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Background

P2 ��� P2, [x : y : z] �→ [yz : xz : xy]

g

Preliminary Preliminaries

Preliminaries

←−

Recall that if f : (S2, P ) → (S2, P ) is a critically finite branched
cover, then there is an associated holomorphic endomorphism

σf : TP → TP

where TP is the Teichmüller space of (S2, P ):

φ : S2 → P1 : φ1 ∼ φ2 ⇐⇒ ∃µ ∈ Aut(P1) such that

• φ1|P = (µ ◦ φ2)|P , and

• φ1 is isotopic to µ ◦ φ2 relative to P

The space TP is the universal cover of the moduli space, MP :

{ϕ : P �→ P1 up to postcomposition by elements of Aut(P1)}.

The spaces TP and MP are both complex manifolds of dimension
|P |− 3.

π : TP → MP

Let f : (S2, A) → (S2, B) be an orientation-preserving branched
cover, where

• 3 � |A|, |B| < ∞,

• B contains the critical values of f , and

• A ⊆ f−1(B).

Under these conditions, there is a pullback map σf : TB → TA,
where TB and TA are the Teichmüller spaces of (S2, B) and (S2, A)
respectively.

Recall that if B ⊂ S2 is finite, TB is the set of all orientation-
preserving homeomorphisms φ : S2 → P1 such that φ1 ∼ φ2 if and
only if

• there exists µ ∈ Aut(P1) so that φ1 = µ ◦ φ2 on the set B,
and

• φ1 is isotopic to µ ◦ φ2 relative to B.
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1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .

Let X be a compact complex manifold, and F : X ��� X

a meromorphic map. Then F is algebraically stable if no
hypersurface is contracted to someting of higher codimension
which is contained in IF .

In summary...

critical trunk

two distinguished points

(critical trunk)/σd

points of indeterminacy

relative positions

Finally, µ : Pn ��� Pn

critical spheres: two distinguished points

order d automorphism, σd

take quotient (critical trunk)/σd

Background

P2 ��� P2, [x : y : z] �→ [yz : xz : xy]

Sequence of algebraic degrees:

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .

This map is not algebraically stable.

Algebraic stability

Notion was introduced by Fornæss and Sibony.

Let X be a compact complex manifold. Let F : X ��� X be
a meromorphic map.

F induces an action on H
2(X) by pullback.

The map F is algebraically stable iff functoriality holds:

(F ◦n)∗ = (F ∗)◦n ∀ n � 0,

In the case of F : Pn ��� Pn, the map F is algebraically stable
iff

deg(f ◦n) = (deg(f))n ∀n � 0.

g

Preliminary Preliminaries
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Preliminaries

Let S2 be the unit sphere in C× R, and let

P1 : C → C, and P2 : C → C
be monic polynomials of degree d � 2. The formal mating of P1

and P2 is the branched cover f : S2 → S
2 defined as follows.

Identify dynamical plane of P1 to H
+, and identify the dynamical

plane of P2 to H
− via the projections

ρ1 : C → H
+ and ρ2 : C → H

−

ρ1(z) =
(z, 1)

�(z, 1)� and ρ2(z) =
(z, 1)

�(z, 1)�

Preliminary Preliminaries

Let f : (S2, A) → (S2, B) be an orientation-preserving branched cover,
where

• 3 � |A|, |B| < ∞,

• B contains the critical values of f , and

• A ⊆ f−1(B).

Under these conditions, there is a pullback map σf : TB → TA, where
TB and TA are the Teichmüller spaces of (S2, B) and (S2, A) respec-
tively.

Recall that if B ⊂ S2 is finite, TB is the set of all orientation-preserving
homeomorphisms φ : S2 → P1 such that φ1 ∼ φ2 if and only if

• there exists µ ∈ Aut(P1) so that φ1 = µ ◦ φ2 on the set B, and

• φ1 is isotopic to µ ◦ φ2 relative to B.

The moduli space MB of (S2, B) is the set of all injective maps B �→
P1 up to post-composition by elements of Aut(P1).

The spaces TB and MB are complex manifolds of dimension |B| −
3.

πB : TB → MB

given by restriction is a covering map.

