

Quasiconformal maps and harmonic measure Stanislav Smirnov

In part based on joint work with Kari Astala & István Prause

quasiconformal maps

 $arphi : \Omega \to \Omega' \ W_{loc}^{1,2}$ -homeomorphism Def 1 $\ \bar{\partial} \varphi(z) = \mu(z) \partial \varphi(z)$ a.e. $z \in \Omega$ $\|\mu\|_{\infty} \le k < 1$

measurable Riemann mapping theorem:

- (unique up to Möbius) solution exists
- depends analytically on μ

Θ

distortion of dimension

 $\begin{array}{l} \textbf{Theorem [Astala 1994] for } k - \text{quasiconformal } \varphi \\ \frac{1}{K} \left(\frac{1}{\dim E} - \frac{1}{2} \right) \leq \frac{1}{\dim \varphi(E)} - \frac{1}{2} \leq K \left(\frac{1}{\dim E} - \frac{1}{2} \right) \end{array}$

Rem result is sharp (easy from the proof)

In particular, dim E=1 \Rightarrow 1-k \leq dim φ (E) \leq 1+k

[Becker-Pommerenke 1987] dim $\varphi(\mathbb{R}) \le 1 + 37k^2$ Conjecture [Astala] dim $\varphi(\mathbb{R}) \le 1 + k^2$

dimension of quasicircles

Thm [S] dim $\varphi(\mathbb{R}) \leq 1 + k^2$

Dual statement: φ symmetric wrt \mathbb{R} , $\operatorname{spt} v \subset \mathbb{R}$ $\dim v = 1$ $\dim \varphi(v) \ge 1 - k^2$

Sharpness???

a nonrectifiable quasicircle

Proof: holomorphic motion

Any *k* - qc map φ_k can be embedded into a holomorphic motion of qc maps φ_{λ} , $\lambda \in \mathbb{D}$:

Define **Beltrami coefficient** $\mu = \mu_{\varphi} / ||\mu_{\varphi}||$, $||\mu|| = 1$

$$\lambda \in \mathbb{D} \longrightarrow \lambda \mu \longrightarrow arphi_{\lambda}$$
 which is $|\lambda|$ -qc

Rem λ-lemma [Mañé-Sad-Sullivan, Sullivan-Thurston, Bers-Royden, Slodkowski] states: A holomorphic motion of a set can be extended to a holomorpic motion of qc maps

Proof: fractal approximation

a packing of disks evolves in the motion $\{B_{\lambda}\}$ "complex radii" $\{r_{\lambda}\}$ Cantor sets $C_{\lambda} \approx \varphi(E_{\lambda})$

Proof: "thermodynamics"

Pressure [Ruelle, Bowen] P_{λ} (t) := log($\Sigma |r_i(\lambda)|^t$)

$$P(t)$$

$$I_{p}$$

$$dim C_{\lambda}$$

$$I_{p}/\Lambda_{p}$$

$$t$$

"Entropy" $I_p := \Sigma p_j \log (1/p_j)$

"Lyapunov exponent" $\Lambda_p(\lambda) := \Sigma p_j \log (1/|r_j(\lambda)|)$ (harmonic in λ !)

Variational principle (Jensen's inequality)

$$\mathsf{P}_{\lambda} (\mathsf{t}) = \sup_{\mathsf{p} \in \mathsf{Prob}} \Sigma \mathsf{p}_{\mathsf{j}} \log (|\mathsf{r}_{\mathsf{j}}(\lambda)|^{\mathsf{t}} / \mathsf{p}_{\mathsf{j}}) = \sup_{\mathsf{p} \in \mathsf{Prob}} (\mathsf{I}_{\mathsf{p}} - \mathsf{t} \Lambda_{\mathsf{p}}(\lambda))$$

Bowen's formula: dim C_{λ} = root of P_{λ} = sup I_p / $\Lambda_p(\lambda)$

Proof: Harnack's inequality

- $\cdot \text{ dim C}_0 = 1 \Longrightarrow I_p / \Lambda_p(0) \leqslant 1 \Longrightarrow \Lambda_p(0) I_p / 2 \geqslant I_p / 2$
- $\cdot \text{ dim C}_{\lambda} \leqslant 2 \Longrightarrow \mathsf{I}_{\mathsf{p}} / \Lambda_{\mathsf{p}}(\lambda) \leqslant 2 \Longrightarrow \Lambda_{\mathsf{p}}(\lambda) \mathsf{I}_{\mathsf{p}} / 2 \geqslant 0$
- Harnack $\Rightarrow \Lambda_{p}(\lambda) \frac{I_{p}}{2} \ge \frac{1 |\lambda|}{1 + |\lambda|} \frac{I_{p}}{2}$ $\Rightarrow \Lambda_{p}(\lambda) \ge \frac{1}{1 + |\lambda|} I_{p}$ $\Rightarrow \dim C_{\lambda} = \sup_{p} I_{p} / \Lambda_{p}(\lambda) \le 1 + |\lambda|$
- Quasicircle \Rightarrow (anti)symmetric motion \Rightarrow even Λ

