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Motivation

In their seminal paper 1977 preprint

On iterated maps of the interval: I,II.

Milnor and Thurston proved

Theorem

The function
C 2,d 3 g → htop(g) ∈ R+

which associates to each mapping g ∈ C 2,d its topological
entropy htop(g) is continuous.

• C 2,d stands for C 2 maps of the interval with d non-degenerate
critical points (non-degenerate means second derivative non-zero).

• Misiurewicz & Szlenk: exp(htop(f )) = growth rate of the number
of laps of f n.
• Milnor & Thurson: it is also equal to the zero of a meromorphic
function.
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Motivation

About 25 years ago, Sullivan, Milnor, Thurston and Douady &
Hubbard all showed that

the topological entropy of x 7→ ax(1− x) increases with a ∈ R.
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In fact, it turns out that periodic orbits disappear when a increases;
moreover, as was shown later on (by Lyubich and Graczyk &
Swiatek) hyperbolic maps are dense within this family.

a

Figure: Bifurcation diagram

In this talk, I want to discuss a generalization of this statement.
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Of course monotonicity of

a 7→ htop(fa)

is equivalent to the statement that isentropes, i.e. the level sets

I (h0) := {a; htop(fa) = h0}

are connected, for each h0.

This was observation is one reason for Milnor’s conjecture on the
next slide.
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Milnor’s monotony of entropy conjecture

Consider the space Pd
ε of real polynomials of degree d with

all critical points of f are real and contained in (−1, 1);

f {±1} ⊂ {±1};
with shape ε:

ε =

{
+1 if f is increasing at the left endpoint of [0, 1],
−1 otherwise.

Conjecture (Milnor’s monotony of entropy conjecture)

Given ε ∈ {−1, 1}, isentropes are connected in f ∈ Pd
ε , i.e.,

the set of f ∈ Pd
ε with topological entropy equal to h, is connected.

Theorem (Milnor & Tresser)

The entropy conjecture is true when d = 3.
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Figure: Isotropies in entropy for cubic maps. The horizontal and vertical
axis determine the position of the first resp. second critical value.
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Milnor & Tresser’s analysis of parameter space

Milnor and Tresser

analyse bifurcation curves,

see figures on the right.

They use planar topology

to show ‘bones’ are connected.

164 J. Milnor, C. Tresser

Fig. 13. Bones of period 3 and 4 for the stunted sawtooth family of shape (− + −) above and for the cubic
family of shape (− + −) below. Periods are indicated near the primary intersection points

a
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The entropy conjecture for arbitrary d

The aim of this talk is to discuss a theorem proving Milnor’s
conjecture:

Theorem (Monotonicity of entropy, Bruin and SvS, 2009)

Fix ε ∈ {−1, 1}. Isentropes in Pd
ε are connected.

We have not yet proved

Conjecture (Milnor)

Fix ε ∈ {−1, 1}. Isentropes in Pd
ε are contractible.

but are very hopeful, for reasons I will explain.
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Bill Thurston recently asked, can we generalize the theorem

Theorem (Density of hyperbolicity, Kozlovski, Shen and SvS, 2007)

For any d ≥ 2, hyperbolic maps are dense in Pd .

to

Question (Thurston)

Does there exist a dense set of level sets H ⊂ [0, log(d)] so that for
any h0 ∈ H, the isentrope I (h0) in Pd

ε contains a dense set of
hyperbolic maps?

As usual, by definition hyperbolic maps are maps so that each
critical point is in the basin of a periodic attractor.
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How to analyse higher dimensional parameter space?

Higher dimensional parameter spaces are very complicated.

The approach we use in our proof is based on:

A generalization of the notion of hyperbolic component:
partial hyperbolic deformation space and showing these
sets are cells.

Following Milnor & Tresser we use stunted sawtooth maps,
which form a model for d-modal interval maps.

We restrict to admissable sawtooth maps (i.e. ‘absence of
Levy cycles’) and prove that isentropes within this set are
contractible.

A discussion on how to relate the spaces of polynomials with
stunted sawtooth maps in a suitable manner.
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First ingredient: a generalization of rigidiy

One crucial ingredient for our proof is a result used by Kozlovski,
Shen and SvS to prove hyperbolic maps are dense in Pd , for any d :

Theorem (Rigidity)

Let f , g ∈ Pd . Assume that f and g are partially conjugate and
that f , g are conformally conjugate restricted to their immediate
basins of periodic attractors. Then f = g.

In fact, we need a version of this theorem which gives a description
of the partial hyperbolic deformation space. (Generalising the
notion of hyperbolic component.)

