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Motivation

» What is the three manifold of a Rational Map?
Or

How do we extend the action of a rational map on the
Riemann sphere to the enclosed hyperbolic ball?

» The object of this talk is to try to convince you that the
Douady-Earle extension is a worthwhile answer to the
second question.



The Conformal Automorphism Group G of S”

» Let G = G, denote the group of Mobius transformations
of Mdbius space R" = R" U {oco} which preserves the
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S" = {(x1, -+ Xop1) € R x{ + .. x2, = 1}

as well as the enclosed ball B"*1.
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The Conformal Automorphism Group G of S”

» Let G = G, denote the group of Mobius transformations
of Mdbius space R" = R" U {oco} which preserves the
n-sphere

S" = {(x1, -+ Xop1) € R x{ + .. x2, = 1}

as well as the enclosed ball B"+1.

» Mostow [Mo] proved that any conformal automorphism of
B! and/or S” is Mabius, i.e.

» G is the common conformal automorphism group of B™1
and S" and is also the hyperbolic isometry group of B"+1.



The G Subgroups G, R and R,.

The automorphism group G is generated by

» the index two subgroup G, of orientation preserving
conformal automorphisms and

» the reflection ¢ in the coordinate plane x,,; = 0.



The G Subgroups G, R and R,.

The automorphism group G is generated by

>

the index two subgroup G, of orientation preserving
conformal automorphisms and

the reflection ¢ in the coordinate plane x,.; = 0.

We equip S"” with the Spherical metric.

And we denote by R = R, the subgroup of
Spherical /Euclidean isometries,

we denote by R, := G, N R the subgroup of orientation
preserving isometries.



Moving the Origin to w; the Maps g.

» Motivated by complex Mobius transformations

(2) z+w  zZ(1—|w?)+w(l+ |z +wz+ wz)
wlZ) = — R —
& 1+wz 1+ |w|?|z]? + wz + Wz

v

We define g, € G, for w € B"*! by

x(1— jw|?) +w(l+[x>+2<w,x>)
1+ |wl?[x]?+2 <w,x>

gu(x) =

?

where < -, - > denotes the Euclidean inner product.
Then g (—w) = 0 and g,(0) = w,

gw stabilizes the hyperbolic geodesic | — w/|w|, w/|wl|]
»and gl =g w.

v

v



Generating G Il
» Let g € G be arbitrary and write w = g(0). Then g is
canonically factorized as
g=guop,

where o' = g, log € R.



Generating G Il

» Let g € G be arbitrary and write w = g(0). Then g is
canonically factorized as
g=guop,

where o' = g, log € R.

» In fact more generally G is generated by the group of
Euclidean isometries R and the 1-parameter subgroup
(gr)71<r<11 where

r=(r,0,...,0) =reyq, -l1<r<l1
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differential of g at z.



Natural G Actions

The group G operates
» g-z=g(z), forze B! and z € S",
> (g 1)(A) = gu(A) = (g~ (A)), for € P(S") and
A C S" a Borel subset,

> (g-v)(g(2)) = &(v)(g(2)) = D:g(v(2)), for
v e F(B"!) and z € B™"! where D,g denotes the
differential of g at z.

» G x G operates on the spaces End(B"*1), C(B"!) and
End(S"),C(S") of endomorphisms and continuous
endomorphisms of B"™! and S” respectively by

(8. h)p:=gopoh ™.



The Notion of Conformal Naturality

» If G operates on the spaces X and Y then a map
T : X — Y is called G equivariant or conformally
natural if

VgeG, VxeX :T(g-x)=g-T(x).



The Notion of Conformal Naturality

» If G operates on the spaces X and Y then a map
T : X — Y is called G equivariant or conformally
natural if

Vge G, VxeX :T(g-x)=g-T(x).

» And if G x G operates on both X and Y then conformal
naturality of T is taken to mean G x G-equivariance, i.e.

