Endomorphisms of complex projective spaces

Anna Zdunik

University of Warsaw

Frontiers in Holomorphic Dynamics, 2011

Basic facts about holomorphic endomorphisms of \mathbb{P}^k , maximal entropy measure

・ロト・4回ト・4回ト・4回ト・4回・9000

2 Equilibrium states for Hölder- continuous potentials

- Construction of the equilibrium measure
- f 4 Stochastic properties of the measure μ_{ϕ}

(日) (日) (日) (日) (日) (日) (日)

2 Equilibrium states for Hölder- continuous potentials

- 3 Construction of the equilibrium measure
- 4) Stochastic properties of the measure μ_{ϕ}

(日) (日) (日) (日) (日) (日) (日)

- 2 Equilibrium states for Hölder- continuous potentials
- 3 Construction of the equilibrium measure
 -) Stochastic properties of the measure μ_{ϕ}

- 2 Equilibrium states for Hölder- continuous potentials
- Construction of the equilibrium measure
- 4 Stochastic properties of the measure μ_{ϕ}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Projective space

Space

$$\mathbb{P}^k = \mathbb{C}^{k+1} \setminus \{0\} \diagup \sim$$

$$z \sim w \iff z = \lambda w, \lambda \in \mathbb{C}$$

Endomorphisms

$$F(z_0, z_1, \ldots, z_k) = (f_0(z_0, \ldots, z_k), \ldots, f_k(z_0, \ldots, z_k))$$

where f_i are homegenous polynomials of degree d, having no (nontrivial) common roots

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

- Algebraic degree– *d*–the common degree of polynomials f_0, f_1, \ldots, f_k
- Topological degree- cardinality of the set $f^{-1}({x})$ for a generic point equals d^k .

- Algebraic degree– d–the common degree of polynomials f_0, f_1, \ldots, f_k
- Topological degree- cardinality of the set $f^{-1}({x})$ for a generic point equals d^k .

Topological entropy

Entropy

$$h_{top}(f) = \log(deg_{top}(f)) = k \log d$$

• ">" follows from a general result of [Misiurewicz, Przytycki]

• " \leq " proved by Gromov (uses specific structure of \mathbb{P}^k).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Topological entropy

Entropy

$$h_{top}(f) = \log(deg_{top}(f)) = k \log d$$

- ">" follows from a general result of [Misiurewicz, Przytycki]
- " \leq " proved by Gromov (uses specific structure of \mathbb{P}^k).

Julia set

- "Large Julia set"- defined by normality criterion. Fatou setcomplement of the "Large Julia set"
- "Small Julia set"- support of the measure of maximal entropy
- ("intermediate" Julia sets)

Julia set

- "Large Julia set"- defined by normality criterion. Fatou setcomplement of the "Large Julia set"
- "Small Julia set"- support of the measure of maximal entropy
- ("intermediate" Julia sets)

Julia set

- "Large Julia set"- defined by normality criterion. Fatou setcomplement of the "Large Julia set"
- "Small Julia set"- support of the measure of maximal entropy
- ("intermediate" Julia sets)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Analytic approach

"Analytic" construction of the maximal measure: An invariant (1,1) current *T*:

- $f^*T = dT$,
- $T = \lim d^{-n}(f^n)^*(\omega)$ where ω is the Fubini-Study form on \mathbb{P}^k .
- The measure of maximal entropy is given by T^k .

Dynamical approach

This approach follows one- dimensional construction (Freire, Lopes, Mane; Lyubich).

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be an endomorphism of degree *d*. Then there exists an algebraic ("exceptional") set \mathcal{E} such that, for every $x \in \mathbb{P}^k \setminus \mathcal{E}$ the sequence of measures

$$\frac{1}{d^{nk}}\sum_{y\in f^{-n}(x)}\delta_y$$

converges to the common limit μ . The Jacobian of this measure μ equals to d^k , thus $h_{\mu}(f) = k \log d$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Some properties of the maximal measure

• μ is the unique measure of maximal entropy

- For every $x \in \operatorname{supp} \mu$ and every neighbourhood $U \supset x$ $\bigcup_{i=0}^{\infty} f^n(U) \supset \mathbb{P}^k \setminus \mathcal{E}$
- For every probability measure ν such that $\nu(\mathcal{E}) = 0$ we have

$$\frac{f^n \ast \nu}{d^{kn}} \to \mu$$

- μ is mixing: $\int \phi \cdot \psi \circ f^n d\mu \to \int \phi d\mu \int \psi d\mu$
- CLT holds for µ and Hölder-continuous observables.

