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The operation of “mating” two suitable complex polynomial
maps fi and fz constructs a new dynamical system by care-
fully pasting together the boundaries of their filled Julia sets so
as to obtain a copy of the Riemann sphere, together with a ra-
tional map fi LL f2 from this sphere to itself. This construction
is particularly hard to visualize when the filled Julia sets K(f:)
are dendrites, with no intertor.  This note will work out an ex-
plicit example of this type, with effectively computable maps
from K{f1) and K{f2) onto the Riemann sphere.

1. INTRODUCTION

The operation of mating, first described by [Douady 83]
has been shown to exist for suitable pairs of quadratic
polynomial maps by [Tan Lei 90], [Rees 92], and
[Shishikura 00]. (See Section 2.) In an attempt to under-
stand this construction, this paper concentrates on one
very special example. We consider the (filled) Julia set
K = K(f) which is illustrated in Figure 1 and described
more precisely in Section 2. The mating f 1L f exists
according to Shishikura. This means that we can form a
full Riemann sphere by pasting two copies of K = K
together, in such a way that each copy of K covers the
full Riemann sphere, while the map f on each copy cor-
responds to a smooth quadratic rational map from this
sphere to itself. We will give a computationally effective
description for this particular example, showing just how
such a dendrite can map onto a sphere. The construction
is closely related to a well known measure-preserving area
filling curve, with associated fractal self-similar tiling,’
which is known as the “Heighway Dragon.” The resulting
rational map F' = f 11 f, where F(z) = (i/2) (z+2z7"),
can also be described as a Lattés mapping, that is as the
quotient of a rigid expanding map on a torus. (This is

'See Section 4.2 and Figures 7 and 16. This construction was
discovered by John Heighway, a physicist at NASA, circa 1966.
Compare Davis and Knuth 65, |[Edgar 90, and even [Crichton 90,
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P2 - P? [z:y:2]l— [yz:z2: 2y

Sequence of algebraic degrees:
bl E ) 7= 2 1.

This map is not algebraically
stable.

1:0:0]
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Algebraic stability

Notion was introduced by Fornaess and Sibony.

Let X be a compact complex manifold. Let /' : X --» X be a
meromorphic map.

F' induces an action on H?*(X) by pullback.
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Algebraic stability

Notion was introduced by Fornaess and Sibony.

Let X be a compact complex manifold. Let /' : X --» X be a
meromorphic map.

F' induces an action on H?*(X) by pullback.

The map F' is algebraically stable iff functoriality holds:
(Fon)* L (F*)on \V/ n > O7

Let X be a compact complex manifold, and F' : X --» X

a meromorphic map. Then F' is algebraically stable if no

hypersurface is contracted to something of higher codimension
which is contained in Zr.

A= dm POy
nN—00
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Preliminary Preliminaries

Let S? be the unit sphere in C x R, and let
PllC%C, and PQI(C%C

be monic polynomials of degree d > 2. The formal mating of P,
and P, is the branched cover f : S? — 52 defined as follows.
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Preliminary Preliminaries

Let S? be the unit sphere in C x R, and let
PliC%C, and PQI(C%C

be monic polynomials of degree d > 2. The formal mating of P,
and P, is the branched cover f : S? — 52 defined as follows.

Identify dynamical plane of P, to H', and identify the dynamical
plane of P, to H~ via the projections

o cand e, O

) -zl
el P e
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Preliminary Preliminaries

Let S? be the unit sphere in C x R, and let
PliC%C, and PQI(C%C

be monic polynomials of degree d > 2. The formal mating of P,
and P, is the branched cover f : S? — 52 defined as follows.