Vg,heG, VxeX :T(gxh ) =gT(x)h"



Normalized Euclidean Lebesgue Measure

Denote by 79 the normalized Euclidean Lebesgue measure on
S,

no(A):VoéSn)/.../AdL, VoI(S”):/.../AdL,

where L denotes Lebesgue measure. We shall henceforth also
write

m(A) = [ dno.

A

Then 1y is the unique R invariant probability measure, i.e.
g«(10) = 1o for every element g € R.



The Douady-Earle Extension Theorem

Let £(S") denote the space of Borel measurable
endomorphisms ¢ : S” — S" such that ¢.np has no atoms,
i.e. such that ng(¢*(¢)) = 0 for any point ¢ € S".

Theorem
There is a conformally natural extension operator

E: &(S") — End(B")

More precisely ¥/ f € E(S") the map E(f) is real analytic in
B! continuous at S" whenever f is continuous and for all
g, heG:

goE(floht=E(gofoh™t).



Conformal Barycenter of Probability Measures

» Define a probability measure € P(S") to be admissible,
if u({z}) < 1/2 forall z € S".

» Let P’(S") denote the space of admissible probability
measures.



Conformal Barycenter of Probability Measures

» Define a probability measure p € P(S”) to be admissible,
if u({z}) < 1/2forall ze S".

» Let P’(S") denote the space of admissible probability
measures.

» To each p € P'(S") we shall assign a point B(u:) € B!
the conformal Barycenter so that the map

e B(p) : P'(S") = B

is conformally natural and normalized by

B(u)=0 <« ¢du(¢) =

N



A Vector Field for a Probability Measures

Proposition
The map V : P(S") — F(B"), which to a probability
measure (1 € P(S") assigns the vector field

1 |wp

Vi(w) = =5 | Calg).nl),

1— 2
2 [, wer

is the unique conformally natural map from P(S") to F(B"*)
satisfying the normalizing condition
1

V()= | can(o)



Unique Zero of V), for p© Admissible

» Proposition

For each admissible probability measure y € P'(S") the vector
field V,, has a unique zero in B"**.



Unique Zero of V), for p© Admissible

» Proposition

For each admissible probability measure y € P'(S") the vector
field V,, has a unique zero in B"**.

» The proof relies on two elementary lemmas:



The Conformal Barycenter map.

Definition
Define a conformally natural map B : P'(S") — B! by
setting B(11) equal to the unique zero w € B"*! of the vector
field

_1-wp

O R el Y GL()

Then B satisfies:

By=0 & [ Cdu(¢)=0

Sn

and B(u) is called the Conformal Barycenter of f.



Harmonic Measure on S” with center w € B!,

» The normalized Lebegue measure 1y is the unique
R-invariant probability measure on S".
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Harmonic Measure on S” with center w € B!,

» The normalized Lebegue measure 1y is the unique
R-invariant probability measure on S".

» For w € B"*! the harmonic measure with center w is the
measure 7y = (gw)+70 = &0, for g € G with g(0) =
» A simple computation shows that

JRCENGEY (<)<‘1<‘_'W:2> anol©)



The Right space for Extensions

» Recall that £(S") denotes the space of Borel measureable
endomorphisms ¢ : S” — S” such that ¢,n9 has no
atoms.

» For such mappings the measures ¢.7, has no atoms
neither for any z € B"*1.



The Right space for Extensions

» Recall that £(S") denotes the space of Borel measureable
endomorphisms ¢ : S” — S” such that ¢,n9 has no
atoms.

» For such mappings the measures ¢.7, has no atoms
neither for any z € B"*1.
» And let End(EnH) denote the space of measurable

. —n+1 .o
endomorphisms of B, whose restrictions to B"*! are
also endomorphisms of B"*+1.