 \Rightarrow "quadratic" Harnack \Rightarrow dim C $_{\lambda} \leq 1 + |\lambda|^2$

Proof: symmetrization

Thm [S] the existence of the following φ 's is equivalent:

- a. $\Gamma = \varphi(\mathbb{R})$ and φ is **k**-qc
- b. $\Gamma = \varphi(\mathbb{R})$ and φ is $\frac{2k}{1+k^2}$ qc in \mathbb{C}_+ and conformal in \mathbb{C}_-
- c. $\Gamma = \varphi(\mathbb{R})$ and φ is **k**-qc and antisymmetric

symmetric:

antisymmetric:

Sharpness of $1 + k^2$

Suppose that there is an extremal k-qc φ , with dim $\varphi(\mathbb{R}) = 1 + k^2$, then there is

a very peculiar holomorphic motion:

 $\lambda \in \mathbb{D}$ $\mathbf{\Theta} \varphi_{\lambda}$ antisymmetric, dim $\varphi_{\lambda}(dx) = 1 + |\lambda|^2$ ϕ_{λ} symmetric, dim $\varphi_{\lambda}(dx) = 1 - |\lambda|^2$ • $\varphi_{\lambda}(\mathbb{R})$ Peano curve, dim $\varphi_{\lambda}(dx)=2$ • dim $\varphi_{\lambda}(dx)=0$ **Quasi-Fuchsian groups or Julia sets ?**

harmonic measure ω

Brownian motion

exit probability

- conformal map image of the length
- potential theory
 equilibrium measure
- Dirichlet problem for Δ $u(z_0) = \int_{\partial \Omega} u(z) d\omega(z)$

multifractality of ω "fjords and spikes"

Beurling's theorem: $\alpha \ge 1/2$

spectrum:
$$f(\alpha) = \dim \mathcal{F}_{\alpha}$$

Courtesy of D. Marshall

Makarov's theorem: Borel dim $\omega = 1$, f(1) = 1

Many open problems reduce to estimating the

universal spectrum

$$f(lpha) = \sup_{\Omega} f_{\Omega}(lpha)$$

over all simply connected domains

Conjecture :
$$f(\alpha) \stackrel{?}{=} 2 - \frac{1}{\alpha}$$

[Brennan-Carleson-Jones-Krätzer-Makarov]

Legendre transform & pressure

Restrict pressure to **conformal maps** $\varphi : \mathbb{C}_+ \rightarrow \Omega$ π_{Ω} (t) := log($\Sigma |\mathbf{r}_j(\lambda)|^t$)

Universal pressure $\pi(t) := \sup_{\Omega} \pi_{\Omega}(t)$

Thm [Makarov 1998] Legendre transforms: $f(\alpha) = \inf_{t} \{\alpha \pi(t) + t\}$ $\pi(t) = \sup_{\alpha} \{(f(\alpha) - t)/\alpha\}$

Conjecture: $\pi(t) = (2-t)^2/4$

π(t)

finding the universal spectrum

- no real intuition
- some numerical evidence
- only weak estimates

Example: $\pi(1)$ gives optimal

- coefficient decay rate for bounded conformal maps
- growth rate for the length of Green's lines

Conjecturally $\pi(1) = 0.25$, best known estimates: $0.23 \leq \pi(1) \leq 0.46$

[Beliaev, Smirnov] [Hedenmalm, Shimorin]

fine structure of harmonic measure via the holomorphic motions

- I. qc deformations of conformal structure and harmonic measure
- II. motions in bi-disk
- III. welding conformal structures and Laplacian on 3-manifolds

joint work with Kari Astala and István Prause

I. deforming conf structure

Recall: spt $v \subset \mathbb{R}$ & dim $v = 1 \implies \dim \varphi(v) \ge 1 - k^2$

Thm assume that the statement above is sharp: spt $\sigma \subset \mathbb{R}$ dim $\sigma = 1 - k^2$ $\implies \exists k - qc \varphi \text{ s.t. } \varphi(dx) = \sigma$

then the universal spectrum conjecture holds

Rem in general no sharpness (e.g. any porous σ), but we need it only for relevant "Gibbs" measures

Question: how to deform? (use φ ?)

