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Examples of Spheres: 2.

The standard sphere Sn ⊂ Rn+1 is the locus

x 2
1 + x 2

2 + · · ·+ x 2
n+1 = 1 .

The standard 1-sphere S1.

A topological 1-sphere.

A smooth 1-sphere.



Standard, Topological, and Smooth 2-spheres 3.

Asteroid Itokawa,
Japan Aerospace Agency

Dancing Bear by Anita Issaluk,
Chesterfield Inlet, Nunavut



Topological Characterization of Spheres 4.

Poincaré’s Question in 1904
(Oevre VI, p.498):

“Est-il possible que le groupe fondemental de
V se réduise à la substitution identique, et que
pourtant V ne soit pas simplement connexe?”

It took 100 years to find the answer:

Theorem GPH. A closed n-dimensional manifold Mn is homeo-
morphic to Sn ⇐⇒ it has the same homotopy type as Sn

⇐⇒ it has the same homology and fundamental group as Sn

⇐⇒ any proper subset can be shrunk to a point within Mn.

This is a compilation of work by many different people over 150 years!

For dimensions n ≤ 2 it is classical. (Compare: Francis and Weeks, 1999.)



High Dimensional Cases. 5.

Steve Smale made the first breakthrough in 1961,
giving a proof for smooth n-manifolds with n > 4.

John Stallings and E. C. Zeeman,
using a different method, proved this
for Piecewise Linear manifolds with
n > 4.

Max Newman and E. H. Connell
modified the Stallings argument to
cover all topological manifolds of
dimension n > 4.



The case n = 4 is much harder. 6.

Mike Freedman proved the 4-dimensional
theorem in 1982, using wildly non-differ-
entiable methods.

In fact, he classified all possible closed simply-connected
topological 4-manifolds, using just two invariants:

• the quadratic form x 7→ x ∪ x , where

x ∈ H2(M4) ∼= Z⊕ · · · ⊕ Z , x ∪ x ∈ H4(M4) ∼= Z ,

• and an invariant in Z/2 which is zero when M4 is smooth.

(Note: I will always use homology or cohomology with
integer coefficients.)



The hardest case: n = 3 7.

Bill Thurston’s Geometrization Conjecture
suggested an effective description of all possi-
ble closed 3-manifolds.

Richard Hamilton introduced the Ricci flow
method in an attempt to prove the Geometriza-
tion Conjecture.

Grisha Perelman managed to overcome all of
the many difficulties with this method !

QED for Theorem GPH.



Smooth Spheres 8.

Suppose we translate Poincaré’s question somewhat differently:

Consider a smooth manifold Mn, and ask whether
it is diffeomorphic to the standard sphere Sn.

We might try to use the following:

Lemma. Any homeomorphism f : Mn → Sn can be
uniformly approximated by a smooth map Mn → Sn.

Question: Can a homeomorphism between smooth manifolds
always be approximated by a diffeomorphism?

The answer is No !



Sphere Bundles over Spheres 9.

In the middle 1950s, I was completely stunned by an apparent
contradiction in mathematics.
Consider 3-sphere bundles over the 4-sphere:

S3 ⊂ M7

↓
S4 .

I found examples where M7 was a sphere by a topological
argument; but couldn’t be by a differentiable argument.

The only way out of this apparent contradiction was to assume
that M7 was homeomorphic to S7, but not diffeomorphic to S7.
To understand such examples, we need methods for proving
homeomorphism, and for disproving diffeomorphism.



Proving Homeomorphism: George Reeb’s Criterion 10.

Theorem: Let Mn be a smooth closed manifold. If there is a
Morse function Mn → R with only two critical points,
then M is a topological n-sphere.



Disproving Diffeomorphism: The Signature Formula 11.

We want to prove that certain S3-bundles over S4 are not
diffeomorphic to S7.
The proof will be based on a linear equation

45 σ(M8) = 7 p2〈M8〉 − p 2
1 〈M8〉 .

relating three different integer invariants for a smooth closed
oriented 8-manifold.

I Must Answer Three Questions:

I What are these invariants?

I How does one prove such a relation between them?

I What does this have to do with 7-dimensional manifolds?



Signature and Pontrjagin Numbers 12.

