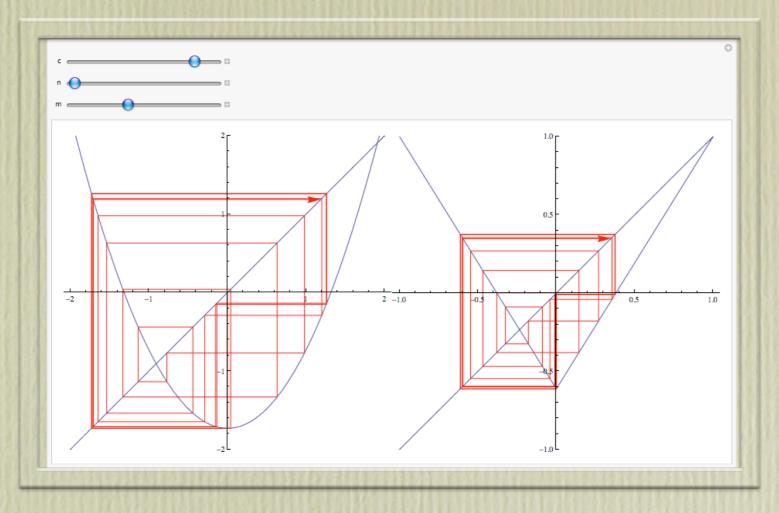
Structure of Entropy: The hidden dimensions

Bill Thurston Jackfest 2011



Real polynomials have PL uniformly expanding models: growth factor $\lambda = \exp(\text{entropy})$

PostCritically Finite Maps

- What λ 's can occur for PCF maps?
- λ is an algebraic integer.
 - Identifications in orbit of 0 implay a polynomial equation in λ .
- λ is a positive eigenvalue for a nonnegative eigenvector of a nonnegative matrix:

• incidence matrix for intervals bounded by postcritical orbit.

Perron-Frobenius

- Perron-Frobenius theorem: an ergodic nonnegative matrix has a unique non-negative eigenvector.
- The corresponding "positive" eigenvalue λ is larger than all others.
- \Rightarrow if the matrix is integral, then λ is an algebraic integer larger than all its other Galois conjugates.

- Converse Perron-Frobenius (Lind): if λ is an algebraic integer larger than all other Galois conjugates, there is a non-negative ergodic integer matrix having λ as its positive eigenvalue.
- If the largest conjugate λ' of a positive real algebraic number λ
 - satisfies $|\lambda'| < \lambda$, it is a Perron number
 - satisfies $|\lambda'| < 1$, it is a Pisot or PV number
 - satisfies $|\lambda'| = 1$, it is a Salem number
- The dimension of the smallest matrix for λ is not bounded by the degree of λ , for d > 2.

Real Polynomial Entropy

Theorem: for every Perron number λ, there exist λ-uniformly expanding postcritically finite selfmaps of an interval. (But no guarantee as to the number of laps).