I. proof: deforming to ω

II. two-sided spectrum

rotation [Binder] $f(\alpha, \gamma) = \dim \mathcal{F}_{\alpha, \gamma}$ $\omega \approx r^{\alpha} \& \gamma$ -spiraling

two-sided spectrum

$$f(lpha_{-}, lpha_{+}, \gamma) = \dim \mathcal{F}_{lpha_{-}, lpha_{+}, \gamma}$$
 $\omega_{-} \in$
Beurling's estimate $\frac{1}{lpha_{-}} + \frac{1}{lpha_{+}} \le \frac{2}{1 + \gamma^2}$

II. bidisk motion

Take Beltrami μ in \mathbb{C}_+ of norm 1, symmetrize it

symmetric for $\lambda = \overline{\eta}$, antisymmetric for $\lambda = -\overline{\eta}$

II. thermodynamics

$$P_{\lambda,\eta}(t) = \log\left(\sum |r(B_{\lambda,\eta})|^t
ight) = \sup_p(\mathrm{I} - t\operatorname{Re}\Lambda_{\lambda,\eta})$$

$$I = \sum p_i \log \frac{1}{p_i} \qquad \qquad \Lambda_{\lambda,\eta} = \sum p_i \log \frac{1}{r_i(\lambda,\eta)}$$

entropy (complex) Lyapunov exponent

$$\dim(C_{\lambda,\eta}) = \sup_p \dim p = \sup_p rac{\mathrm{I}}{\mathrm{Re}\,\Lambda_{\lambda,\eta}}$$

II. "easy" estimates

- reflection symmetry $\varphi_{\lambda,\eta}(z) = \overline{\varphi_{\bar{\eta},\bar{\lambda}}(\bar{z})}$ ullet
- $(\lambda, \overline{\lambda})$ diagonal
- projections $(\lambda,\eta)_+ = (\lambda,\bar{\lambda}), (\lambda,\eta)_- = (\bar{\eta},\eta)$

$$\mathbb{D}$$

$$\begin{split} \Phi(\lambda,\eta) &= 1 - \frac{1}{\Lambda_{\lambda,\eta}} & \mathbb{D} \\ \Phi: \mathbb{D}^2 \to \mathbb{D} \quad \dim C_{\lambda,\eta} \leq 2 \\ \Phi(\lambda,\bar{\lambda}) \geq 0 \quad \dim C_{\lambda,\bar{\lambda}} \leq 1 & \mathbb{D} & \stackrel{\Phi}{\to} & \bigoplus \\ \Phi(\lambda,\eta) &= \overline{\Phi(\bar{\eta},\bar{\lambda})} & \mathbb{D} & \mathbb{D} \end{split}$$

II. scaling relations

II. Beurling and Brennan

Beurling $\frac{1}{\alpha_{-}} + \frac{1}{\alpha_{+}} \leq \frac{2}{1+\gamma^{2}} \Rightarrow 2 \operatorname{Re} \Phi(\lambda, \eta) \leq \Phi(\bar{\eta}, \eta) + \Phi(\lambda, \bar{\lambda})$ **Corollary:** $\lambda \mapsto \Phi(\lambda, \lambda)$ is subharmonic

Brennan's conjecture: $F: \Omega \to \mathbb{D}, \quad F' \in L^{4-\epsilon}$

Equivalent question: $f(\alpha) \le 4(\alpha - \frac{1}{2})$?

Two-sided: $2 \operatorname{Re} \frac{1-\Phi}{1+\Phi} \ge \frac{1-\Phi_{-}}{1+\Phi_{-}} + \frac{1-\Phi_{+}}{1+\Phi_{+}}$?

II. two-sided spectrum

Conjecture: $|\Phi|^2 \leq \Phi_- \Phi_+$ or $\begin{pmatrix} \Phi(\lambda, \overline{\lambda}) & \Phi(\lambda, \overline{\eta}) \\ \Phi(\eta, \overline{\lambda}) & \Phi(\eta, \overline{\eta}) \end{pmatrix} \geq 0$

Rem it is equivalent to

II. the question

We know that

$$\Phi\colon \mathbb{D}^2 \to \mathbb{D}$$

- $\Phi(\lambda, \overline{\lambda}) \ge 0$ and subharmonic
- $\Phi(\lambda,\eta) = \overline{\Phi(\bar{\eta},\bar{\lambda})}$ plus more...

What do we need to deduce the conjecture? $\begin{pmatrix} \Phi(\lambda, \bar{\lambda}) & \Phi(\lambda, \bar{\eta}) \\ \Phi(\eta, \bar{\lambda}) & \Phi(\eta, \bar{\eta}) \end{pmatrix} \ge 0$

III. conformal welding

quasisymmetric welding ----- quasicircle

III. welding and dimensions

Take three images of the linear measure dx:

Then the conjectures before are equivalent to

 $(1-D)^2 \leq (1-D_{-})(1-D_{+})$

III. Questions about $(1-D)^2 \le (1-D_-) (1-D_+)$

Rem1 The inequality holds if $D_{-} = 1$.

Q1 Can one interpolate to prove it in general?

Rem2 For quasicirles arising in quasi-Fuchsian groups the base eigenvalue λ_0 of the Laplacian on the associated 3-manifold has $1-\lambda_0=(1-D)^2$ for Patterson-Sullivan measure

Q2 Can one use 3D geometry ?

