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Definition of Rescaling limits
Consider a sequence of maps {fn : C→ C} of degree d ≥ 2.

A rescaling for {fn} is a sequence of changes of coordinates

{Mn} ⊂ PSL(2,C)

with the following property:

There exist an iterate q ∈ N such that

M−1
n ◦ fq

n ◦Mn → g

for some rational map g with deg g ≥ 2.

The convergence is uniform in compact subsets of C with finitely many

points removed.

g is called a rescaling limit for {fn},
q is called a rescaling period for {fn} at {Mn}.



Some remarks

Given a rescaling {Mn} the periods for {fn} at {Mn} are of the
form q · N.

If fn → f where f also has degree d, then rescaling limits are
iterates of f .



Example: Lattès

ft (w) =
(w2 − t)2

4w(w − 1)(w − t)

Consider a sequence {ftn } with tn → 0.

Rescaling of period 1: Let Mn(z) = z. In C \ {0},

ftn (w)→
w2

4(w − 1)
,

which is z 7→ z2 − 2 modulo change of coordintes.



Higher periods
For α ∈]0, 1[,

ft (tα · z) ∼ tTent(α) ·monomial(z).

Any periodic point α0, say of pe-

riod m, of Tent in ]0, 1[ determines a
monomial rescaling limit of period m
of {ftn } since

fm
t (tα0z) = tα0 ·monomial(z) 1/20 1

 

 



Lattès: continued
In fact,

ft (tα · z)

tTent(α)
→


−

z2

4
if 0 < α < 1/2

−
z−2

4
if 1/2 < α < 1

For example Tent2( 2
5 ) = 2

5 . Take sn such that s5
n = t2

n . Then,

1
sn
· f2

tn (sn · z)→ −4z−4.



Example: Parabolic rescaling of quadratic rational maps
Quadratic rational maps with a period 3 critical point are
parametrized by:

ft (z) = t −
1 + t2

z
+

t
z2 .

In fact, the critical point ω = ∞ 7→ t 7→ 0 7→ ∞.

Parabolic rescaling (Rees-Stimson):

For Mt (z) = tz,

M−1
t ◦ f2

t ◦Mt (z)→ g(z) =
z2 + z − 1

z − 1

as t → 0, uniformly on compact subsets of C \ {1}.

g(z) has a parabolic (multiple) fixed point at z = ∞.

Same phenomena for all “periodic curves”.

Related to: Petersen, Epstein, De Marco, K.-Rees.



(continued): Quadratic polynomial rescaling
A perturbation of maps with a period 3 critical point.
Given a ∈ C, let

ft (z) = t −
1 + t2

z
+

t
z2 − at5.

For Lt (z) = t3z,

L−1
t ◦ f3

t ◦ Lt (z)→ Qa(z) = z2 + a,

as t → 0, uniformly on compact subsets of C.

Similar phenomena “around” all periodic curves...also for cubic
polynomials (Bonifant, Milnor)

All known rescalings of quadratic rational have a parabolic fixed
point or are quadratic polynomials.



Question

How many distinct and meaningful rescaling limits can a sequence
have?

“At most 2d − 2 rescalings are not postcritically finite.”

“At most 2 for quadratic rational maps: one quadratic
rational map with a parabolic fixed point, one a quadratic
polynomial.”



The space of rational maps
RatdC −→ P2d+1

C
\ {Resultant = 0}

f(z) =
P(z)

Q(z)
7−→ [a0 : · · · : ad : b0 : · · · : bd ]

=
a0zd + · · ·+ ad

b0zd + · · ·+ bd
·

f ∈ RatdC ⇔ Resultant (P,Q) , 0.



Algebraic rescalings: holomorphic families
Consider a small disk

Dε = {z ∈ C | |z| < ε}.

A degenerate holomorphic family ft of degree d ≥ 1 is a
holomorphic map:

Dε → P2d+1
C

t 7→ ft

such that ft ∈ RatdC = f0 for all t , 0.



Algebraic rescaling: definition
Consider a holomorphic family ft of degree d ≥ 2.