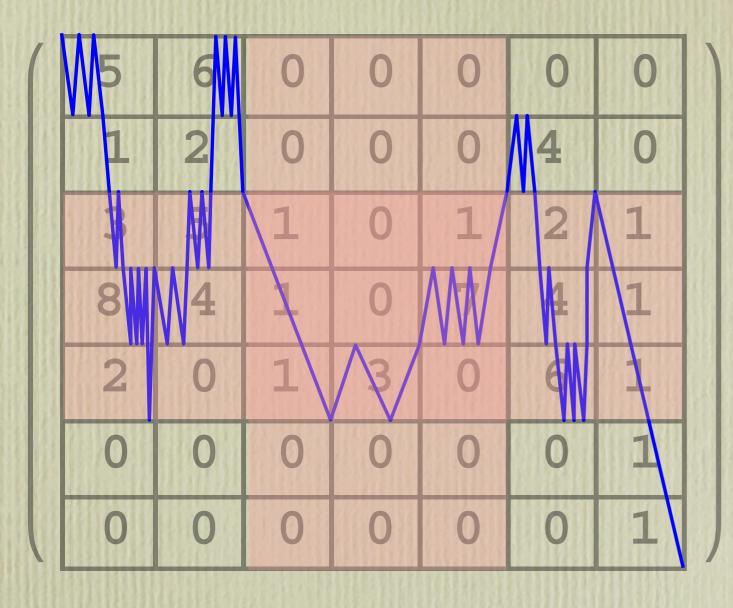
Perron to Semigroup to Positive Matrix

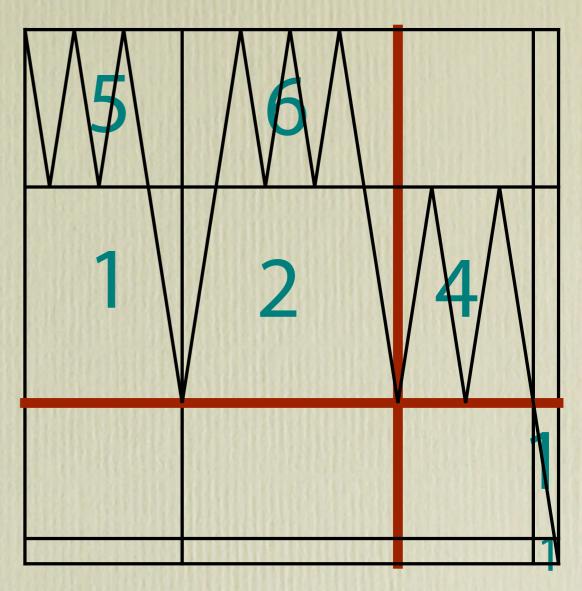
- Start with ring of algebraic integers in $Q(\lambda)$, where λ action is in GL(d,Z).
- Find a subsemigroup (under addition) excluding 0 and invariant by λ.
- Using a polyhedral approximation, cut it the semigroup down to be finitely generated and S invariant by λ.
- Consider A =Free Abelian(generators) → S and lift multiplication by λ to A; it becomes nonnegative.

Semigroup to Incidence Matrix

- Use post-criticalvalue partition
- Conditions on nonnegative matrix:
 - in each column, {nonzero entries} is connected, length>0.
 - in each column, {odd entries} is connected, and the odd blocks link together in a chain.

5	6	0	0	0	0	0
1	2	0	0	0	4	0
3	5	1	0	1	2	1
8	4	1	0	7	4	1
2	0	1	3	0	6	1
0	0	0	0	0	0	1
0	0	0	0	0	0	1



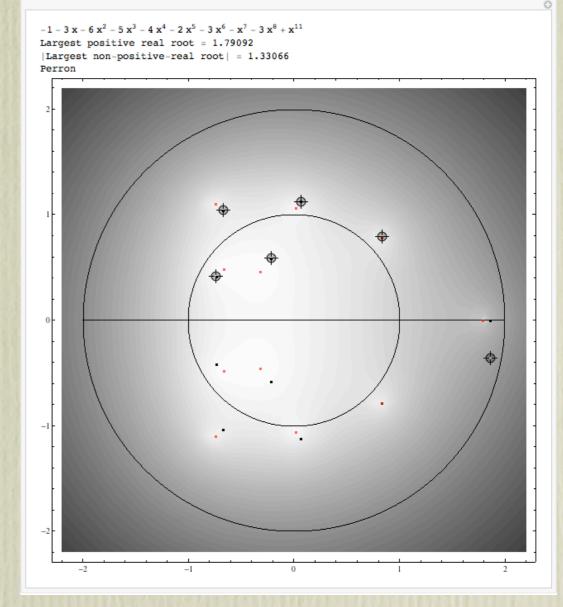


Semigroup to incidence matrix to power of λ to λ

- Given a positive semigroup S invariant by λ ,
 - Choose generators G for representing every parity class (lattice / 2*lattice)
 - Let T = sum(G).
 - Make T=0 / 2*lattice (extra gens)
 - Choose a power of λ sending S to 3T+S
- Arrange G in order on a line, and make matrix.
- Implant as return map along a periodic orbit of system for lower entropy.