Let B(f ) consists of all points x so that f n(x) tends to a (possibly
one-sided) periodic attractor.
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Partial hyperbolic deformation space

We say that two d-modal maps f , g : [−1, 1]→ [−1, 1] are
partially conjugate if there is a homeomorphism
h : [−1, 1]→ [−1, 1] such that

h maps B(f ) onto B(g);
h maps the i-th critical point of f to the i-th critical point of g ;
h ◦ f (x) = g ◦ h(x) for all x /∈ B(f ).

Let PH(f ) be the set of maps which are partially conjugate
to f .

PHo(f ) consists of maps g ∈ PH(f ) with

only hyperbolic periodic points and
no critical point of g maps to the boundary of a component of
B(g).
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Theorem (Description of partial conjugacy class)

Let f ∈ Pd
ε . Then

PHo(f ) is a submanifold with dimension equal to the number
of critical points in B(f ).

PH(f ) ⊂ PHo(f ).

Analogously to the Douady-Hubbard result for quadratic maps if
each periodic attractor has precisely one critical point in its basin.
Then PHo(f ) is parametrized by multipliers at the periodic
attractors.

More generally, if there are several critical points in the basin of
one periodic attractor then PHo(f ) is parametrized by Boetcher
functions (and for example critical relations unfold transversally).
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Theorem (Description of partial conjugacy class)

Let f ∈ Pd
ε . Then

PHo(f ) is a submanifold with dimension equal to the number
of critical points in B(f ).

PH(f ) ⊂ PHo(f ).

In fact, bifurcations near f ∈ PH(f ) \ PHo(f ) are also generic:

saddle-node (creation of one-sided attractor, which then
becomes becomes an attracting + repelling pair)

pitchfork (a two-sided attractor, which becomes repelling and
spins off a pair of attracting orbits)

period-doubling (multiplier -1)

homoclinic bifurcation (with a critical point hitting the
boundary of the basin)
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Second Ingredient: model for the parameter space, relating
polynomials with their combinatorics

Given a piecewise monotone d-modal map f with turning
points c1, . . . , cd , associate to x ∈ [−1, 1] its itinerary if (x)
consisting of symbols from the alphabet

{I0, c1, I1, c2, . . . , cd , Id}.

x 7→ if (x) is monotone w.r.t. signed lexicographic ordering

So the following is well-defined:

νi := lim
x↓ci

if (x)

The kneading invariant ν(f ) of f is defined as

ν(f ) := (ν1, . . . , νd).

Any kneading sequence which is realized by some piecewise
monotone d-modal map is called admissible.
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A more pleasant space to work with

The space of kneadings with the natural topology is not
connected.

So it is easier to work in a better space, the space of stunted
sawtooth maps which are stunted versions of some fixed map
S with slope ±λ.

S
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The sawtooth map S

Two stunted sawtooth maps,

with different third plateaus.

The space of stunted sawtooth maps is denoted by Sd .
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Assigning a stunted sawtooth map to a polynomial

To each map f ∈ Pd we will assign a unique stunted sawtooth
map.

Let ν(f ) = (ν1, . . . , νd) be the kneading invariant of f , and let
si be the unique point in the (i + 1)-th lap Ii of S such that

limy↓si iS(y) = νi := limx↓ci
if (x)
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Such a point si exists, because all kneading sequences are
realized by S . It is unique since S is expanding and so
distinct points have different different kneading sequences.

Associate to each polynomial the stunted seesaw map Ψ(f )

which is constant on a plateau Zi with right endpoint si

which agrees with S outside ∪Zi .
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What is good and bad about the space Sd?

The map
Pd 3 f 7→ Ψ(f ) ∈ Sd

is non-continuous, non-surjective and also non-injective.

Nevertheless, there are several good properties:

Let ζi describing the height of the i-th plateau of T as in
figure:
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T 7→ htop(T ) is monotone increasing in each parameter ζi
(describing the height of the i-th plateau.

Using this, it is easy to show isentropes are connected (and
even contractible)
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Addressing non-surjectivity of Ψ: non-degerate sawtooth maps

Polynomial maps have no wandering intervals. Hence if the
endpoints of an interval containing two distinct critical points
have the same itineraries, then the interval is contained in the
basin of a periodic attractor.

Analogously, Sd
∗ ⊂ Sd consists of maps T so that if

an interval J contains two plateaus and
n > 0 is so that T n(J) is a point,
then J is contained in the basin of a periodic attractor of .T .