An algebraic rescaling for ft is a holomorphic family of coordinate
changes Mt (i.e. degree 1) with the following property:

There exists an iterate q such that

M−1
t ◦ fq

t ◦Mt (z)→ g(z)

for some rational map g with deg g ≥ 2.

The convergence is uniform on compact subsets of C with finitely many

points removed.

g is called a rescaling limit for ft ,
q is called a rescaling period for ft at Mt .



Algebraic rescalings: equivalence and action.
Two rescalings Mt and Lt are equivalent if:

M−1
t ◦ Lt → M ∈ PSL(2,C).

A degree 1 holomorphic family Ft acts on the set of equivalence
classes:

Ft : [Mt ] 7→ [Ft ◦Mt ].



Higher degrees
(Rivera-Letelier) A holomorphic family ft acts on the set of
equivalence classes of algebraic rescalings:

Given a rescaling class [Mt ] there exists a unique rescaling
class [Lt ] = ft ([Mt ]) such that:

L−1
t ◦ ft ◦Mt (z)→ ϕ(z)

for some ϕ with degϕ ≥ 1.



Rescaling and orbits
[Mt ] is a rescalings for ft if and only if:

[Mt ] is a periodic point, say of period q, for the action of ft on{
[Mt ] | Mt is a holomorphic family of degree 1

}
,

such that
M−1

t ◦ fq
t ◦Mt (z)→ ϕ(z)

for some ϕ with degϕ ≥ 2.



Results for holomorphic families

Theorem A. (K.) Given a holomorphic family ft of degree d ≥ 2,
there exists at most 2d − 2 distinct periodic rescaling orbits with
rescaling limits which are not postcritically finite.

Theorem B. (K.) Given a holomorphic family ft of degree d = 2,
there exists at most 2 distinct rescaling orbits.

If there exists one, then the rescaling limit is parabolic.
If there exists two, then one rescaling is parabolic and the
other one is a quadratic polynomial rescaling limit.

Can one replace postcritically finite by monomial, maybe with a
bound depending on ft ?, maybe depending on d?



Berkovich space.

{
[Mt ] | Mt is a holomorphic family of degree 1

}
is contained in a space P1,an

L , called the Berkovich projective line.

P1,an
L is a compact (infinite) tree.

[Mt ] are vertices of this tree.

Directions at [Mt ] are parametrized by C.



Action on P1
L

ft (z) =
ad(t)zd + · · · a0(t)
bd(t)zd + · · · b0(t)

∈ C((t))(z)

where C((t)) is the field of formal Laurent series which has a
(natural) non-Archimedean valuation.

Extend to the completion L of an algebraic closure of C((t)). Thus,

ft (z) ∈ L(z)

is a rational map of degree d.

ft acts on P1
L where it has 2d − 2 critical points.

P1,an
L also contains P1

L.



Action on P1,an
L

The action is better understood extending it from P1
L to P1,an

L :

ft : P1,an
L → P1,an

L

is a “degree d piecewise linear map”.

The action on rescalings [Mt ] ∈ P
1,an
L is the given by Rivera-Letelier.



Fatou set, Julia set and repelling orbits
For

ft : P1,an
L → P1,an

L

the notions of Julia set, Fatou set and components “generalize”

e.g., the Julia set of Lattès family is an interval with the tent
dynamics.

P1
L ⊂ P

1,an
L are the rigid or classical points.

P1,an
L \ P1

L is an R-tree (hyperbolic space).

If [Mt ] is a rescaling for ft , then [Mt ] is a non-rigid repelling
periodic point of ft : P1,an

L → P1,an
L .

The converse is also true, modulo passing to a finite extension (i.e.
replacing ft by ft`).



Strategy of the proof.

Given a non-rigid repelling periodic orbit O of ft : P1,an
L → P1,an

L
with associated rescaling limit g such that g is not postcritical
finite contains a critical point c(t) in its basin of attraction.



Directions
At the Gauss point

[id] ∈ P1,an
L is called the Gauss point.

If [At ] , [id], then At → a ∈ C, with a independent of choice
of representative in [At ].

If z(t) ∈ C((t)), then z(0) ∈ C.