(S2, B)
φ

�� (P1,φ(B))

(S2, A)

f

��

ψ
�� (P1,ψ(A))

Fφ

��

(S2, B)
φ

�� (P1,φ(B))

σf : [φ] �→ [ψ]

TB

σf ��

πB

��

TA

πA

��
MB MA
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Formal mating:

f : (S2, P ) → (S2, P )

No geometric mating exists; this
mating is obstructed.
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Twisted Matings

If P is a monic polynomial of degree d � 2, then the polynomial
T (P ) : C → C defined by

T (P )(z) = e−2πi/(d−1)P (e2πi/(d−1)z)

is also monic. The filled Julia set of T (P ) is the image of the
Julia set of P by the rotation of angle −1/(d− 1) turns centered
at 0.

p(z) = z7 + z3 − 6

7
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z3 +
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If P1 and P2 are monic polynomials of degree d, the twisted mating
of angle k/(d− 1) of P1 and P2 is the mating (formal or geometric)
of P1 with T ◦k(P2).

Construct the formal mating f : S2 → S2, and form S2/ ∼ by
identifying θ and −k/(d− 1)− θ.
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of angle k/(d− 1) of P1 and P2 is the mating (formal or geometric)
of P1 with T ◦k(P2).

Construct the formal mating f : S2 → S2, and form S2/ ∼ by
identifying θ and −k/(d− 1)− θ.

Proposition. Let P1 and P2 be two monic polynomials of degree
d � 2 which are critically finite. Let f : (S2,Pf ) → (S2,Pf ) be
the formal mating of P1 and P2, and let g : (S2,Pg) → (S2,Pg) be
the formal mating of P1 and T ◦k(P2) (the twisted mating of angle
k/(d− 1)). Let D : S2 → S2 be the Dehn twist around the equator
of S2 − Pf . Then g is combinatorially equivalent to D◦k ◦ f .
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If P1 and P2 are monic polynomials of degree d, the twisted mating
of angle k/(d− 1) of P1 and P2 is the mating (formal or geometric)
of P1 with T ◦k(P2).

Construct the formal mating f : S2 → S2, and form S2/ ∼ by
identifying θ and −k/(d− 1)− θ.
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�� (P1,φ(P ))

σf : [φ] �→ [ψ]

TP

σf ��

π

��

TP

π

��
MP MP

The HurW itz space Wf

Consider the quotient V := Ratd × (P1
)
A × (P1

)
B/ ∼ where

(F1,α1, β1) ∼ (F2,α2, β2) ⇐⇒ ∃ (µ, ν) ∈ Aut(P1
)×Aut(P1

) such that

F1 = ν−1 ◦ F2 ◦ µ, α2 = µ ◦ α1, and β2 = ν ◦ β1.

We want to consider injectivity locus in (P1
)
A
and (P1

)
B
.

V is a complex manifold and an algebraic variety.

There is a holomorphic map νf : TB → V defined by

[φ]TB �→ [Fφ,φ|A,ψ|B]V

The Hurwitz space Wf := νf (TB).

If Wf → MA is injective, then there is a moduli space map

gf : MA ��� MB.

MB MAgf
��
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Proposition. Let f : (S2, P ) → (S2, P ) be a critically finite
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critical points of f are contained in P . Then a moduli space map
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Example: Basilica mate Basilica

P = {�, p, �, q}
f : (S2, P ) → (S2, P )

�
2 �� p��

�
2 �� q��

r ��

MP is a 1-dimensional manifold.

ϕ ∈ MP ,

ϕ(�) = ∞,

ϕ(�) = 0

Then ϕ is determined (up to scaling) by

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1

, (x, y) ∈ C2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞
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The HurW itz space Wf

Consider the quotient V := Ratd × (P1
)
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)
B/ ∼ where

(F1,α1, β1) ∼ (F2,α2, β2) ⇐⇒ ∃ (µ, ν) ∈ Aut(P1
)×Aut(P1

) such that

F1 = ν−1 ◦ F2 ◦ µ, α2 = µ ◦ α1, and β2 = ν ◦ β1.

We want to consider injectivity locus in (P1
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and (P1
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B
.

V is a complex manifold and an algebraic variety.

There is a holomorphic map νf : TB → V defined by

[φ]TB �→ [Fφ,φ|A,ψ|B]V

The Hurwitz space Wf := νf (TB).

If Wf → MA is injective, then there is a moduli space map
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The HurW itz space Wf

Consider the quotient V := Ratd × (P1
)
A × (P1

)
B/ ∼ where

(F1,α1, β1) ∼ (F2,α2, β2) ⇐⇒ ∃ (µ, ν) ∈ Aut(P1
)×Aut(P1

) such that

F1 = ν−1 ◦ F2 ◦ µ, α2 = µ ◦ α1, and β2 = ν ◦ β1.