The Douady-Earle extension operator E

The Douady-Earle extension operator E is the map
E:&(S") — End(B""") defined as follows:

For ¢ € £(S™) the map E(yp) = & : Bl — B"+1 is given by
the formulas

) — o(2), zeS",
o) {B((soogz)*(no))ZB(%(%)), 2 e B
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The D-E Extension is Conformally Natural

» The map ¢ — E(¢) = ® is conformally natural, i.e. for
all g, h € G:

E(gopoh™)=goE(p)oh,

E(Id) = Id
by conformal naturallity of E and because B(ng) = 0.

» And hence
VgeG: E(g|sn):g

by conformal naturality.



Smoothness of the D-E Extensions

» Proposition
Let ¢ € £(S") and let ® = E(yp). If ¢ is continuous at some
point ¢ € S" then so is ®. In particular if ¢ is continuous
then ® is continuous on S".



Smoothness of the D-E Extensions

» Proposition

Let ¢ € E(S™) and let ® = E(yp). If ¢ is continuous at some
point ¢, € S" then so is ®. In particular if ¢ is continuous
then ® is continuous on S".

» Proposition
Let ¢ € £(S") and E(yp) = ® be as above. Then ® is
real-analytic in B+,

» Go to proof outline



Questions and Observations |

Queitions that naturally arises are:
For f a rational map on the Riemann sphere.

» BQ 1: How many of the properties of f are inherited by
E(f)?

» BQ 2: What are the geometric and dynamical properties
of the D-E extension E(f)?



Questions and Observations |

Queitions that naturally arises are:
For f a rational map on the Riemann sphere.

» BQ 1: How many of the properties of f are inherited by
E(f)?

» BQ 2: What are the geometric and dynamical properties
of the D-E extension E(f)?

» OBS 1: By elementary topology E(f) is a proper map,
that is the preimage of any compact set is compact.

» OBS 2: And moreover for any point w € B"*1 the

~

preimage E(f) *(w) is a real analytic set.



Natural Questions Il

Question 1: Is E(f) a discrete map?
Question 2: Is E(f) an open map?
Question 3: Is E(f) a map of the same degree as f7

Question 4: Is the Julia set of E(f) equal to the convex hull of
the Julia set for f7



Finite Blaschke Products Setup

>

Identify C with, {x = (x1,x2,x3)| x3 = 0} C R? and write

z = x + iy for the point (x, y,0). Then
D={xeR|zP=x}4+x <1,x3 =0}
St={x € R3||z]? = 1,x3 = 0},

Then stereographic projection S of C onto S? from the
north pole N = e; € R® is the map

2z |z)2 -1 1 5
S(z) = - 2%,2y. |22 = 1).
@)= (12 ) = e 2nlP )

For f : C — C a rational map we shall write f for its
conjugate by S, i.e.:



Finite Blaschke Products

Consider finite Blaschke products

f(z)= o] ”afz, o|=1, a€D

Proposition
For f a finite Blaschke product the D-E extension E (/f\)
» maps D onto D,
» preserves the upper and lower hemispheres, S?,,S?_ and
» on D the partial derivative 8E(?)/8x3(z) = g(z)es for
some positive real analytical function g : D — R,..



The special case f(z) = z9

> Write M,(z) = tz for 0 < t and D, = M,(ID) the
hyperbolic geodesic disk with boundary the circle M,(S?).
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we obtain by conformal naturality of E:



The special case f(z) = z¢

> Write M,(z) = tz for 0 < t and D, = M,(ID) the
hyperbolic geodesic disk with boundary the circle M,(S?).

> As
7% = M, 02z%0 M;*

we obtain by conformal naturality of E:

» Corollary
For f(z) = z¢ (i.e. a; = 0 for all j):
> E(?)(z) = 29 h(|z|?) for some real analytical function h
with r@h(r) increasing and h(r) — 1 asr /1.
> E(Z) maps D; onto D,s by a degree d covering and
» E(f) maps the interval [0, e3] onto itself by an
increasing diffeomorphism.



» Conjecture
For all finite Blaschke products f we have f = E(f) on D.
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» Conjecture
For all finite Blaschke products f we have f = E (/f\) onD.