Given a ∈ C, all [Mt ] , [id] such that Mt → a and all z(t) such
that z(0) = a lie in the direction D(a) at the Gauss point.

At any [Mt ]

Mt : P1,an
L → P1,an

L maps directions at [id] onto directions at
[Mt ].



Action on directions
Assume that ft [Mt ] = [Lt ] and

L−1
t ◦ ft ◦Mt (z)→ ϕ(z)

in Good = C \ {Bad}.

If z ∈ Good, then ft (D(z)) = D(ϕ(z)).

If z ∈ Bad, then ft (D(z)) = P1,an
L .

Moreover:

If
dϕ
dz

(ω) = 0, then D(ω) contains a critical point of ft .

If z ∈ Bad, then D(z) contains a critical point of ft .

If a critical point of ft belongs to D(z), then a critical value
belongs to D(ϕ(z)).



Proof of Theorem A.

Assume that ft [Mt ] = [Mt ],

M−1
t ◦ ft ◦Mt (z)→ ϕ(z)

with ϕ(z) not postcritically finite.

Let c be a critical point of ϕ with infinite forward orbit.

Then D(c) contains a critical point c(t) of ft .

If ϕn(ω) ∈ Good for all n ≥ 0, then fn
t (c(t)) ∈ D(ϕn(c)).

Thus, fn
t (c(t))→ [Mt ].

Otherwise, there exists n0 such that: ϕn(ω) ∈ Good for all
n > n0 and ϕn0(ω) ∈ Bad.
So there exists a critical value v(t) ∈ D(ϕn0+1(ω)). Hence, the
iterates of v(t) converge to [Mt ].

�



Back to sequences. Rescaling limits: dependence
{Mn} and {Ln} are independent rescalings if

M−1
n ◦ Ln → ∞ ∈ PSL(2,C).

If {Mn} and {Ln} are dependent, then there exists M ∈ PSL(2,C)
such that, passing to a subsequence,

M−1
n ◦ Ln → M.

In particular, if {Mn} leads to a rescaling g of period q, then {Ln}

leads to a rescaling M ◦ g ◦M−1.



Dynamical Independence.
{Mn} and {Ln} are rescalings of period p for {fn}. They are
dynamically dependent, if passing to a subsequence, there exists
0 ≤ p′ ≤ p such that

M−1
n ◦ fp′

n ◦ Ln → g1 ∈ Ratd1
C

for some d1 ≥ 1,

L−1
n ◦ fp−p′

n ◦Mn → g2 ∈ Ratd2
C

for some d2 ≥ 1.

Example: in Lattès Mn(z) = sn · z, Ln(z) = s2
n · z are dynamically

dependent.



Counting rescalings

Theorem C.

Consider a sequence {fn} ⊂ RatdC. For j = 1, . . . ,N, assume
that

{M(1)
n }, . . . , {M

(N)
n }

are pairwise dynamically independent rescalings for {fn} with
rescaling limits g1, . . . , gN, respectively.

If gj is not postcritically finite for all j, then N ≤ 2d − 2.



Rescaling of quadratic rational maps
Theorem D.

Consider a sequence {fn} ⊂ Rat2C. For j = 1, . . . ,N, assume
that

{M(1)
n }, . . . , {M

(N)
n }

are pairwise dynamically independent rescalings for {fn} with
rescaling limits g1, . . . , gN, respectively.

Then N ≤ 2 and one of the following occur:

(a) N = 1 and g1 is a quadratic rational map with a parabolic
fixed point.
(b) N = 2, g1 is as above, g2 is a quadratic polynomial.



From theorems A-B to theorems C-D.
Given {fn} ⊂ RatdC. Assume that for j = 1, . . . ,N,

{M(1)
n }, . . . , {M

(N)
n }

are pairwise dynamically independent rescalings of {fn} with
rescaling limit

g1, . . . , gN .

Then, there exist a holomorphic family ft and algebraic rescalings

{M(1)
t }, . . . , {M

(N)
t }

for ft with rescaling limits

g1, . . . , gN .



Happy birthday Jack!!!

Gracias!!!