Identify dynamical plane of P, to H', and identify the dynamical
plane of P, to H~ via the projections

o cand e, O

) -zl
el P e

Since the polynomials have the same degree, the map p; o P, o p;

defined on H* and the map ps o P o p, ' defined on H~ extend
continuously to the equator of S2.
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Form the quotient S?/ ~ by col-
lapsing along external rays. The
rational map B i B P oy
geometric mating of P, and P, if :
S?/ ~ is homeomorphic to S* and LINTRY
if the formal mating f : S? — S°

induces a map P8t

S?)~ = S~
which is topogically conjugate to K2

Faplas ol . dngisl ot e

Milnor: Pasting Together Julia Sets 57
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Form the quotient S*/ ~ by col-
lapsing along external rays. The
rational map B i B P oy
geometric mating of P, and P, if :
5% / ~ is homeomorphic to S 2 and mad AL
if the formal mating f : S? — S°

induces a map P8t

Seles 0 5
which is topogically conjugate to %24 4 Lrain

Foprac P

Milnor: Pasting Together Julia Sets 57

Theorem. (Rees) Let P, and P, be critically finite hyperbolic poly-
nomials. The formal mating of P, and P5 is combinatorially equivalent
to a rational map I : P! — P! if and only if F is a geometric mating

OfPl ansz.
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Example: Basilica mate Basilica
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Example: Basilica mate Basilica

Formal mating:

folSe Pl =[5 D)
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Example: Basilica mate Basilica

Formal mating:

folSe Pl =[5 D)

e
\/ No geometric mating exists; this
mating is obstructed.
A
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Twisted Matings

If P is a monic polynomial of degree d > 2, then the polynomial
T(P) : C — C defined by

T(P) (Z) 5 6—27ri/(d—1)P(€27ri/(d—1)Z)

is also monic. The filled Julia set of T'(P) is the image of the

Julia set of P by the rotation of angle —1/(d — 1) turns centered
at 0.
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Twisted Matings

If P is a monic polynomial of degree d > 2, then the polynomial

T(P) : C — C defined by
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Construct the formal mating f : S* — 5%, and form S?/ ~ by
identifying 6 and —k/(d — 1) — 6.

Proposition. Let P, and P, be two monic polynomials of degree
d > 2 which are critically finite. Let f : (S%,P;) — (5% P;) be
the formal mating of P; and P, and let g : (5%, P,) — (5%, P,) be
the formal mating of P; and T°%(P,) (the twisted mating of angle

k/(d—1)). Let D : 5% — S? be the Dehn twist around the equator
of S —P;. Then ¢ is combinatorially equivalent to D°* o f.
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Construct the formal mating f : S* — 5%, and form S?/ ~ by
identifying # and —k/(d — 1) — 6.

Proposition. Let P, and P, be two monic polynomials of degree
d > 2 which are critically finite. Let f : (5% Pr) — (S, P;) be
the formal mating of P, and P,, and let g : (S%,P,) — (S*,P,) be
the formal mating of P; and T°%(P,) (the twisted mating of angle

k/(d—1)). Let D : S* — S? be the Dehn twist around the equator
of S —P;. Then ¢ is combinatorially equivalent to D°* o f.

P(z) =22 -1

geometric
twisted mating
of angle av of P°!

with itself a=—3/15./=1
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Preliminaries

Recall that if f : (5%, P) — (S%, P) is a critically finite branched
cover, then there is an associated holomorphic endomorphism

or:Tp = Tp

where Tp is the Teichmiiller space of (S?, P):
¢:5° =P : ¢~ ¢y < Ju e Aut(P') such that

® ¢1|p = (1 o@)|p, and

® ¢, Is isotopic to u o ¢y relative to P

The space Tp is the universal cover of the modul: space, M p:

{¢o: P < P! up to postcomposition by elements of Aut(P')}.

W:%%Mp
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(5% P)

(5% P)
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(5% P)

(5% P)

- (P, ¢(P))
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(5% P)

(5% P)

Y

Y

(P, 9(P))

(P, o(P))
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(5% P)



- (P, 4(P))
. .
- (P!, 6(P))
. =7
v v
MPp “Mp
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Proposition. Let f : (5% P) — (5% P) be a critically finite
branched cover which is a topological polynomial such that the
critical points of f are contained in P. Then a moduli space map
exi1sts.