We want to consider injectivity locus in (P1
)
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and (P1
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B
.

V is a complex manifold and an algebraic variety.

There is a holomorphic map νf : TB → V defined by

[φ]TB �→ [Fφ,φ|A,ψ|B]V

The Hurwitz space Wf := νf (TB).

If Wf → MA is injective, then there is a moduli space map
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The HurW itz space Wf

Consider the quotient V := Ratd × (P1
)
A × (P1

)
B/ ∼ where

(F1,α1, β1) ∼ (F2,α2, β2) ⇐⇒ ∃ (µ, ν) ∈ Aut(P1
)×Aut(P1

) such that

F1 = ν−1 ◦ F2 ◦ µ, α2 = µ ◦ α1, and β2 = ν ◦ β1.

We want to consider injectivity locus in (P1
)
A
and (P1

)
B
.

V is a complex manifold and an algebraic variety.

There is a holomorphic map νf : TB → V defined by

[φ]TB �→ [Fφ,φ|A,ψ|B]V

The Hurwitz space Wf := νf (TB).

If Wf → MA is injective, then there is a moduli space map

gf : MA ��� MB.
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B/ ∼ where

(F1,α1, β1) ∼ (F2,α2, β2) ⇐⇒ ∃ (µ, ν) ∈ Aut(P1
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) such that

F1 = ν−1 ◦ F2 ◦ µ, α2 = µ ◦ α1, and β2 = ν ◦ β1.

We want to consider injectivity locus in (P1
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V is a complex manifold and an algebraic variety.

There is a holomorphic map νf : TB → V defined by
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The HurW itz space Wf
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)
B/ ∼ where

(F1,α1, β1) ∼ (F2,α2, β2) ⇐⇒ ∃ (µ, ν) ∈ Aut(P1
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) such that

F1 = ν−1 ◦ F2 ◦ µ, α2 = µ ◦ α1, and β2 = ν ◦ β1.

We want to consider injectivity locus in (P1
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and (P1

)
B
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V is a complex manifold and an algebraic variety.

There is a holomorphic map νf : TB → V defined by

[φ]TB �→ [Fφ,φ|A,ψ|B]V

The Hurwitz space Wf := νf (TB).
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Preliminary Preliminaries

Preliminaries

←−

Recall that if f : (S2, P ) → (S2, P ) is a critically finite branched
cover, then there is an associated holomorphic endomorphism

σf : TP → TP

where TP is the Teichmüller space of (S2, P ):

φ : S2 → P1 : φ1 ∼ φ2 ⇐⇒ ∃µ ∈ Aut(P1) such that

• φ1|P = (µ ◦ φ2)|P , and

• φ1 is isotopic to µ ◦ φ2 relative to P

The space TP is the universal cover of the moduli space, MP :

{ϕ : P �→ P1 up to postcomposition by elements of Aut(P1)}.

The spaces TP and MP are both complex manifolds of dimension
|P |− 3.

π : TP → MP

Let f : (S2, A) → (S2, B) be an orientation-preserving branched
cover, where

• 3 � |A|, |B| < ∞,

• B contains the critical values of f , and

• A ⊆ f−1(B).

Under these conditions, there is a pullback map σf : TB → TA,
where TB and TA are the Teichmüller spaces of (S2, B) and (S2, A)
respectively.

Recall that if B ⊂ S2 is finite, TB is the set of all orientation-
preserving homeomorphisms φ : S2 → P1 such that φ1 ∼ φ2 if and
only if

• there exists µ ∈ Aut(P1) so that φ1 = µ ◦ φ2 on the set B,
and

• φ1 is isotopic to µ ◦ φ2 relative to B.

The moduli space MB of (S2, B) is the set of all injective maps
B �→ P1 up to post-composition by elements of Aut(P1).

Thursday, February 24, 2011



Thursday, February 24, 2011



(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
(t2 − x2)/(t2 − 1)

x2

�

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

given by
z �→ (x/z, y/z) ;

the image is the line through (0, 0) and (∞,∞) with slope y/x.