Given a Perron number λ , Does it occur for PCF map?

- Degree 2:
- If the critical point is periodic, there is a polynomial for λ having {1,-1} coefficients
- If the critical point is preperiodic, there is a polynomial for λ having {-2,-1,0,1,2} coefficients
- Minimal polynomial divides.
- Norm is 1 or 2



Multi-dimensional picture

- It is very hard to tell numerically whether a PL function is PCF.
- For an algebraic number λ defined by a polynomial P(x), just do polynomial arithmetic mod P(x): R(x) → ± x R(x) 1 mod P(x),

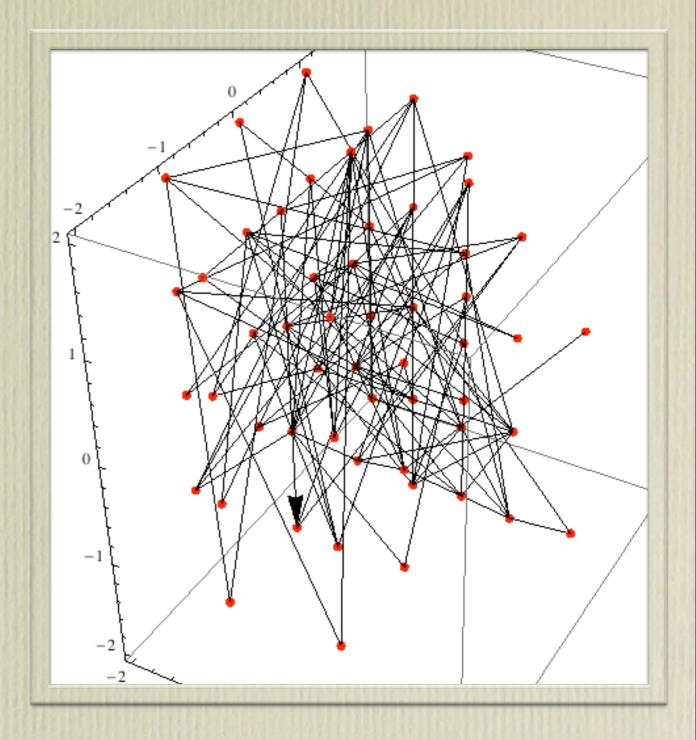
where the sign is the sign of $R(\lambda)$. Look at the coefficient space (or the set of values $R(\lambda')$).