Corollary. Let f : (5%, P) — (5%, P) be a critically finite branched
cover such that the critical points of f are contained in P, and there
1s a critical point of multiplicity d — 1. Then a moduli space map
g : Mp ——» Mp exists.

Application. Mating two critically finite hyperbolic polynomials
of degree d > 2.
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Proposition. Let f : (5% P) — (5% P) be a critically finite
branched cover which is a topological polynomial such that the
critical points of f are contained in P. Then a moduli space map
exi1sts.

Corollary. Let f : (5%, P) — (5%, P) be a critically finite branched
cover such that the critical points of f are contained in P, and there
1s a critical point of multiplicity d — 1. Then a moduli space map
g : Mp ——» Mp exists.

Application. Mating two critically finite hyperbolic polynomials
of degree d > 2.

d
d
> — S R s g SRy e e
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Example: Basilica mate Basilica

2
Bofin aql . FSEPIATE . vt

s e
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Example: Basilica mate Basilica

2
Bofin aql . FSEPIATE . vt

s e

M p is a 1-dimensional manifold.
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Example: Basilica mate Basilica

Bt f:(S2, P) = (S2, P) *\—2>/p *\7(1
M p is a 1-dimensional manifold.
w0 e Mp,
p(*) = o0,
p(*) =0,

p(q) =1
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Example: Basilica mate Basilica

B s B 5

M p is a 1-dimensional manifold.

w e Mp,
p(*) = oo,
p(*x) =0,
g =1

Then ¢ is determined by x := ¢(p)

reC—{0,1}, Mp=~P! —{0,1,00)

)

1 G N € *%q

s e
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Example: Basilica mate Basilica

2
Bofin aql . FSEPIATE . vt

s e

M p is a 1-dimensional manifold.
QY < ./\/lp,

p(x) = oo,
p(x) =0,
p(q) =1

Then ¢ is determined by x := ¢(p)

reC—{0,1}, Mp=~P! —{0,1,00)
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(P, 9(P))

(5% P)
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(P, 9(P))

(P, ¢(P))

(5% P)

(5% P)
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The skew product
. t F,.(t)
G- T civenhby G- —> -
o ol ol
where F,(t) = (t* — 2%)/(t* — 1), and g(x) = z*
Proposition. Let A = €™ be a periodic point of ¢, hence

a = —k/(2" — 1) for some [. If k # 0, the rational map FY' is a
geometric twisted mating of angle a of P° with itself.
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Compactitying
G s B, 122 2] [ - a?) 2 - ) AP - )
G—lios where s ion sl o -

u:lt,r, zl—=z(t—x):z(t—2): z(t — 2)
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Compactifying
G B s  Wenaler i (b o) 2l a2
G—lios where s ion sl o -

u:lt,r, zl—=z(t—x):z(t—2): z(t — 2)

0:1:0]

[0:0:1][1:0:0]

i
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In general....

Let f : (S% P) — (5% P) be the formal mating of two critically
finite hyperbolic polynomials which are unicritical.

*#.%....%.%.

Then a moduli space map exists g : Mp --+ Mp, and we examine
the associated skew product

G:C" —-C" given by G:(t>H<FX(t>>

X g(x)

Proposition. The map G = p o s, where s : P* — P” is the dth
power map, and p : P® --» P" is a birational transformation of

P" induced by the permutation of P coming from the ramification
portrait.
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A sufficient compactification

Suppose |P| = n, and consider M p.
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Compactify M p so that the points on the boundary correspond to
different ways to collapse curves to nodes.

Instead of a P! with marked points, we have a stable curve with
marked points and nodes.
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note as M,,. | A :
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e ©

This is known as the Deligne-Mumford
compactification of Mp, which we de- -
note as M,,. | A :

Example: Suppose |P| = 4,
and normalize, identitying

Mp%I[Dl—A,
A =AU oo

Thursday, February 24, 2011



Compactify M p so that the points on the boundary correspond to
different ways to collapse curves to nodes.

