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Projective space

Space

Pk = Ck+1 \ {0}� ∼

z ∼ w ⇐⇒ z = λw, λ ∈ C

Endomorphisms

F(z0, z1, . . . , zk) = (f0(z0, . . . , zk), . . . , fk(z0, . . . zk))

where fi are homegenous polynomials of degree d, having no
(nontrivial) common roots
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Degree

Algebraic degree– d–the common degree of polynomials
f0, f1, . . . , fk
Topological degree- cardinality of the set f−1({x}) for a generic
point equals dk.
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Topological entropy

Entropy

htop(f ) = log(degtop(f )) = k log d

"≥" follows from a general result of [Misiurewicz, Przytycki]
"≤" proved by Gromov (uses specific structure of Pk).
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Julia set

"Large Julia set"- defined by normality criterion. Fatou set-
complement of the "Large Julia set"
"Small Julia set"- support of the measure of maximal entropy
("intermediate" Julia sets )
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Analytic approach

"Analytic" construction of the maximal measure: An invariant (1,1)
current T:

f ∗T = dT,
T = lim d−n(f n)∗(ω) where ω is the Fubini-Study form on Pk.
The measure of maximal entropy is given by Tk.
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Dynamical approach

This approach follows one- dimensional construction (Freire, Lopes,
Mane; Lyubich).
Let f : Pk → Pk be an endomorphism of degree d. Then there exists
an algebraic ("exceptional") set E such that, for every x ∈ Pk \ E the
sequence of measures

1
dnk

∑
y∈f−n(x)

δy

converges to the common limit µ. The Jacobian of this measure µ
equals to dk, thus hµ(f ) = k log d.
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Some properties of the maximal measure

µ is the unique measure of maximal entropy
For every x ∈ suppµ and every neighbourhood U ⊃ x⋃∞

i=0 f n(U) ⊃ Pk \ E
For every probability measure ν such that ν(E) = 0 we have

f n ∗ ν
dkn → µ

µ is mixing:
∫
φ · ψ ◦ f ndµ→

∫
φdµ

∫
ψdµ

CLT holds for µ and Hölder-continuous observables.
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Equilibrium measures

X- compact metric space, T : X → X continuous. Given a continuous
function ϕ : X → X

P(ϕ) = sup
µ

hµ(T) +
∫
ϕdµ

where sup is taken over all probability Borel T- invariant measures.
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Equilibrium states -One-dimensional case

Denker, Urbański (90’s) proved the existence and uniqueness of
equilibrium states for Hölder- continuous potentials φ : J(f )→ R
satisfying

supφ < P(φ) (1)

If supφ− infφ < log d then (1) holds.

Denker, Przytycki, Urbański - studied spectral properties of
Perron-Frobenius operator related to the potential φ, in particular they
proved CLT for Hölder continuous ’observables’.
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Equilibrium states in multidimensional case

Joint work with Mariusz Urbański

Theorem.
Let f : Pk → Pk be a ("regular") holomorphic endomorphism. Then
there exists a positive number κ(f ) such that for every Hölder -
continuous potential φ with supφ− infφ < κ(f ) there exists a unique
equilibrium state µφ.

This equilibrium state is equivalent to a conformal measure- the
eigenmeasure of the conjugate Perron -Frobenius operator. The
dynamical system (f , µφ) is metrically exact. The corresponding
normalized Perron Frobenius operator, acting in C(J(f )) is almost
-periodic.
κ(f ) = log d in many cases (always?).
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Local degree

Ap-critical periodic set is the union of all irreducible varieties that are
contained in the critical set C and which are periodic under some f l,
l ≤ p.
Ep

n is the set of points z ∈ Pk such that f i ∈ Ap for some i ≤ n.