- μ is the unique measure of maximal entropy
- For every $x \in \operatorname{supp} \mu$ and every neighbourhood $U \supset x$ $\bigcup_{i=0}^{\infty} f^n(U) \supset \mathbb{P}^k \setminus \mathcal{E}$
- For every probability measure ν such that $\nu(\mathcal{E}) = 0$ we have

$$\frac{f^n \ast \nu}{d^{kn}} \to \mu$$

- μ is mixing: $\int \phi \cdot \psi \circ f^n d\mu \to \int \phi d\mu \int \psi d\mu$
- CLT holds for µ and Hölder-continuous observables.

- μ is the unique measure of maximal entropy
- For every $x \in \operatorname{supp} \mu$ and every neighbourhood $U \supset x$ $\bigcup_{i=0}^{\infty} f^n(U) \supset \mathbb{P}^k \setminus \mathcal{E}$
- For every probability measure ν such that $\nu(\mathcal{E}) = 0$ we have

$$\frac{f^n * \nu}{d^{kn}} \to \mu$$

- μ is mixing: $\int \phi \cdot \psi \circ f^n d\mu \to \int \phi d\mu \int \psi d\mu$
- CLT holds for µ and Hölder-continuous observables.

- μ is the unique measure of maximal entropy
- For every $x \in \operatorname{supp} \mu$ and every neighbourhood $U \supset x$ $\bigcup_{i=0}^{\infty} f^n(U) \supset \mathbb{P}^k \setminus \mathcal{E}$
- For every probability measure ν such that $\nu(\mathcal{E}) = 0$ we have

$$\frac{f^n * \nu}{d^{kn}} \to \mu$$

- μ is mixing: $\int \phi \cdot \psi \circ f^n d\mu \to \int \phi d\mu \int \psi d\mu$
- CLT holds for µ and Hölder-continuous observables.

- μ is the unique measure of maximal entropy
- For every $x \in \operatorname{supp} \mu$ and every neighbourhood $U \supset x$ $\bigcup_{i=0}^{\infty} f^n(U) \supset \mathbb{P}^k \setminus \mathcal{E}$
- For every probability measure ν such that $\nu(\mathcal{E}) = 0$ we have

$$\frac{f^n * \nu}{d^{kn}} \to \mu$$

- μ is mixing: $\int \phi \cdot \psi \circ f^n d\mu \rightarrow \int \phi d\mu \int \psi d\mu$
- CLT holds for μ and Hölder-continuous observables.

Construction

Stochastic properties of the measure μ_{ϕ}

Equilibrium measures

X- compact metric space, $T: X \to X$ continuous. Given a continuous function $\varphi: X \to X$

$$P(arphi) = \sup_{\mu} h_{\mu}(T) + \int arphi d\mu$$

where sup is taken over all probability Borel T- invariant measures.

Equilibrium states -One-dimensional case

Denker, Urbański (90's) proved the existence and uniqueness of equilibrium states for Hölder- continuous potentials $\phi: J(f) \to \mathbb{R}$ satisfying

$$\sup \phi < P(\phi) \tag{1}$$

If $\sup \phi - \inf \phi < \log d$ then (1) holds.

Denker, Przytycki, Urbański - studied spectral properties of Perron-Frobenius operator related to the potential ϕ , in particular they proved CLT for Hölder continuous 'observables'.

Equilibrium states in multidimensional case

Joint work with Mariusz Urbański

Theorem. Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a ("regular") holomorphic endomorphism. Then there exists a positive number $\kappa(f)$ such that for every Hölder continuous potential ϕ with $\sup \phi - \inf \phi < \kappa(f)$ there exists a unique equilibrium state μ_{ϕ} .