(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

where Fx(t) = (t2 − x2)/(t2 − 1), and g(x) = x2

Proposition. Let λ = e2πiα be a (non-fixed) periodic point of g,
hence α = −k/(2l − 1). Then the rational map F ◦l

λ is a geometric
twisted mating of angle α of P ◦l with itself.

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

where Fx(t) = (t2 − x2)/(t2 − 1), and g(x) = x2

Proposition. Let λ = e2πiα be a periodic point of g, hence
α = −k/(2l − 1) for some l. If k �= 0, the rational map F ◦l

λ is a
geometric twisted mating of angle α of P ◦l with itself.

Compactifications

G : P2 ��� P2, [x : t : z] �→ [z2(t2−x2) : x2(t2−z2) : z2(t2−z2)]

G = µ ◦ s where s : [x : t : z] �→ [x2 : t2 : z2],

µ : [x, t, z] �→ [z(t− x) : x(t− z) : z(t− z)]

Points of indeterminacy of µ : P2 ��� P2

Iµ = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1]}
therefore

IG = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1],

[−1 : 1 : 1], [1 : −1 : 1], [1 : 1 : −1]}

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



z = 0

t = z

Since there are curves blown down by G; this map is not alge-
braically stable on P2.

Exchange of DNA

Compactifying

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

given by
z �→ (x/z, y/z) ;

the image is the line through (0, 0) and (∞,∞) with slope y/x.

(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

where Fx(t) = (t2 − x2)/(t2 − 1), and g(x) = x2

Proposition. Let λ = e2πiα be a periodic point of g, hence α =
−k/(2l−1) for some l. If k �= 0, the rational map F ◦l

λ is a geometric
twisted mating of angle α of P ◦l with itself.

Compactifications

G : P2 ��� P2, [t : x : z] �→ [z2(t2 − x2) : x2(t2 − z2) : z2(t2 − z2)]

G = µ ◦ s where s : [t : x : z] �→ [t2 : x2 : z2],

µ : [t, x, z] �→ [z(t− x) : x(t− z) : z(t− z)]

Points of indeterminacy of µ : P2 ��� P2

Iµ = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1]}
therefore

IG = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1],

[−1 : 1 : 1], [1 : −1 : 1], [1 : 1 : −1]}

CG = {t = 0, x = 0, z = 0, x = ±z, t = ±z}

[0 : 0 : 1]

[1 : 0 : 0]

[0 : 1 : 0]

[1 : 1 : 1]

(x = ±z) �→ [1 : 1 : 1] (t = ±z) �→ [1 : 0 : 0]

(z = 0) �→ [0 : 1 : 0]

(x = 0) �→ (x = 0)

(t = 0) �→ (x = t) �→ (t = 0)

EG = {x = ±z, t = ±z, z = 0}

x = z

x = t

x = 0

t = 0

Thursday, February 24, 2011



z = 0

t = z

Since there are curves blown down by G; this map is not alge-
braically stable on P2.

Exchange of DNA

Compactifying

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

given by
z �→ (x/z, y/z) ;

the image is the line through (0, 0) and (∞,∞) with slope y/x.

(F, y, x)

The skew product

G : C2 → C2 given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

where Fx(t) = (t2 − x2)/(t2 − 1), and g(x) = x2

Proposition. Let λ = e2πiα be a periodic point of g, hence α =
−k/(2l−1) for some l. If k �= 0, the rational map F ◦l

λ is a geometric
twisted mating of angle α of P ◦l with itself.

Compactifications

G : P2 ��� P2, [t : x : z] �→ [z2(t2 − x2) : x2(t2 − z2) : z2(t2 − z2)]

G = µ ◦ s where s : [t : x : z] �→ [t2 : x2 : z2],

µ : [t, x, z] �→ [z(t− x) : x(t− z) : z(t− z)]

Points of indeterminacy of µ : P2 ��� P2

Iµ = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1]}
therefore

IG = {[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1],

[−1 : 1 : 1], [1 : −1 : 1], [1 : 1 : −1]}

CG = {t = 0, x = 0, z = 0, x = ±z, t = ±z}

[0 : 0 : 1]

[1 : 0 : 0]

[0 : 1 : 0]

[1 : 1 : 1]

(x = ±z) �→ [1 : 1 : 1] (t = ±z) �→ [1 : 0 : 0]

(z = 0) �→ [0 : 1 : 0]

(x = 0) �→ (x = 0)

(t = 0) �→ (x = t) �→ (t = 0)

EG = {x = ±z, t = ±z, z = 0}

x = z

x = t

x = 0

t = 0

Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



Thursday, February 24, 2011



TB
νf

��
πB

��

σf �� TA

πA

��

Wf

��
cover

finite

��
MB MA

Dynamics

Proposition. Let f : (S2, P ) → (S2, P ) be a Thurston map which
is a topological polynomial such that the critical points of f are
contained in P . Then a moduli space map exists.