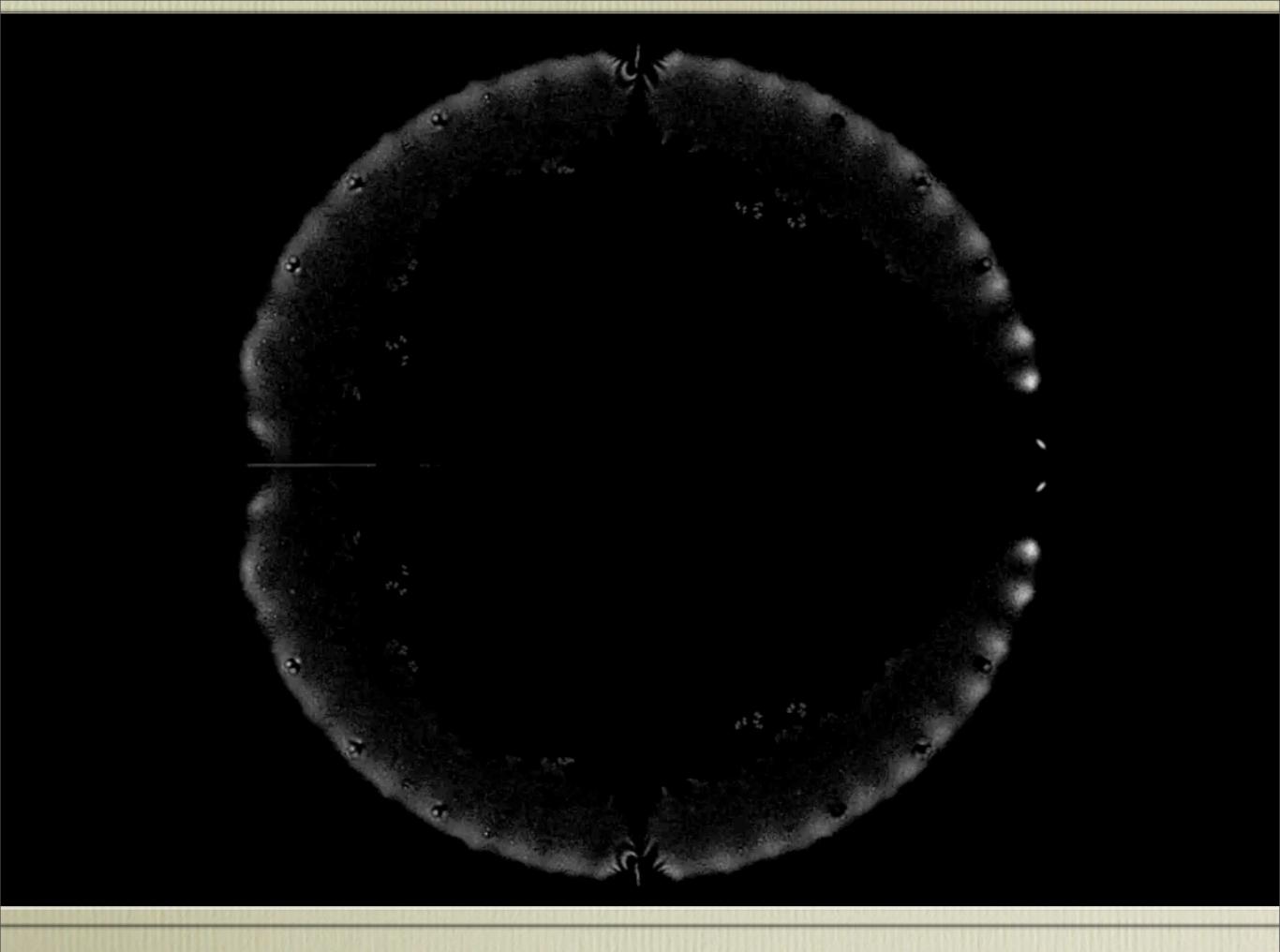
3-dimensional projection

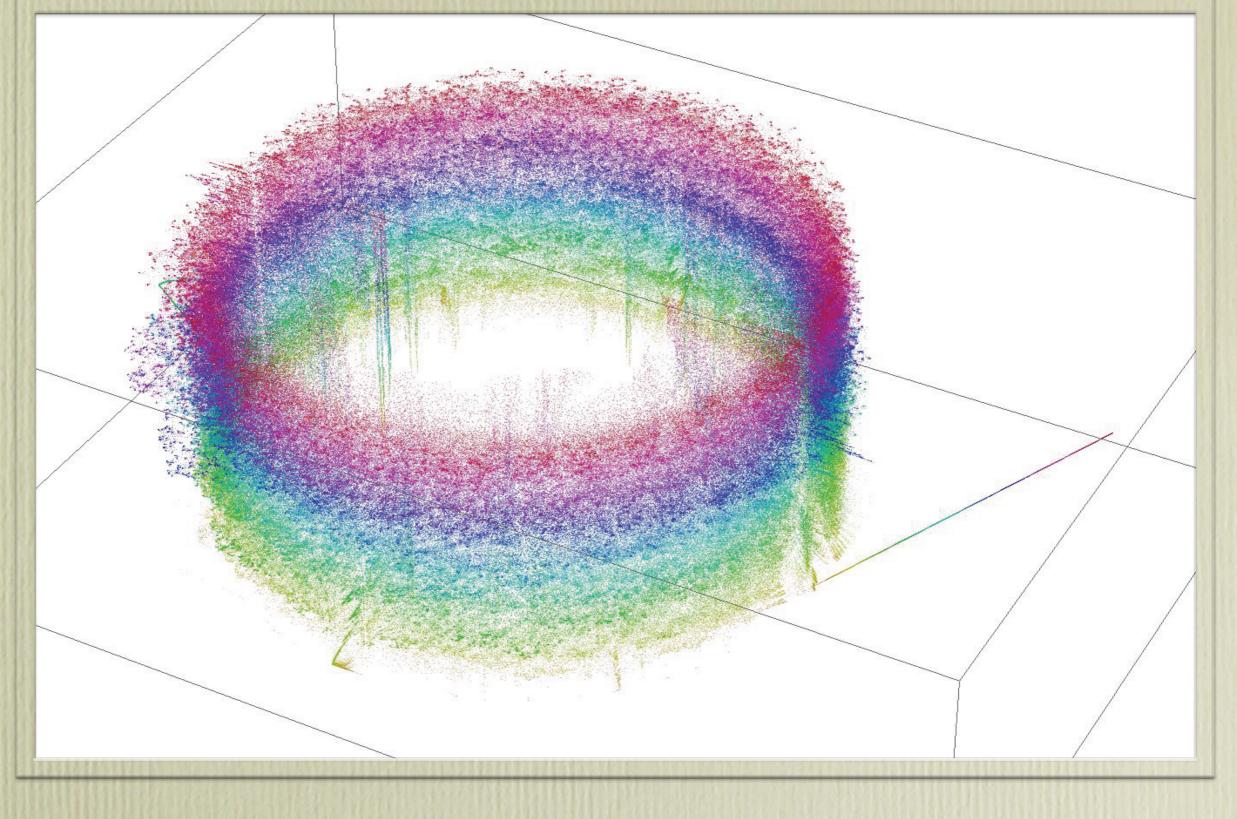


Pisot numbers follow the leader

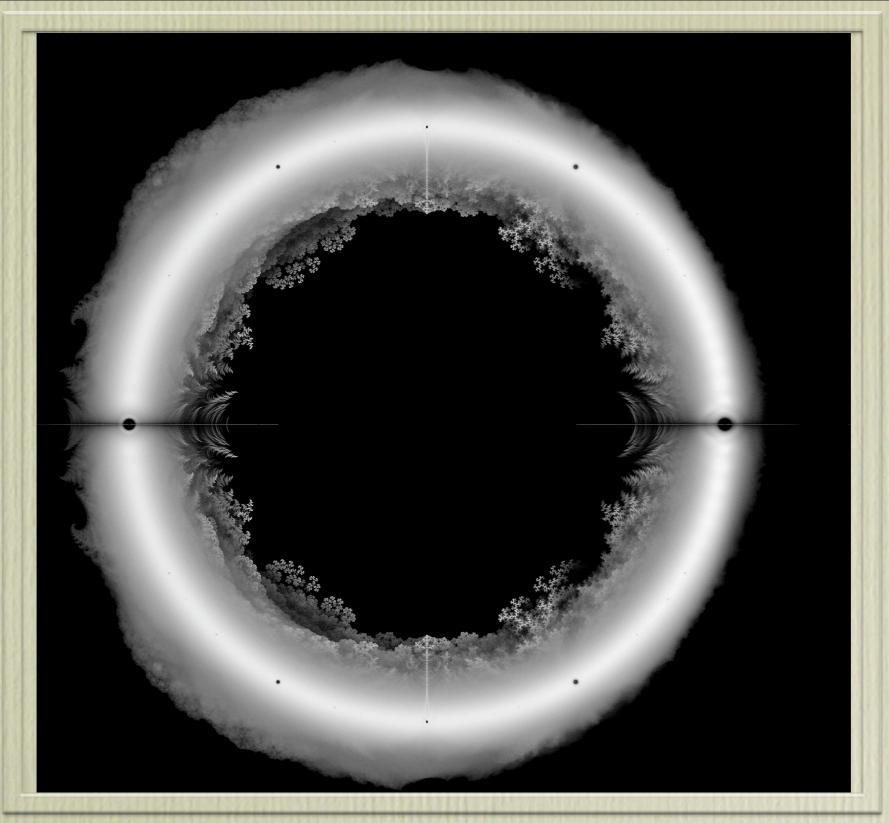
- Thm: λ is a Pisot number and if critical points are in Q(λ), f is PCF.
- In the multidimensional picture, all the λ' axes contract. So if the λ axis is controlled, the iteration stays bounded, and must ultimately repeat.