• For any closed oriented 4k -dimensional manifold we can
form the signature σ(M4k ) of the quadratic form

x 7→ x2 = x ∪ x from H2k (M4k ; Z) to H4k (M4k ; Z) ∼= Z .

Simply diagonalize this form over the real numbers, and count
the number of positive diagonal entries minus the number of
negative ones.

This is an integer valued topological invariant.

• The two numbers p2〈M8〉 and p 2
1 〈M8〉 are integer invariants

called Pontrjagin numbers.

Their description will require several steps.



Some Classical Constructions 13.

Hassler Whitney showed that any smooth
Mn has an essentially unique embedding
Mn ⊂−→ RL provided that the dimension L
is large enough (L > 2n + 1).

Hermann Grassmann studied the manifold
Gn(RL) consisting of all n-dimensional planes
through the origin in RL.

Let Gn be the limit as L→∞,

Gn(Rn+1) ⊂ Gn(Rn+2) ⊂ · · · ⊂ Gn .



The (Generalized) Gauss Map 14.

For a smooth manifold Mn ⊂ RL, the “Gauss map”

g = g
Mn : Mn → Gn(RL) ⊂ Gn

sends each x ∈ Mn to the tangent n-plane TxMn, translated to
the origin.

0

x

Mn

TxMn

g(x)RRL



The Characteristic Homology Class 15.

Every closed oriented Mn has a fundamental homology class

µ ∈ Hn(Mn) .

For any smooth Mn ⊂ Rn+L, the Gauss map g : Mn → Gn
induces a homomorphism

g∗ : Hn(Mn)→ Hn(Gn) .

If Mn is oriented, then the fundamental homology class

µ ∈ Hn(Mn) maps to a “characteristic homology class”

〈Mn〉 = g∗(µ) ∈ Hn(Gn) .



Pontrjagin Numbers 16.

Lev Pontrjagin introduced what we would
now describe as cohomology classes

pi ∈ H4i(Gn) .

Modulo elements of finite order, these
generate the cohomology ring H∗(Gn).

Consider sequences

1 ≤ i1 ≤ i2 ≤ · · · ≤ ih with
h∑
1

ij = k

so that pi1pi2 · · · pih ∈ H4k (Gn) .
Taking n = 4k , we can evaluate each such product on the
characteristic homology class 〈M4k 〉 ∈ H4k (G4k ) .
This yields an integer pi1pi2 · · · pih〈M4k 〉 called a

Pontrjagin number.



René Thom’s Cobordism Theory 17.

Two closed oriented n-manifolds are oriented cobordant if
their disjoint union, suitably oriented, is the boundary of a
compact oriented (n + 1)-manifold.

Theorem (mostly due to Thom). The characteristic homology
class 〈Mn〉 ∈ Hn(Gn) is a complete cobordism invariant:

M1 and M2 are cobordant if and only if 〈Mn
1 〉 = 〈Mn

2 〉.

(Proved by Thom up to elements of finite order. C. T. C. Wall took care of 2-primary

elements; Sergei Novikov and I took care of elements of odd order.)



The Cobordism Group Ωn 18.

The set of all cobordism classes of smooth oriented closed
n-manifolds forms an abelian group Ωn, with the disjoint
union as sum operation.

Corollary. The correspondence
(cobordism class of Mn) 7→ 〈Mn〉 ∈ Hn(Gn)

embeds Ωn as a subgroup of finite index

Ωn
⊂−→ Hn(Gn) .



The Signature Formula 19.

Lemma (Thom). If n = 4k , then the signature of the quadratic
form

x 7→ x2 = x ∪ x from H2k (M4k ) to H4k (M4k )
·µ−→ Z

is a cobordism invariant; yielding a homomorphism
σ : Ω4k → Z .
Corollary. The signature of M4k can be expressed as a linear
combination of Pontrjagin numbers, with rational coefficients.

σ(M4k ) =
∑

a(i1, . . . , ih) pi1 · · · pih〈M
4k 〉 ,

to be summed over all 0 < i1 ≤ i2 ≤ · · · ≤ ih with sum k .

Hirzebruch computed these
rational coefficients
in terms of

Bernoulli numbers



From 8-Manifolds to Exotic 7-Spheres. 20.