This equilibrium state is equivalent to a conformal measure- the eigenmeasure of the conjugate Perron -Frobenius operator. The dynamical system (f, μ_{ϕ}) is metrically exact. The corresponding normalized Perron Frobenius operator, acting in C(J(f)) is almost -periodic.

 $\kappa(f) = \log d$ in many cases (always?).

 A_p -critical periodic set is the union of all irreducible varieties that are contained in the critical set *C* and which are periodic under some f^l , $l \leq p$. E_n^p is the set of points $z \in \mathbb{P}^k$ such that $f^i \in A_p$ for some $i \leq n$.

Proposition: For every $\beta>0$ there exists $p=p(\beta)$ such that for every n>N and for every $x\notin E_n^p$

 $\operatorname{Card}\{j \le n : f^j(x) \in C\} \le n\beta$

It follows from a much more general result [Ch. Favre] that for all $x \in \mathbb{P}^k$ the limit $d(x) = \lim_{n \to \infty} (deg_x f^n)^{\frac{1}{n}}$ exists. Moreover, if d(x) > 1 then there exists an irreducible periodic variety $V \subset C$ such that $f^i(x) \in V$ for some $i \ge 0$.

Perron-Frobenius operator:

$$\mathcal{L}_{\phi}(g)(x) = \sum_{y \in f^{-1}(x)} \exp \phi(y) g(y)$$

Normalized \mathcal{L} : $\hat{\mathcal{L}} = \frac{1}{\lambda}\mathcal{L}$ where λ is an eigenvalue of the conjugate Perron- Frobenius operator. Aim:

Prove that

$$c < \hat{\mathcal{L}}^n(1) < C \tag{2}$$

- Prove that the normalized Perron- Frobenius operator is almost periodic: For every $g \in C(J)$ the family of iterates $\hat{\mathcal{L}}^n(g)$ is equicontinuous.
- Prove that

$$P(\phi) = \log \lambda \tag{3}$$

(日) (日) (日) (日) (日) (日) (日)

Perron-Frobenius operator:

$$\mathcal{L}_{\phi}(g)(x) = \sum_{y \in f^{-1}(x)} \exp \phi(y) g(y)$$

Normalized \mathcal{L} : $\hat{\mathcal{L}} = \frac{1}{\lambda}\mathcal{L}$ where λ is an eigenvalue of the conjugate Perron- Frobenius operator. Aim:

Prove that

$$c < \hat{\mathcal{L}}^n(1) < C \tag{2}$$

- Prove that the normalized Perron- Frobenius operator is almost periodic: For every $g \in C(J)$ the family of iterates $\hat{\mathcal{L}}^n(g)$ is equicontinuous.
- Prove that

$$P(\phi) = \log \lambda \tag{3}$$

Perron-Frobenius operator:

$$\mathcal{L}_{\phi}(g)(x) = \sum_{y \in f^{-1}(x)} \exp \phi(y) g(y)$$

Normalized \mathcal{L} : $\hat{\mathcal{L}} = \frac{1}{\lambda}\mathcal{L}$ where λ is an eigenvalue of the conjugate Perron- Frobenius operator. Aim:

Prove that

$$c < \hat{\mathcal{L}}^n(1) < C \tag{2}$$

- Prove that the normalized Perron- Frobenius operator is almost periodic: For every $g \in C(J)$ the family of iterates $\hat{\mathcal{L}}^n(g)$ is equicontinuous.
- Prove that

$$P(\phi) = \log \lambda \tag{3}$$

Holomorphic endomorphisms Equilibrium states Construction Stochastic properties of the measure μ_{ϕ}

We extend the function ϕ twice: $\tilde{\phi}$ is Hölder continuous in a neighbourhood U of J with the same exponent α , $\sup \tilde{\phi} = \sup \phi$. This extension is used to prove (2).

