p(0) € Copp there
is a trigonometric polynomial gk(e) of degree = k such
that

L)

le(8) - g (8)] = 12u,, (% 0= 8 < 20.-

Since f{x) is evén, so is the trigonometric polynomial
which best approximates it. That is, gk(e) is & trigono- i
metric polynomial of cosines alone. Therefore, gk(e) can
‘be written in the form

k .
e (8) = 42, 8 cos 40 = 3 8T (x) = py (x).

. .

" Then a Simple computation will show that
0y (8) < 0, (5).
‘Hence we obtain
1
[f(x) = 1 (x)| = 12w . (5) -1l < x =<1,

Moreover, since f£(x) is even; there exists always an even

polynomial Hk(x) which satisrfles the condition

(2.4)  |£) - I (x)] = 120

Y

).

wl




iz,

bPor we can set

1 (x) - 0y (%) + py (~x) s e
2 Os%s[g]

o1 Toy, (%)

From lemma 1.1 we obtain
' | k
(2-5) Idg,&l = Gl 4 = 031121-0*:[‘2“]

Cl being a constant independent of k. Now we write

24
(2.6) IL(x) = = Vo, X 7.
k Os&s[%] 24
where
(2.7) Vo, = = d, ¢
24 Lsmsf%] 2m7Zm, 24

and CEmJQ% having the same meaning as in lemma 1.2, JFrom
- L

lemma 1.1 and lemma. 1.2 it follows that

k3&+l

(2.8) om,2el = Oy 1oy

2
£ ms[E—]

Let a natural number s be given. According to lemma 1.4

C

|Y2&I |d2m

and lemma 1. 5, for every glven p051ﬁlve integer 4 there 1s
a linear combination of x "3 with j < s3 say HE& S( x) such
that

24 % 1
2.9) P (x)] = Coexp(~(44-1) b -
( | el,s | 2 Pl 2&6<njsns nj)

Now we define

I (x) = =

Vo, 0n, (x)
Os%sﬁ%] oL2 g

Clearly
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[£(x) - I (x)] < [r{x) - m(x)| + o (x) - H:(x)]

(2.10) >
£(x) - B5(x)] = |2(x) - I ()|
+Bwe, B -1, ()

Os&s[%]
The firgt term of the right-hand side orf (2.10) 18, because
of (2.4), O(wa%)). Furthermore, since we have n_ = 0 and
ny =2, it thus follows that |1l - szs(x)| = 0 and

Ix2 —lH;JS(x)I = 0, and therefore the second term on the
right-hand side orf (2.10) can be replaced by

24 *
(2.11) ES%S[%] IYQ%] | == - Hg{;ﬁ(x)z

We now decompose (2.1L) into two parts according to 4 = 2

and 4 » 2, we have

24 *

(2.22) 25%5L§1]y2*| = - Ty g ()]
= vy | %t - HZ,S(X)] + 3s§s[5jly2’°] B H;&,S(x)]
2
= 2 22.

l-i-
Now from Formula (1.3) we can easlly see that

o s = o(mt).

Hence according to (2.5) and (2.7) we obtain

a0 = 1, 2 s GpCap ] = 00).

2<ms [ ]

But by (2.5) and (1.6} we get




L * 1
x' = My (x)] = Cy exp(~(4-2-1) = )
| 4 | 3 46<njsn g
and so
(2.13) 2, = ¢ exp(-(4.2-1) = Ly

U -
| *’-Iﬂb-‘éﬂjmﬁs J
Similarly, combining (2.5), (2.7) with (1.5) and (1.6) give

the upper estimation of 22.

(2.14) =, <0 3 Wm K exp (~(he-1) 3 )
2 2 35&5[%] 22 , 2&6<njsns By

Now for every glven natural number s, let a positive integer
k be determined in the following Way .
&
1
Z )]

1 -t
J

(2.15) k= [exn(,

Eence

5]
(2.26)  Z) ¢ = logk + 1
7

and therefore

3
(2.37)  exp(~(ht-1),2) &) =

k
But
(2.18)  exp(-(44-1) 5 =)
2&6<njsns J
5 1 1
= exp(n(A&-l)(,él\H~ - % 7)),
J J 2=n <245

J

We now make use of our assumption nJ+l - nj = 1, 1t follows
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at once that

(2.19) 5 N log 248 = log 4 + C.

2snjs2&5 nj

If & is chosen so that 1 < § < £, we then have C = log 26 < 1.
Combining (2.19) with (2.16) and (2.18), we shall have

(2.20) exp (= (44 -1) b QL)
: 2&6<njsnsnj

= exp{~(H-1)(log k+1) + (44-1)(log 1-+C)}

L#&—l .
= T exp (- (44~1) (1-C)7.
We now estimate 2, of (2.12), from (2.13) and (2,20) we
get

e
Zy = Ok §7 exp (=7 (1-C)) = OEE?)’

Similerly, from (2,14) and (2.20) we have

3+1  4e-1
5 VR 2 NSy
2 = % BS%sfgl (X7 -1 exp (= (4-1)(1~C))

or

C he-1
_ .2 L 4 —(Lg - -
(2.21) 3, = 3s%§£§] (21?3&2‘ =3 exp (= (4e-1) (1-C))

Congider the ratio:

TS &4%+3

v %iﬁ (2e+2TI{RT) s = eXP(*(4&+3)(1_c?)
o g 4-3
v (2"32)7;%@‘ Lﬁ%—j- exp ( (LHL-—]—) (lfC) )
&4

= lim IR e exp (-4 (1-0)),

£=c0
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Since 4 < [%] and € < 1, 1t 1s clear that v < 1. Thus we

may write

(2.22) 5, = 0(3)

and therefore

=

M (x) =0 (x)] =5, + 2, = 0(3).

Finally, we have

T(x) = Ty (x)] = Olus()) + 0lg) = 0w @)

unlesg £(x) = constant. In which case, the Mintz-Jackson
theorem 1s obviously true,

Hence we have in general
* 1
(2.23)  [r(x) - I1(x)] = ofu. ().

From (2.15) it Ffollows that

(2.24) (~(3) = ~ 1)) = (3, & - 1)) 11
. exp (- (2, EE - s & < exp(- 21 Eg - +

Because of (2.24) we may rewrite (2.23) as

2.2 ¥ 5, L

(2.25) |£(x) -~ (x)] = Olup(exp (-2 5)))

dJ

for every natural number s,

The theorem is herewith completely proved.
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