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Motivation

I What is the three manifold of a Rational Map?

Or

How do we extend the action of a rational map on the
Riemann sphere to the enclosed hyperbolic ball?

I The object of this talk is to try to convince you that the
Douady-Earle extension is a worthwhile answer to the
second question.
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The Conformal Automorphism Group G of Sn

I Let G = Gn denote the group of Möbius transformations

of Möbius space R̂n = Rn ∪ {∞} which preserves the
n-sphere

Sn = {(x1, . . . xn+1) ∈ Rn+1| x2
1 + . . . x2

n+1 = 1}.

as well as the enclosed ball Bn+1.

I Mostow [Mo] proved that any conformal automorphism of
Bn+1 and/or Sn is Möbius, i.e.

I G is the common conformal automorphism group of Bn+1

and Sn and is also the hyperbolic isometry group of Bn+1.
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The G Subgroups G+, R and R+.

The automorphism group G is generated by

I the index two subgroup G+ of orientation preserving
conformal automorphisms and

I the reflection c in the coordinate plane xn+1 = 0.

I We equip Sn with the Spherical metric.

I And we denote by R = Rn the subgroup of
Spherical/Euclidean isometries,

I we denote by R+ := G+ ∩ R the subgroup of orientation
preserving isometries.
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Moving the Origin to w; the Maps gw.

I Motivated by complex Möbius transformations

gw (z) =
z + w

1 + wz
=

z(1− |w |2) + w(1 + |z |2 + wz + wz)

1 + |w |2|z |2 + wz + wz

I We define gw ∈ G+ for w ∈ Bn+1 by

gw(x) =
x(1− |w|2) + w(1 + |x|2 + 2 < w, x >)

1 + |w|2|x|2 + 2 < w, x >
,

where < ·, · > denotes the Euclidean inner product.

I Then gw(−w) = 0 and gw(0) = w,

I gw stabilizes the hyperbolic geodesic ]−w/|w|,w/|w|[
I and g−1w = g−w.



Generating G II.

I Let g ∈ G be arbitrary and write w = g(0). Then g is
canonically factorized as

g = gw ◦ ρ′,

where ρ′ = g−1w ◦ g ∈ R .

I In fact more generally G is generated by the group of
Euclidean isometries R and the 1-parameter subgroup
(gr)−1<r<1, where

r = (r , 0, . . . , 0) = re1, −1 < r < 1
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Natural G Actions

The group G operates

I g · z = g(z), for z ∈ Bn+1 and z ∈ Sn,

I (g · µ)(A) = g∗µ(A) = µ(g−1(A)), for µ ∈ P(Sn) and
A ⊂ Sn a Borel subset,

I (g · v)(g(z)) = g∗(v)(g(z)) = Dzg(v(z)), for
v ∈ F(Bn+1) and z ∈ Bn+1 where Dzg denotes the
differential of g at z.

I G × G operates on the spaces End(Bn+1), C(Bn+1) and
End(Sn), C(Sn) of endomorphisms and continuous
endomorphisms of Bn+1 and Sn respectively by

(g , h)φ := g ◦ φ ◦ h−1.
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The Notion of Conformal Naturality

I If G operates on the spaces X and Y then a map
T : X −→ Y is called G equivariant or conformally
natural if

∀ g ∈ G , ∀ x ∈ X : T (g · x) = g · T (x).

I And if G × G operates on both X and Y then conformal
naturality of T is taken to mean G × G -equivariance, i.e.

∀ g , h ∈ G , ∀ x ∈ X : T (g x h−1) = g T (x) h−1.
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Normalized Euclidean Lebesgue Measure

Denote by η0 the normalized Euclidean Lebesgue measure on
Sn,

η0(A) =
1

Vol(Sn)

∫
. . .

∫
A

d L, Vol(Sn) =

∫
. . .

∫
A

d L,

where L denotes Lebesgue measure. We shall henceforth also
write

η0(A) =

∫
A

dη0 .

Then η0 is the unique R invariant probability measure, i.e.
g∗(η0) = η0 for every element g ∈ R .



The Douady-Earle Extension Theorem

Let E(Sn) denote the space of Borel measurable
endomorphisms φ : Sn −→ Sn such that φ∗η0 has no atoms,
i.e. such that η0(φ−1(ζ)) = 0 for any point ζ ∈ Sn.

Theorem
There is a conformally natural extension operator

E : E(Sn) −→ End(Bn+1
)

More precisely ∀ f ∈ E(Sn) the map E (f ) is real analytic in
Bn+1 continuous at Sn whenever f is continuous and for all
g , h ∈ G :

g ◦ E (f ) ◦ h−1 = E (g ◦ f ◦ h−1).



Conformal Barycenter of Probability Measures

I Define a probability measure µ ∈ P(Sn) to be admissible,
if µ({z}) < 1/2 for all z ∈ Sn.

I Let P ′(Sn) denote the space of admissible probability
measures.