Next, we extend $\tilde{\phi}$ to a continuous function $\hat{\phi}$ defined on the whole \mathbb{P}^k so that

$$\hat{\mathcal{L}}^n_{\hat{\phi}}(1) < C, \quad ext{thus} \ \ \mathcal{L}^n_{\hat{\phi}}(1)(x) < C\lambda^n$$

(日) (日) (日) (日) (日) (日) (日)

This extension is used to prove (3).

Theorem. Let $\psi : \mathbb{P}^k \to \mathbb{R}$ be a continuous function. Assume that there exist $\lambda > 0$ and Q > 0 such that $\sup \psi + (k - 1) \log d < \log \lambda$ and

Construction

 $\mathcal{L}^n_{\psi}(1)(x) \le Q\lambda^n$

for every $x \in \mathbb{P}^k$. Then $P(\psi) \le \log \lambda$. Proof... leads to the estimate the integral

Holomorphic endomorphisms

$$\int_{\mathbb{P}^k} \exp S_n \psi(\omega + f^* \omega + \dots + (f^{(n-1)})^* \omega)^k$$

where $S_n\psi(x) = \psi(x) + \psi(f(x)) + \dots + \psi(f^{n-1}(x))$ How to use the estimate on iterates $\mathcal{L}^n_{\psi}(1)$: Observation:

Equilibrium states

$$\int_{\mathbb{P}^k} \exp S_n \psi(f^{(n)})^* \omega^k = \int_{\mathbb{P}^k} \mathcal{L}^n_{\psi}(1) d\omega^k$$

Stochastic properties of the measure μ_{ϕ}

Uniqueness of the equilibrium state

Proposition: Suppose that $\phi: J \to \mathbb{R}$ is an "admissible" potential and let $g: J \to \mathbb{R}$ is a Hölder continuous function. Then the function

$$t \mapsto P(\phi + tg)$$

is differentiable in a neighbourhood of zero and

$$\frac{d}{dt}_{|t=t_0} P(\phi + tg) = \int g d\mu_{\phi+t_0g}$$

Fine Inducing in one and several dimensions

Joint work with M. Szostakiewicz and M. Urbański

The map f is replaced by an infinite Iterated Function System

 $F: \bigcup U_i \to U$

U is (holomorphically equivalent to) a ball. The map *F* restricted to each U_i is a holomorphic isomorphism onto *U* given by some iterate $f^{n(i)}$ of *f*. Moreover, $\operatorname{cl}(U_i) \cap \operatorname{cl}(U_j) = \emptyset$ for $i \neq j$ and $\mu_{\phi}(\bigcup U_i) = \mu_{\phi}(U)$.

Let

$$V_N = \bigcup_{i:n(i)>N} U_i$$

Main estimate: $\mu_{\phi}(V_N) < \exp(-N\delta)$ for some positive δ .

Exponential decay of correlation and CLT

Theorem. For every $\alpha \leq 1$, every α - Hölder continuous function $\psi: J(f) \to \mathbb{R}$, every $\eta \in L^{\infty}(\mu_{\phi})$

$$|\int \psi \cdot \eta \circ f^n - \int \psi d\mu_\phi \int \eta d\mu_\phi| = O(heta^n)$$

with some constant $\theta < 1$, depending on α .

Remark: In dimension one, this gives an alternative proof of N. Haydn's result.

Theorem (Corollary). CLT holds for Hölder continuous functions $\psi : J(f) \to \mathbb{R}$) such that ϕ is not cohomologous to a constant in $L^2(\mu_{\phi})$.

Some other conclusions for one- dimensional case

Theorem: Hausdorff dimension of the equilibrium measure μ_{ϕ} is (typically) smaller than the Hausdorff dimension *h* of the Julia set. Exceptions:

- f is expanding on J and $\phi + h \log |f'|$ is cohomologous to a constant.
- $\# (P(f) \cap J(f)) \le 4$

This generalizes (and gives an alternative proof) of the result about dimension of maximal measure

Theorem. The function

$$t \mapsto P(t\phi)$$

is real- analytic (in some neighbourhood of 1)