Let En be a smooth compact n-manifold, bounded by a smooth
manifold homeomorphic to Sn−1 = ∂Dn.
Choosing a homeomorphism f : Sn−1 → ∂En, we can paste Dn

onto En to obtain a closed topological manifold

Mn = En ∪f Dn .

If f is a diffeomorphism, then Mn can be made into a smooth
manifold.



The Obstruction to Smoothness. 21.

Now consider the case n = 8.

The signature of M8 = E8 ∪f D8 can be computed from the
cohomology of the pair (E8, ∂E8).

Similarly, the Pontrjagin number p 2
1 〈M8〉 can be computed

from knowledge of E8 as a smooth manifold.

We can then solve for

p2〈M8〉 =
45σ(M8) + p 2

1 〈M8〉
7

.

Whenever this quotient is not an integer, we have proved
that ∂E8 cannot be diffeomorphic to S7 .



The Connected Sum Operation 22.

If M1 and M2 are smooth, oriented, connected n-manifolds,
then the connected sum M1#M2 is a new smooth, oriented,
connected n-manifold.

This operation is well defined up to orientation preserving
diffeomorphism. Thus we obtain a commutative, associative
semigroup Mn of oriented diffeomorphism classes;
with the class of Sn as identity element, Mn#Sn ∼= Mn.



A Test for Invertibility 23.

Lemma (Barry Mazur).
(1) Mn is invertible (Mn#Nn ∼= Sn)

⇔ (2) Mnr{point} ⊂−→ Sn

⇔ (3) Mnr{point} ∼= Rn

⇒ (4) Mn is a topological sphere.

Proof that (1) =⇒ (3),
using “infinite connected sums”.

First consider the sum Sn#Sn#Sn# · · · ∼= Rn

(M#N)#(M#N)# · · · ∼= Sn#Sn# · · · ∼= Rn

∼= M#(N#M)#(N#M)# · · · ∼= M#Rn ∼= Mr{point} .

Thus (1) =⇒ (3). The proof that (3) =⇒ (2) =⇒ (1) is not
difficult, so this proves the Lemma.



Work with Michel Kervaire 24.

Let Sn ⊂Mn be the sub-semigroup of
smooth oriented manifolds homeomor-
phic to Sn. For example

S1 = S2 = S3 = 0 .

Theorem. This semigroup Sn is a finite abelian group for
n > 4, with

S5 = S6 = 0 ,

but:

S7 S8 S9 S10 S11 S12 S13 · · ·
Z/28 Z/2 Z/2⊕ Z/2⊕ Z/2 Z/6 Z/992 0 Z/3 · · ·



Three Necessary Ingredients for our Work 25.

Witold Hurewicz introduced higher homotopy
groups.

Jean-Pierre Serre developed the algebraic
machinery needed to compute these groups

Raoul Bott computed the homotopy groups of
the infinite rotation group SO.



Further Developments by Many People. 26.

Frank Adams Greg Brumfiel Bill Browder Mark Mahowald
and for the latest news:

Mike Hill, Doug Ravenel and Mike Hopkins
The group Sn is now completely known for n ≤ 64,

EXCEPT FOR THE CASE n = 4 !



Dimensional Four: The Big Mystery. 27.

Theorem (Simon Donaldson). If M4 is
smooth, simply-connected, with positive def-
inite quadratic form, then the quadratic form
can be diagonalized =⇒ M4 is homeomor-
phic to a connected sum

CP2 # · · · # CP2 .

But there are many unimodular quadratic forms which cannot
be diagonalized; hence there are many topological
manifolds which cannot be given any differentiable structure.

The combination of Donaldson’s methods and
Freedman’s methods had amazing consequences:



Manifolds Homeomorphic to R4. 28.

Theorem (Cliff Taubes). There are uncount-
ably many distinct diffeomorphism classes of
smooth manifolds homeomorphic to R4.

By way of contrast:

Theorem (Stallings + Munkres + Hirsch). If n 6= 4, then any
smooth manifold homeomorphic to Rn must actually be
diffeomorphic to Rn. =⇒ Sn is a group for n 6= 4.

But the semigroup S4 is completely unknown:
Is it trivial?

Is it finite?
Is it a group?

? ? ? ? ?