Corollary. Let f : (S2, P ) → (S2, P ) be a bicritical Thurston map
such that the critical points of f are contained in P . Then a moduli
space map exists.

Application. Mating two critically finite hyperbolic polynomials
of degree d � 2.
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z = 0

t = z

Since there are curves blown down by G; this map is not alge-
braically stable on P2.

Let �P2 be P2 blown up at the four points.

The map G : �P2 ��� �P2 has no exceptional curves, and therefore it
is algebrically stable.

Exchange of DNA: there is a Böttcher coordinate at both the green
and blue superattracting points, conjugating G in a neighborhood
of each superattracting point to the squaring map

(w, z) �→ (z2, w2) in D× D.
Claim. For each superattracting fixed point, the Böttcher coordi-
nate extends throughout the entire basin of attraction, and extends
continuously to the boundary.

Rays & angles: The basin of each superattracting fixed point is
foliated by disks.

Example: the 0-ray is fixed by the map in the base (g : x → x2),
and thus there is an invariant disk over this ray in the basin of each
superattracting fixed point. The map G is conjugate to z �→ z2 in
this fixed disk.

Example: the ray s �→ s · e2πi/3 is periodic of period 2 for the map
g in the base. So there are two disks in the basin of attraction
which are exchanged by the map G, and these disks are fixed by
the second iterate of G.

These superattracting basins have a common boundary.

In general....
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Let f : (S2, P ) → (S2, P ) be the formal mating of two critically
finite hyperbolic polynomials which are unicritical.

Then a moduli space map exists g : MP ��� MP , and we examine
the associated skew product

G : Cn → Cn given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

Compactify: G : Pn ��� Pn

Proposition. The map G = µ ◦ s, where s : Pn → Pn is the dth
power map, and µ : Pn ��� Pn is a birational transformation of
Pn induced by the permutation of P coming from the ramification
portrait.
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A sufficient compactification

Suppose |P | = n, and consider MP .

(configuration space, up to automorphisms of P1)

Take a sequence ζi ∈ MP which leaves every compact subset.

Theorem. (Mumford) Then there is necessarily a curve on

P1 − {n points}
which is getting short.

(picture).

Compactify MP so that the points on the boundary correspond to
different ways to collapse curves to nodes.

Instead of a P1 with marked points, we have a stable curve with
marked points and nodes.

pictures

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1
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Compactifications: P1 × P1, P2, M0,5 ??
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This is known as the Deligne-Mumford
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Suppose |P | = n, and consider
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This is known as the Deligne-Mumford
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Example: Suppose |P | = 4, and
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M4 ≈ P1

Example: Suppose |P | = 5, and
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MP ≈ P2 −∆,

where ∆ is the locus where points
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(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1−{0, 1,∞}
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Example: Suppose |P | = 4, and
normalize, identifying

MP ≈ P1 −∆,

∆ = {0, 1,∞}
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Example: Suppose |P | = 5, and
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MP ≈ P2 −∆,

where ∆ is the locus where points
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leaves every compact subset.
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This is known as the Deligne-Mumford
compactification ofMP , which we
denote as Mn.

Example: Suppose |P | = 4, and
normalize, identifying

MP ≈ P1 −∆,

∆ = {0, 1,∞}

M4 ≈ P1

Example: Suppose |P | = 5, and
normalize, identifying

MP ≈ P2 −∆,

where ∆ is the locus where points
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A sufficient compactification

Suppose |P | = n+ 3, and consider MP .

(configuration space, up to automorphisms of P1)

Take a sequence ζi ∈ MP which leaves every compact subset.

Theorem. (Mumford) Then there is necessarily a curve on

P1 − {n+ 3 points}
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(picture).

Compactify MP so that the points on the boundary correspond to
different ways to collapse curves to nodes.
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This is known as the Deligne-Mumford compactification of MP ,
which we denote as Mn.