(This corresponds to absence of a Levy-cycle obstruction.)

This space Sd
∗ will be crucial in our discussion.

Sd
∗ is messier than the space Sd , but still has the (rather

non-trivial property) property that:

Theorem

The space of maps in Sd
∗ with constant entropy is connected and

even contractible.

Sebastian van Strien (Univ of Warwick) Monotony of Topological Entropy Happy Birthday Jack



Addressing non-surjectivity of Ψ: non-degerate sawtooth maps

Polynomial maps have no wandering intervals. Hence if the
endpoints of an interval containing two distinct critical points
have the same itineraries, then the interval is contained in the
basin of a periodic attractor.

Analogously, Sd
∗ ⊂ Sd consists of maps T so that if

an interval J contains two plateaus and
n > 0 is so that T n(J) is a point,
then J is contained in the basin of a periodic attractor of .T .

(This corresponds to absence of a Levy-cycle obstruction.)

This space Sd
∗ will be crucial in our discussion.

Sd
∗ is messier than the space Sd , but still has the (rather

non-trivial property) property that:

Theorem

The space of maps in Sd
∗ with constant entropy is connected and

even contractible.

Sebastian van Strien (Univ of Warwick) Monotony of Topological Entropy Happy Birthday Jack



Addressing non-surjectivity of Ψ: non-degerate sawtooth maps

Polynomial maps have no wandering intervals. Hence if the
endpoints of an interval containing two distinct critical points
have the same itineraries, then the interval is contained in the
basin of a periodic attractor.

Analogously, Sd
∗ ⊂ Sd consists of maps T so that if

an interval J contains two plateaus and
n > 0 is so that T n(J) is a point,
then J is contained in the basin of a periodic attractor of .T .

(This corresponds to absence of a Levy-cycle obstruction.)

This space Sd
∗ will be crucial in our discussion.

Sd
∗ is messier than the space Sd , but still has the (rather

non-trivial property) property that:

Theorem

The space of maps in Sd
∗ with constant entropy is connected and

even contractible.

Sebastian van Strien (Univ of Warwick) Monotony of Topological Entropy Happy Birthday Jack



Addressing non-surjectivity of Ψ: non-degerate sawtooth maps

Polynomial maps have no wandering intervals. Hence if the
endpoints of an interval containing two distinct critical points
have the same itineraries, then the interval is contained in the
basin of a periodic attractor.

Analogously, Sd
∗ ⊂ Sd consists of maps T so that if

an interval J contains two plateaus and
n > 0 is so that T n(J) is a point,
then J is contained in the basin of a periodic attractor of .T .

(This corresponds to absence of a Levy-cycle obstruction.)

This space Sd
∗ will be crucial in our discussion.

Sd
∗ is messier than the space Sd , but still has the (rather

non-trivial property) property that:

Theorem

The space of maps in Sd
∗ with constant entropy is connected and

even contractible.

Sebastian van Strien (Univ of Warwick) Monotony of Topological Entropy Happy Birthday Jack



Equivalence classes of sawtooth maps

Define the plateau-basin PB(T ):

PB(T ) = {y ; T k(y) ∈ interior(∪d
i=1Zi ,T )

for some k ≥ 0}.
In order to ignore what happens within basin of periodic attractors,
define

〈T 〉 = {T̃ ∈ Sd ;PB(T̃ ) = PB(T )}
and

[T ] = closure(〈T 〉).
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Figure: The case of a periodic component W of W (T ) of period s1 + s2
so that W and the component W ′ of PB(T ) containing T s1(W ) both
contain a plateau.
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Ψ is almost injective, almost surjective and almost continuous

Proposition (Surjectivity)

For each T ∈ Sd
∗ there exists f ∈ Pd so that T ∈ [Ψ(f )].

Proposition (Injectivity)

If f1, f2 ∈ Pd and [Ψ(f1)] ∩ [Ψ(f2)] 6= ∅ then PH(f1) ∩PH(f2) 6= ∅.

Proposition (Continuity)

Suppose fn ∈ Pd converges to f ∈ Pd . Then any limit of Ψ(fn) is
contained in [Ψ(f )].
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The upshot

Theorem

If K is closed and connected then Ψ−1(K ) = {f ; [Ψ(f )] ∩ K 6= ∅}
is connected.

Since f and any map in [Ψ(f )] have the same topological entropy
we get in particular:

Corollary

Isotropy sets in Pd , i.e. level sets of constant topological entropy,
are connected.
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Question

Are isentropes contractible?

Probably yes, but this is work in progress.
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