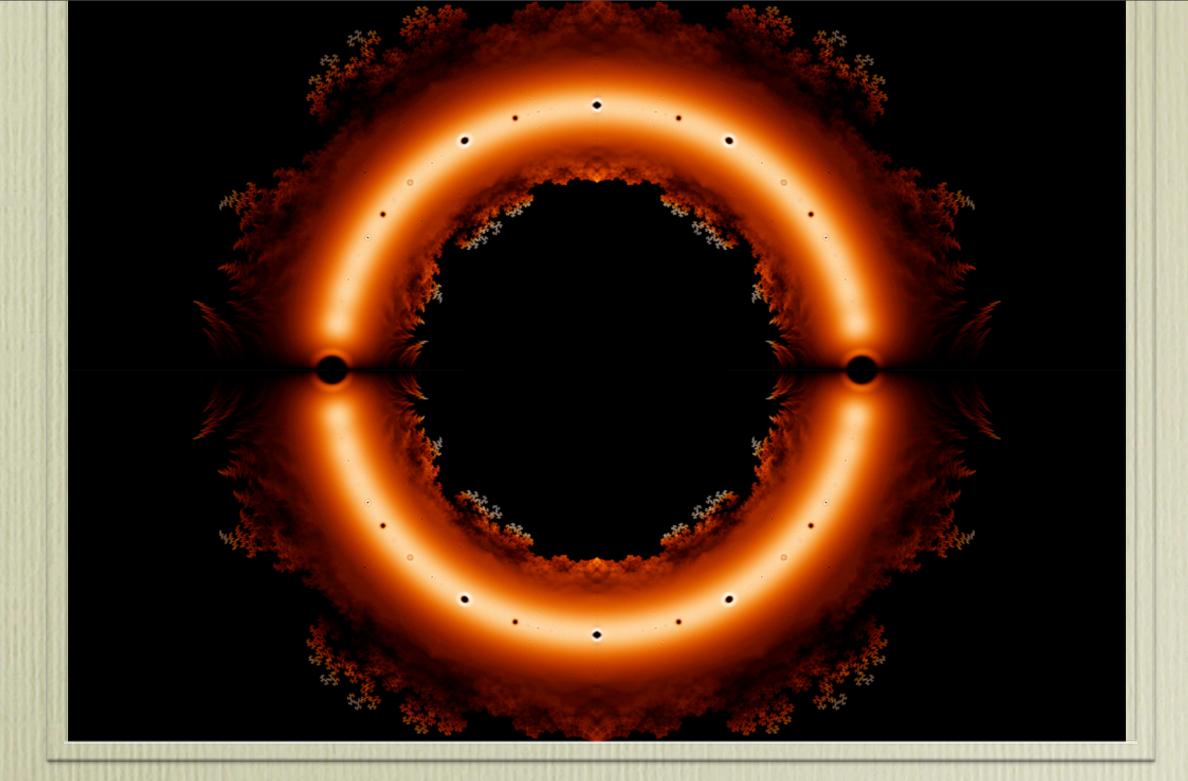




Kneading Roots vs. growth



Galois Conjugates: PCF growth



Roots of polynomials with 1,-1 coefficients (Sam Derbyshire via John Baez)

Automorphisms of free groups

• A train track self-homotopy-equivalence of a graph, $\phi: \Gamma \rightarrow \Gamma$ is a train track map if all