Instead of a P! with marked points, we have a stable curve with
marked points and nodes.

e ©

This is known as the Deligne-Mumford
compactification of Mp, which we de- -
note as M,,. | a2 :

Gl z Example: Suppose |P| = 4,
T and normalize, identifying

Mp%I[Dl—A,
A =AU oo

Thursday, February 24, 2011



Compactify M p so that the points on the boundary correspond to
different ways to collapse curves to nodes.

Instead of a P! with marked points, we have a stable curve with
marked points and nodes.

This is known as the Deligne-Mumford : A~

compactification of Mp, which we de- -

note as M,,. i :
Gii 2 Example: Suppose |P| = 4,
et *. and normalize, identifying
e * 1

o O
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s pesa s L A 11 60)
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Example: Suppose |P| = 5, and
normalize, identifying

Mp =P — A

where A is the locus where points
coalesce.
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normalize, identifying
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Proposition. Mg is isomorphic to the space obtained by
e first blowing up 5 points in P’ in general position

e then blowing up the proper transforms of the 10 lines
between pairs of these points.

Consider the general case: |P| = n. Take n — 1 points in gen-
eral position in P* 2. Blow these points up, then blow up the
proper transforms of the lines between pairs of these points, and

continue...

Theorem. (Lloyd-Philipps) The space M,, is isomorphic to the
“sequential blow up” of P*° described above.
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Thursday, February 24, 2011



Thursday, February 24, 2011




Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



*#.H....H.H.

Then a moduli space map exists g : Mp --» Mp, and we examine
the associated skew product

Gl >0  vienby G (i)H(Z;ES))>

Nl R VNG ~

Cooln: G:P"--» P

This map é preserves this fibration

./\/ln_|_3 =T Mn+2, P" — Pl

I/P/)n—l £ _g_ i e ]Pm—l
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tical trunk:

Define cri




order d automorphism, oy

e take quotient (critical trunk)/oy
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In summary...

critical trunk

two distinguished points
(critical trunk) /oy

points of indeterminacy

relative positions
Finally, p : P"* --+ P
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In summary...

critical trunk

two distinguished points
(critical trunk) /oy

points of indeterminacy

relative positions
Finally, p : P"* --+ P

Proposition. This procedure defines a rational map G :P" ——» P"
which extends the map G = pos: P* --» P
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Lemma. The map G : P" ——» P" has finite fibers.

Proof. Let m be a tree of spheres in the image of ¢ Only the
critical trunk is relevant as the preimages of all noncritical spheres
are just these spheres themselves.

Critical trunk: Marked points and nodes.

Marked points: There are only d possibilities for the inverse image
of each.
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Proof. Let m be a tree of spheres in the image of ¢ Only the
critical trunk is relevant as the preimages of all noncritical spheres
are just these spheres themselves.

Critical trunk: Marked points and nodes.

Marked points: There are only d possibilities for the inverse image
of each.

Nodes: 1) there are d possibilities for the inverse image of each
node or 2) the node is a result of 2 marked points in the critical
trunk upstairs which are symmetric; there are d(d — 1)/2 possible
configurations for this.
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Lemma. The map G : P" ——» P" has finite fibers.

Proof. Let m be a tree of spheres in the image of ¢ Only the
critical trunk is relevant as the preimages of all noncritical spheres
are just these spheres themselves.

Critical trunk: Marked points and nodes.

Marked points: There are only d possibilities for the inverse image
of each.

Nodes: 1) there are d possibilities for the inverse image of each
node or 2) the node is a result of 2 marked points in the critical
trunk upstairs which are symmetric; there are d(d — 1)/2 possible
configurations for this.

Theorem. The map G:P" - P is algebraically stable.

We can compute dynamical degrees.
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(Questions.
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(Questions.

Basilica-Basilica, A\; = 2

Basilica-Rabbit, Ay is the largest
real root of

POY=M Bt 8
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Basilica-Basilica, A\; = 2

Basilica-Rabbit, Ay is the largest
real root of

POY=M Bt 8

What do these numbers mean for
the mating maps? What about

or D T
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thank you for your attention!
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