Proposition: For every β > 0 there exists p = p(β) such that for every
n > N and for every x /∈ Ep

n

Card{j ≤ n : f j(x) ∈ C} ≤ nβ

It follows from a much more general result [Ch. Favre] that for all
x ∈ Pk the limit d(x) = limn→∞(degxf n)

1
n exists. Moreover, if d(x) > 1

then there exists an irreducible periodic variety V ⊂ C such that
f i(x) ∈ V for some i ≥ 0.
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Perron-Frobenius operator:

Lφ(g)(x) =
∑

y∈f−1(x)

expφ(y)g(y)

Normalized L: L̂ = 1
λL where λ is an eigenvalue of the conjugate

Perron- Frobenius operator.
Aim:

Prove that
c < L̂n(1) < C (2)

Prove that the normalized Perron- Frobenius operator is almost
periodic: For every g ∈ C(J) the family of iterates L̂n(g) is
equicontinuous.
Prove that

P(φ) = logλ (3)
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We extend the function φ twice: φ̃ is Hölder continuous in a
neighbourhood U of J with the same exponent α, sup φ̃ = supφ. This
extension is used to prove (2).

Next, we extend φ̃ to a continuous function φ̂ defined on the whole Pk

so that
L̂n
φ̂
(1) < C, thus Ln

φ̂
(1)(x) < Cλn

This extension is used to prove (3).
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Theorem. Let ψ : Pk → R be a continuous function. Assume that
there exist λ > 0 and Q > 0 such that supψ + (k − 1) log d < logλ and

Ln
ψ(1)(x) ≤ Qλn

for every x ∈ Pk. Then P(ψ) ≤ logλ.
Proof... leads to the estimate the integral∫

Pk
exp Snψ(ω + f ∗ω + · · ·+ (f (n−1))∗ω)k

where Snψ(x) = ψ(x) + ψ(f (x)) + · · ·+ ψ(f n−1(x))
How to use the estimate on iterates Ln

ψ(1):
Observation: ∫

Pk
exp Snψ(f (n))∗ωk =

∫
Pk
Ln
ψ(1)dωk
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Uniqueness of the equilibrium state

Proposition: Suppose that φ : J → R is an "admissible" potential and
let g : J → R is a Hölder continuous function. Then the function

t 7→ P(φ+ tg)

is differentiable in a neighbourhood of zero and

d
dt |t=t0

P(φ+ tg) =
∫

gdµφ+t0g
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Fine Inducing in one and several dimensions

Joint work with M. Szostakiewicz and M. Urbański

The map f is replaced by an infinite Iterated Function System

F :
⋃

Ui → U

U is (holomorphically equivalent to) a ball. The map F restricted to
each Ui is a holomorphic isomorphism onto U given by some iterate
f n(i) of f . Moreover,cl(Ui) ∩ cl(Uj) = ∅ for i 6= j and µφ(

⋃
Ui) = µφ(U).

Let
VN =

⋃
i:n(i)>N

Ui

Main estimate: µφ(VN) < exp(−Nδ) for some positive δ.
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Exponential decay of correlation and CLT

Theorem. For every α ≤ 1, every α- Hölder continuous function
ψ : J(f )→ R, every η ∈ L∞(µφ)

|
∫
ψ · η ◦ f n −

∫
ψdµφ

∫
ηdµφ| = O(θn)

with some constant θ < 1, depending on α.

Remark: In dimension one, this gives an alternative proof of N.
Haydn’s result.

Theorem (Corollary). CLT holds for Hölder continuous functions
ψ : J(f )→ R) such that φ is not cohomologous to a constant in
L2(µφ).
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Some other conclusions for one- dimensional case

Theorem: Hausdorff dimension of the equilibrium measure µφ is
(typically) smaller than the Hausdorff dimension h of the Julia set.
Exceptions:

f is expanding on J and φ+ h log |f ′| is cohomologous to a
constant.
# (P(f ) ∩ J(f )) ≤ 4

This generalizes (and gives an alternative proof) of the result about
dimension of maximal measure

Theorem. The function
t 7→ P(tφ)

is real- analytic (in some neighbourhood of 1)
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