» Conjecture
For all finite Blaschke products f with f(0) = 0 we have
E(f)(0)=0.

» Conjecture
For all finite Blaschke products f with f(0) = 0 the D-E

extension E(f) maps the geodesic [—es, e[ diffeomorphically
and increasingly onto itself.

» Motivation: Fuchsian groups plus ...



Inner Functions

» For inner functions, that is for holomorphic selfmaps
f : D — D of the unit disc D C C with boundary values
in St a.e., the D-E extension simply recovers f from its
boundary values.
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Inner Functions

» For inner functions, that is for holomorphic selfmaps
f : D — D of the unit disc D C C with boundary values
in St a.e., the D-E extension simply recovers f from its
boundary values.

» More precisely for an inner function the radial limit

F(0) = lim (7€)

exists for a.e. ¢ € S! and the measure 1 is absolutely
continuous with respect to 7 so that f# € £(S?).

» Proposition
If f : D — D is an inner function then

E(f¥)(z) = f(2), Vz e D.
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Appendix with Further Details
Proof of Unique zero of V), for ;i admissible.
Proof of Real Analyticity of the D-E Extensions
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» Lemma
For any admissible probability measure . € P'(S") any zero
v € B! of the vector field V = V), is an isolated stable

equilibrium.



Zeros of V), are Isolated stable Equilibria

» Lemma
For any admissible probability measure . € P'(S") any zero
v € B! of the vector field V = V), is an isolated stable
equilibrium.

» Proof.
By conformal naturallity it suffices to consider the case v = 0.
By an elementary computation we find

Jacy(0)(¢) = — /"(6 —( <6 >)du(()

and thus Jacy(0) is non singular. In fact v = 0 is a sink since

< ¢ Jacy(0)(€) >= —/ (<ce> (<l =P)du(C) <o.

n



V), Points Inwards near the Boundary S".

» Lemma
For any admissible probability measure . € P'(S") there exists
r €10, 1[ such that V,(w) points inwards at any point
w e B with r < |w| <1, ie. < V,(w),w > <0.

» Return to Proposition



V), Points Inwards near the Boundary 5"

» Lemma
For any admissible probability measure pn € P'(S") there exists
r €10, 1[ such that V,(w) points inwards at any point
w e B with r < |w| <1, ie. < V,(w),w > <0.

» Proof of Uniqueness of zero of V:

The Poincaré-Hoppf (Index) theorem [Mi, see also Lemma 3, p
36).



Proof of Real Analyticity of the D-E Extensions

Proposition
Let ¢ € £(S") and E(yp) = ® be as above. Then ® is
real-analytic in B" !,

Proof of real analyticity
®(z) is the unique zero of the vector field

V) = 0 [ g () (1 - ) (<)

s lz—¢f



Proof of Differentiability Cont.

» Thus V z € B"*! the value w = ®(z) € B""! is the
unique point such that:

Flzw) = [ gu(e(O) (%) () = 0.

» Return to Proposition



Proof of Differentiability Cont.

» Thus V z € B"*! the value w = ®(z) € B""! is the
unique point such that:

Flzw) = [ gulel0) (%) dno() = 0.

» Since F is a real-analytical function of
(z,w) € B! x B"1, the implicit function theorem
implies ® is real analytic provided JuF = 2£(z,w) is
non-singular whenever F(z,w) = 0.

» Return to Proposition



Proof of Differentiability Cont.

» Thus V z € B"*! the value w = ®(z) € B""! is the
unique point such that:

Flzw) = [ gulel0) (%) dro(©) = 0.

» Since F is a real-analytical function of
(z,w) € B! x B"1, the implicit function theorem
implies ® is real analytic provided J,F = %5 (z,w) is
non-singular whenever F(z,w) = 0.

» By conformal naturality we can suppose z=w =0. A
straight forward computation shows that

JuF(e) = —2 / (e < 60(Q) > 9(0)) dnol0).
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