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If f is a fixed point of renormalization R (with return time ≡ k),
then g ◦ fk ◦ g−1 = f , i.e. g ◦ fk = f ◦ g (intertwining relation).

Usually f tame and g expanding (chaotic).
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For N ∈ N, let IrratN be the set of irrational number of high type:

IrratN � α = ±
1

a1 ±
1

a2 ±
1
. . .

where ai ∈ N and ai ≥ N,
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IrratN � α = ±
1

a1 ±
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a2 ±
1
. . .

where ai ∈ N and ai ≥ N,

For a neighborhood V of 0, define P (z) = z(1 + z)2 and

F1 =

�
f = P ◦ ϕ−1

����
ϕ : V → C is univalent (with qc extension)

ϕ(0) = 0, ϕ�(0) = 1

�

Theorem (Inou & S.): For some V and N , the near-parabolic renor-
malization R from

{e2πiαf : α ∈ IrratN , f ∈ F1} = IrratN × F1

is well defined and expanding along α direction and uniformly con-
tracting along F1 direction. Moreover R(e2πiαz + z2) belong to the
above set for α ∈ IrratN .
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f ↔ (α, f0) Rf(z) = e−2πi 1
αRαf0(z) R : (α, f0) "→ (− 1
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α mod Z R0 R
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f
With many estimates, 
one can show that 
this much of the 
pattern is preserved.

Fcan

Theorem 1 Let P (z) = z(1 + z)2. There exist bounded simply connected
open sets V and V ′ with 0 ∈ V ⊂ V ⊂ V ′ ⊂ C such that the class

F1 =
{

f = P ◦ ϕ−1 : ϕ(V ) → C
∣∣∣∣

ϕ : V → C is univalent
ϕ(0) = 0, ϕ′(0) = 1

}

satisfies the following:

(0) every f ∈ F1 is non-degenerate;

(i) F0 ! {quadratic polynomial} can be naturally embedded into F1 (in par-
ticular, Rn

0 (z + z2) ∈ F1 n = 1, 2, . . . );

(ii) The renormalization R0 is well defined on F1 so that R0(F1) ⊂ F1 ;

(iii) If we write R0f = P ◦ ψ−1, then ψ can be extended univalently to V ′;

(iv) f %→ R0f is “holomorphic.”

univalent = holomorphic and injective

Theorem 2 The above statements hold for Rα for α small. Hence there
exists an N such that the above holds for

α =
1

m + β
with m ∈ N, β ∈ C and |β| ≤ 1.

P (z) = z(1 + z)2 and V , V ′

P (z) = z(1 + z)2 P (0) = 0, P ′(0) = 1

critical points: −1
3

and −1; critical values: P (−1
3) = − 4

27 and P (−1) = 0

η = 2 4
27e2πη 4

27e−2πη

η = 2 P slit

V slightly smaller domain than V ′

f = P ◦ ϕ−1

f = Q ◦ ϕ−1

0 ∞ (−∞,−1]

2

slit
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The renormalization 
has the same covering 
type
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A punctured neighborhood of the fixed point is covered by dynamical 
charts.  model maps on the charts and consistent gluings.
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Theorem: If f(z) = e2πiαz + z2 with α of sufficiently high type and Brjuno,
then the boundary of Siegel disk is a Jordan curve.
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Happy Birthday,  Jack!
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