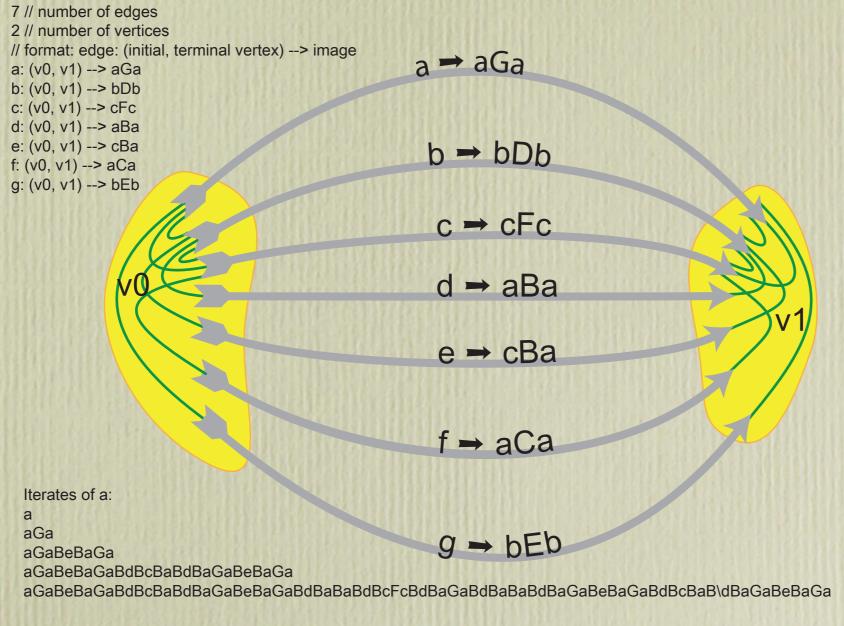
forward images of every edge map as local homeomorphisms. The growth factor is an invariant of the associated free group outer automorphism ϕ . It is the maximal rate of growth of lengths of conjugacy classes.

• Theorem (Bestvina-Handel) For any outer automorphism φ that has no invariant free factors is represented by a train track map of some Γ

Characterization of growth for free group automorphisms

- Theorem: a number λ is the growth factor for some train track automorphism of some free group if and only if λ is a weak Perron number
- Theorem: Any pair of Perron units (λ, λ') is the growth factor for some free group outer automorphism φ along with its inverse φ⁻¹ provided each is also greater than the conjugates of the inverse of the other.

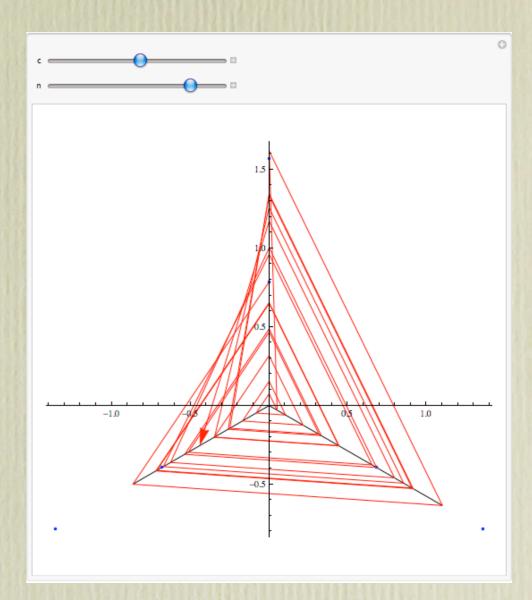
An automorphism with growth 3(!)



An automorphism of F(6) with λ = 3.

Splitting Hairs

- Construct a self-map of an asterisk-shaped tree with expansion constant λ.
- Split each hair into seven strands, joined at their endpoints.
- Use *3 traintrack as model for lifting tree-map to free group automorphism.



Limit set for small eigenvalues

 $(\lambda, \lambda') = (1.61803, -.61803)$