I To each µ ∈ P ′(Sn) we shall assign a point B(µ) ∈ Bn+1

the conformal Barycenter so that the map

µ 7→ B(µ) : P ′(Sn)→ Bn+1

is conformally natural and normalized by

B(µ) = 0 ⇔
∫
Sn
ζ dµ(ζ) = 0
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A Vector Field for a Probability Measures

Proposition
The map V : P(Sn) −→ F(Bn+1), which to a probability
measure µ ∈ P(Sn) assigns the vector field

Vµ(w) =
1− |w|2

2

∫
Sn
ζ d(g−w)∗µ(ζ),

=
1− |w|2

2

∫
Sn

g−w(ζ) dµ(ζ), w ∈ Bn+1,

is the unique conformally natural map from P(Sn) to F(Bn+1)
satisfying the normalizing condition

Vµ(0) =
1

2

∫
Sn
ζ dµ(ζ).



Unique Zero of Vµ, for µ Admissible

I Proposition
For each admissible probability measure µ ∈ P ′(Sn) the vector
field Vµ has a unique zero in Bn+1.

I The proof relies on two elementary lemmas: Go to proof outline
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The Conformal Barycenter map.

Definition
Define a conformally natural map B : P ′(Sn) −→ Bn+1 by
setting B(µ) equal to the unique zero w ∈ Bn+1 of the vector
field

Vµ(w) =
1− |w|2

2

∫
Sn

g−w(ζ) dµ(ζ).

Then B satisfies:

B(µ) = 0 ⇔
∫
Sn
ζ dµ(ζ) = 0

and B(µ) is called the Conformal Barycenter of µ.



Harmonic Measure on Sn with center w ∈ Bn+1.

I The normalized Lebegue measure η0 is the unique
R-invariant probability measure on Sn.

I For w ∈ Bn+1 the harmonic measure with center w is the
measure ηw = (gw)∗η0 = g∗η0, for g ∈ G with g(0) = w.

I A simple computation shows that∫
Sn

f (ζ) dηw(ζ) =

∫
Sn

f (ζ)

(
1− |w|2

|ζ −w|2

)n

dη0(ζ).
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The Right space for Extensions

I Recall that E(Sn) denotes the space of Borel measureable
endomorphisms φ : Sn −→ Sn such that φ∗η0 has no
atoms.

I For such mappings the measures φ∗ηz has no atoms
neither for any z ∈ Bn+1.

I And let End(Bn+1
) denote the space of measurable

endomorphisms of Bn+1
, whose restrictions to Bn+1 are

also endomorphisms of Bn+1.
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The Douady-Earle extension operator E

The Douady-Earle extension operator E is the map

E : E(Sn) −→ End(Bn+1
) defined as follows:

For ϕ ∈ E(Sn) the map E (ϕ) = Φ : Bn+1 −→ Bn+1 is given by
the formulas

Φ(z) =

{
ϕ(z), z ∈ Sn,

B((ϕ ◦ gz)∗(η0)) = B(ϕ∗(ηz)), z ∈ Bn+1



The D-E Extension is Conformally Natural

I The map ϕ 7→ E (ϕ) = Φ is conformally natural, i.e. for
all g , h ∈ G :

E (g ◦ ϕ ◦ h−1) = g ◦ E (ϕ) ◦ h−1,

I

E (Id) = Id

by conformal naturallity of E and because B(η0) = 0.

I And hence
∀ g ∈ G : E (g|Sn) = g

by conformal naturality.
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Smoothness of the D-E Extensions

I Proposition
Let ϕ ∈ E(Sn) and let Φ = E (ϕ). If φ is continuous at some
point ζ

0
∈ Sn then so is Φ. In particular if ϕ is continuous

then Φ is continuous on Sn.

I Proposition
Let ϕ ∈ E(Sn) and E (ϕ) = Φ be as above. Then Φ is
real-analytic in Bn+1.

Go to proof outline
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Questions and Observations I

Questions that naturally arises are:
For f̂ a rational map on the Riemann sphere.

I BQ 1: How many of the properties of f̂ are inherited by
E (f̂ )?

I BQ 2: What are the geometric and dynamical properties
of the D-E extension E (f̂ )?

I OBS 1: By elementary topology E (f̂ ) is a proper map,
that is the preimage of any compact set is compact.

I OBS 2: And moreover for any point w ∈ Bn+1 the
preimage E (f̂ )−1(w) is a real analytic set.
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Natural Questions II

Question 1: Is E (f ) a discrete map?

Question 2: Is E (f ) an open map?

Question 3: Is E (f ) a map of the same degree as f ?

Question 4: Is the Julia set of E (f ) equal to the convex hull of
the Julia set for f ?



Finite Blaschke Products Setup
I Identify C with, {x = (x1, x2, x3)| x3 = 0} ⊂ R3 and write

z = x + iy for the point (x , y , 0). Then

D = {x ∈ R3| |z |2 = x2
1 + x2

2 < 1, x3 = 0}
S1 = {x ∈ R3| |z |2 = 1, x3 = 0},

I Then stereographic projection S of C onto S2 from the
north pole N = e3 ∈ R3 is the map

S(z) =

(
2z

1 + |z |2
,
|z |2 − 1

1 + |z |2

)
=

1

1 + |z |2
(2x , 2y , |z |2− 1).