Example: Suppose |P | = 4, and normalize, identifying

MP ≈ P1 −∆,

∆ = {0, 1,∞}

M4 ≈ P1

Example: Suppose |P | = 5, and normalize, identifying

MP ≈ P2 −∆,

where ∆ is the locus where points coalesce.

M5 ≈ �P2

Proposition. M6 is isomorphic to the space obtained by

• first blowing up 5 points in general position

• then blowing up the proper transforms of the 10 lines be-
tween pairs of these points.

Consider the general case: |P | = n. Take n − 1 points in gen-
eral position in Pn−3. Blow these points up, then blow up the
proper transforms of the lines between pairs of these points, and
continue...

Theorem. (Lloyd-Philipps) The space Mn is isomorphic to the
“sequential blow up” of Pn−3 described above.

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1

given by
z �→ (x/z, y/z) ;

the image is the line through (0, 0) and (∞,∞) with slope y/x.

Choose a different representative (P1, {0,∞,λx,λy}), and consider
the associated embedding

z �→ (λx/z,λy/z) .

The image is still the line through (0, 0) and (∞,∞) with slope
y/x.

A sufficient compactification

Suppose |P | = n+ 3, and consider MP .

(configuration space, up to automorphisms of P1)

Take a sequence ζi ∈ MP which leaves every compact sub-
set.

Lemma. (Mumford) Then there are necessarily some curves
on �

P1 − {n+ 3 points}
�
i

which are getting short.

(picture).

Compactify MP so that the points on the boundary corre-
spond to different ways to collapse curves to nodes.

Instead of a P1 with marked points, we have a stable curve
with marked points and nodes.

pictures

This is known as the Deligne-Mumford compactification of
MP , which we denote as Mn.

Example: Suppose |P | = 4, and normalize, identifying

MP ≈ P1 −∆,

∆ = {0, 1,∞}

M4 ≈ P1

Example: Suppose |P | = 5, and normalize, identifying

MP ≈ P2 −∆,

where ∆ is the locus where points coalesce.

M5 ≈ �P2

Proposition. M6 is isomorphic to the space obtained by

• first blowing up 5 points in P3 in general position

• then blowing up the proper transforms of the 10 lines
between pairs of these points.

Consider the general case: |P | = n. Take n − 1 points in
general position in Pn−3. Blow these points up, then blow
up the proper transforms of the lines between pairs of these
points, and continue...
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Theorem. (Lloyd-Philipps) The space Mn is isomorphic to the
“sequential blow up” of Pn−3 described above.

There is a forgetful map

Mn+1 → Mn

which is a submersion.

The fibers of this map are stable curves with marked points.

��

(x, y) := (ϕ(p),ϕ(q))

[x : y] ∈ P1 MP ≈ P1 − {0, 1,∞}
, (x, y) ∈ C2

gf : P1 → P1, gf : z �→ z2

gf : P1 × P1 ��� P1 × P1

gf : (x, y) �→
�
x2(1− y2)

y2(1− x2)
,
1− y2

1− x2

�

Compactifications: P1 × P1, P2, M0,5 ??

gf : P1 × P1 ��� P1 × P1

x y P1 × P1

(0, 0)

(∞,∞)

(1, 1)

x

y

0

∞

Each point in MP determines a line in P1 × P1

Let ϕ ∈ MP ; we can represent ϕ by (P1, {0,∞, x, y}).

Consider the embedding
�
P1, {0,∞, x, y}

�
�→ P1 × P1
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Dynamics

Proposition. Let f : (S2, P ) → (S2, P ) be a Thurston map which
is a topological polynomial such that the critical points of f are
contained in P . Then a moduli space map exists.

Corollary. Let f : (S2, P ) → (S2, P ) be a bicritical Thurston map
such that the critical points of f are contained in P . Then a moduli
space map exists.

Application. Mating two critically finite hyperbolic polynomials
of degree d � 2.

�
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z = 0

t = z

Since there are curves blown down by G; this map is not alge-
braically stable on P2.

Let �P2 be P2 blown up at the four points.

The map G : �P2 ��� �P2 has no exceptional curves, and therefore it
is algebrically stable.

Exchange of DNA: there is a Böttcher coordinate at both the green
and blue superattracting points, conjugating G in a neighborhood
of each superattracting point to the squaring map

(w, z) �→ (z2, w2) in D× D.
Claim. For each superattracting fixed point, the Böttcher coordi-
nate extends throughout the entire basin of attraction, and extends
continuously to the boundary.

Rays & angles: The basin of each superattracting fixed point is
foliated by disks.

Example: the 0-ray is fixed by the map in the base (g : x → x2),
and thus there is an invariant disk over this ray in the basin of each
superattracting fixed point. The map G is conjugate to z �→ z2 in
this fixed disk.

Example: the ray s �→ s · e2πi/3 is periodic of period 2 for the map
g in the base. So there are two disks in the basin of attraction
which are exchanged by the map G, and these disks are fixed by
the second iterate of G.

These superattracting basins have a common boundary.

In general....

Let f : (S2, P ) → (S2, P ) be the formal mating of two critically
finite hyperbolic polynomials which are unicritical.

Then a moduli space map exists g : MP ��� MP , and we examine
the associated skew product

G : Cn → Cn given by G :

�
t
x

�
�→

�
Fx(t)
g(x)

�

Compactify: G : Pn ��� Pn

Proposition. The map G = µ ◦ s, where s : Pn → Pn is the dth
power map, and µ : Pn ��� Pn is a birational transformation of
Pn induced by the permutation of P coming from the ramification
portrait.
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Theorem. (Lloyd-Philipps) The space Mn is isomorphic to the

“sequential blow up” of Pn−3 described above.

There is a forgetful map

Mn+1 → Mn

which is a submersion.

The fibers of this map are stable curves with marked points.

Mn+1

��

Mn

G : Pn ��� Pn

�G : �Pn ��� �Pn

This map G preserves this fibration

Mn+3 → Mn+2, �Pn → �Pn−1

�Pn �G ��

��

�Pn

��

�Pn−1 g
�� �Pn−1

Trees of spheres in �Pn (Mn)

number of vertices

location of marked points (red and blue),

location of grey point

location of nodes

G : �Pn ��� �Pn, G = µ ◦ s

Define critical trunk:

Every sphere in the critical trunk is called a critical sphere.

Every sphere in the critical trunk contains two distinguished points.

On each critical sphere, there is an automorphism of order d, σd,

which fixes these two distinguished points.
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gf : P1 × P1 ��� P1 × P1
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critical spheres: two distinguished points

order d automorphism, σd

take quotient (critical trunk)/σd

Background

P2 ��� P2, [x : y : z] �→ [yz : xz : xy]

Sequence of algebraic degrees:

2, 1, 2, 1, 2, 1, 2, 1, 2, . . .

This map is not algebraically stable.

Algebraic stability

Notion was introduced by Fornæss and Sibony.

Let X be a compact complex manifold. Let F : X ��� X be
a meromorphic map.

F induces an action on H
2(X) by pullback.

The map F is algebraically stable iff functoriality holds:

(F ◦n)∗ = (F ∗)◦n ∀ n � 0,

In the case of F : Pn ��� Pn, the map F is algebraically stable
iff

deg(f ◦n) = (deg(f))n ∀n � 0.

g

Preliminary Preliminaries

Preliminaries

←−

Recall that if f : (S2
, P ) → (S2

, P ) is a critically finite
branched cover, then there is an associated holomorphic en-
domorphism

σf : TP → TP

where TP is the Teichmüller space of (S2
, P ):

φ : S2 → P1 : φ1 ∼ φ2 ⇐⇒ ∃µ ∈ Aut(P1) such that

• φ1|P = (µ ◦ φ2)|P , and

• φ1 is isotopic to µ ◦ φ2 relative to P
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In summary...

critical trunk

two distinguished points

(critical trunk)/σd

points of indeterminacy

relative positions

Finally, µ : Pn ��� Pn
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(5) consider the sphere X in the critical trunk; if no node on X
is symmetric to a marked point on X, and if no node on X
is symmetric to another node on X, then take the quotient

sphere X/σd

(6) to determine the relative positions of the marked points on

X/σd, normalize in the following way: on the critical sphere

X, put the red distinguished point at 0 and the blue dis-

tinguished point at ∞; then the map X → Xσd is given by

[x : y] �→ [xd : yd]

Proposition. If each equivalence class of symmetric points con-

tains at most one marked point: either a node or a red/blue point,

then we obtain an admissible tree.

Otherwise if there is an equivalence class of symmetric points which

contains exactly two red/blue points, then we add a node and a

sphere to the image tree.

If there is an equivalence class of symmetric points which con-

tains

• a node and a red/blue point

• two distinct nodes, or

• three or more red/blue points

then the map is not defined at the points ζ ∈ �Pn which correspond

to these particular configurations.