I For f : C −→ C a rational map we shall write f̂ for its
conjugate by S , i.e.:

f̂ (S(z)) = S(f (z)).



Finite Blaschke Products

Consider finite Blaschke products

f (z) = σ
d∏

j=1

z + aj
1 + ajz

, |σ| = 1, aj ∈ D

Proposition
For f a finite Blaschke product the D-E extension E (f̂ )

I maps D onto D,

I preserves the upper and lower hemispheres, S2
+,S2

− and

I on D the partial derivative ∂E (f̂ )/∂x3(z) = g(z)e3 for
some positive real analytical function g : D −→ R+.



The special case f (z) = zd

I Write Mt(z) = tz for 0 < t and Dt = M̂t(D) the

hyperbolic geodesic disk with boundary the circle M̂t(S1).

I As
zd = Mtd ◦ zd ◦M−1t

we obtain by conformal naturality of E :

I Corollary
For f (z) = zd (i.e. aj = 0 for all j):

I E (f̂ )(z) = zd · h(|z |2) for some real analytical function h
with rdh(r) increasing and h(r)→ 1 as r ↗ 1.

I E (f̂ ) maps Dt onto Dtd by a degree d covering and
I E (f̂ ) maps the interval [0, e3[ onto itself by an

increasing diffeomorphism.
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I Conjecture
For all finite Blaschke products f we have f = E (f̂ ) on D.

I Conjecture
For all finite Blaschke products f with f (0) = 0 we have

E (f̂ )(0) = 0.

I Conjecture
For all finite Blaschke products f with f (0) = 0 the D-E

extension E (f̂ ) maps the geodesic [−e3, e3[ diffeomorphically
and increasingly onto itself.

I Motivation: Fuchsian groups plus . . .
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Inner Functions
I For inner functions, that is for holomorphic selfmaps

f : D −→ D of the unit disc D ⊂ C with boundary values
in S1 a.e., the D-E extension simply recovers f from its
boundary values.

I More precisely for an inner function the radial limit

f #(ζ) = lim
r↗1

f (rζ)

exists for a.e. ζ ∈ S1 and the measure f #
∗ η0 is absolutely

continuous with respect to η0 so that f # ∈ E(S1).

I Proposition
If f : D −→ D is an inner function then

E (f #)(z) = f (z), ∀z ∈ D.
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Matheématiques de L’IHÉS, Volume 34, Number 1,
53-104.

W. Rudin, Real and Complex Analysis. 2. Edition, Tata
McGraw Hill.



Appendix with Further Details
Proof of Unique zero of Vµ for µ admissible.
Proof of Real Analyticity of the D-E Extensions



Zeros of Vµ are Isolated stable Equilibria
I Lemma

For any admissible probability measure µ ∈ P ′(Sn) any zero
v ∈ Bn+1 of the vector field V = Vµ is an isolated stable
equilibrium.

I Proof.
By conformal naturallity it suffices to consider the case v = 0.
By an elementary computation we find

JacV (0)(ε) = −
∫
Sn

(ε− ζ < ε, ζ >) dµ(ζ)

and thus JacV (0) is non singular. In fact v = 0 is a sink since

< ε, JacV (0)(ε) >= −
∫
Sn

(< ε, ε > −(< ε, ζ >)2) dµ(ζ) < 0.



Zeros of Vµ are Isolated stable Equilibria
I Lemma

For any admissible probability measure µ ∈ P ′(Sn) any zero
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Vµ Points Inwards near the Boundary Sn.

I Lemma
For any admissible probability measure µ ∈ P ′(Sn) there exists
r ∈ ]0, 1[ such that Vµ(w) points inwards at any point
w ∈ Bn+1 with r ≤ |w| < 1, i.e. < Vµ(w),w > < 0.

I Proof of Uniqueness of zero of Vµ:

The Poincaré-Hoppf (Index) theorem [Mi, see also Lemma 3, p
36].

Return to Proposition
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Proof of Real Analyticity of the D-E Extensions

Proposition
Let ϕ ∈ E(Sn) and E (ϕ) = Φ be as above. Then Φ is
real-analytic in Bn+1.

Proof of real analyticity
Φ(z) is the unique zero of the vector field

Vϕ∗(ηz)(w) =
1− |w|2

2

∫
Sn

g−w(ϕ(ζ))

(
1− |z|2

|z− ζ|2

)n

dη0(ζ).



Proof of Differentiability Cont.
I Thus ∀ z ∈ Bn+1 the value w = Φ(z) ∈ Bn+1 is the

unique point such that:

F (z,w) =

∫
Sn

g−w(ϕ(ζ))

(
1− |z|2

|z− ζ|2

)n

dη0(ζ) = 0.

I Since F is a real-analytical function of
(z,w) ∈ Bn+1 × Bn+1, the implicit function theorem
implies Φ is real analytic provided JwF = ∂F

∂w
(z,w) is

non-singular whenever F (z,w) = 0.
I By conformal naturality we can suppose z = w = 0. A

straight forward computation shows that

JwF (ε) = −2

∫
Sn

(ε− < ε, φ(ζ) > φ(ζ)) dη0(ζ).

Return to Proposition
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