Proposition. This procedure defines a rational map �G : �Pn ��� �Pn

which extends the map G = µ ◦ s : Pn ��� Pn

Mn+3 → Mn+2
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Nodes: 1) there are d possibilities for the inverse image of each
node or 2) the node is a result of 2 marked points in the critical
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configurations for this.

Theorem. The map �G : �Pn ��� �Pn is algebraically stable.
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guished point at ∞; then the map X → X/σd is given by

[x : y] �→ [xd : yd]

(7) The birational map µ : Pn ��� Pn induces an automorphism

of �Pn ��� �Pn; it will permute the spheres in the tree corre-

sponding to ζ.

Proposition. If each equivalence class of symmetric points con-

tains at most one marked point: either a node or a red/blue point,

then we obtain an admissible tree.

Otherwise if there is an equivalence class of symmetric points which

contains exactly two red/blue points, then we add a node and a

sphere to the image tree.

If there is an equivalence class of symmetric points which con-

tains

• a node and a red/blue point

• two distinct nodes, or

• three or more red/blue points

then the map is not defined at the points ζ ∈ �Pn which correspond

to these particular configurations.

These are exactly the points of indeterminacy. s

Proposition. This procedure defines a rational map �G : �Pn ��� �Pn

which extends the map G = µ ◦ s : Pn ��� Pn

Mn+3 → Mn+2

Lemma. The map �G : �Pn ��� �Pn has finite fibers.

Proof. Let η be a tree of spheres in the image of �G. Only the

critical trunk is relevant as the preimages of all noncritical spheres

are just these spheres themselves.

Critical trunk: Marked points and nodes.

Marked points: There are only d possibilities for the inverse image

of each.
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Lemma. The map �G : �Pn ��� �Pn has finite fibers.

Proof. Let η be a tree of spheres in the image of �G. Only the

critical trunk is relevant as the preimages of all noncritical spheres

are just these spheres themselves.

Critical trunk: Marked points and nodes.

Marked points: There are only d possibilities for the inverse image

of each.

Nodes: 1) there are d possibilities for the inverse image of each
node or 2) the node is a result of 2 marked points in the critical
trunk upstairs which are symmetric; there are d(d − 1)/2 possible
configurations for this.

Theorem. The map �G : �Pn ��� �Pn is algebraically stable.

Nodes: 1) there are d possibilities for the inverse image of each
node or 2) the node is a result of 2 marked points in the critical
trunk upstairs which are symmetric; there are d(d − 1)/2 possible
configurations for this.

Theorem. The map �G : �Pn ��� �Pn is algebraically stable.

Nodes: 1) there are d possibilities for the inverse image of each
node or 2) the node is a result of 2 marked points in the critical
trunk upstairs which are symmetric; there are d(d − 1)/2 possible
configurations for this.

Theorem. The map �G : �Pn ��� �Pn is algebraically stable.

Questions.

What are the algebraic degrees of these maps?

We can compute dynamical degrees.

Thursday, February 24, 2011



Nodes: 1) there are d possibilities for the inverse image of each
node or 2) the node is a result of 2 marked points in the critical
trunk upstairs which are symmetric; there are d(d − 1)/2 possible
configurations for this.

Theorem. The map �G : �Pn ��� �Pn is algebraically stable.

Questions.

What are the dynamical degrees?

Basilica-Basilica, λ1 = 2

Basilica-Rabbit, λ1 is the largest real root of p(lambda) = λ4+λ3−
2λ2 − 8λ− 8, λ1 ≈ 2.229209

What do these numbers mean for the mating maps? For σf :
T P ?

What does the corresponding picture look like for us?
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Nodes: 1) there are d possibilities for the inverse image of each
node or 2) the node is a result of 2 marked points in the critical
trunk upstairs which are symmetric; there are d(d − 1)/2 possible
configurations for this.

Theorem. The map �G : �Pn ��� �Pn is algebraically stable.
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Basilica-Rabbit, λ1 is the largest real root of

p(λ) = λ4 + λ3 − 2λ2 − 8λ− 8,

λ1 ≈ 2.229209

What do these numbers mean for the mating maps? What about
σf : T P → T P ?

What does the corresponding picture look like for us?

Is Mn the minimal compactification for which these maps are al-
gebraically stable?

Conjecture. No.
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thank you for your attention!
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