

John Milnor

Institute for Mathematical Sciences

Stony Brook University (www.math.sunysb.edu)

STONY BROOK NY, APRIL 28TH., 2011

Examples of Spheres:

The standard sphere $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ is the locus

2.

Standard, Topological, and Smooth 2-spheres

Asteroid Itokawa, Japan Aerospace Agency

Dancing Bear by Anita Issaluk, Chesterfield Inlet, Nunavut 3.

Topological Characterization of Spheres

Poincaré's Question in 1904

4.

(Oevre VI, p.498):

"Est-il possible que le groupe fondemental de V se réduise à la substitution identique, et que pourtant V ne soit pas simplement connexe?"

It took 100 years to find the answer:

Theorem GPH. A closed n-dimensional manifold M^n is homeomorphic to $\mathbb{S}^n \iff$ it has the same homotopy type as \mathbb{S}^n \iff it has the same homology and fundamental group as \mathbb{S}^n \iff any proper subset can be shrunk to a point within M^n .

This is a compilation of work by many different people over 150 years!

For dimensions $n \leq 2$ it is classical. (Compare: Francis and Weeks, 1999.)

High Dimensional Cases.

Steve Smale made the first breakthrough in 1961, giving a proof for **smooth** *n*-manifolds with n > 4.

John Stallings and E. C. Zeeman, using a different method, proved this for **Piecewise Linear** manifolds with n > 4.

Max Newman and E. H. Connell modified the Stallings argument to cover all **topological** manifolds of dimension n > 4.

The case n = 4 is much harder.

Mike Freedman proved the 4-dimensional theorem in 1982, using wildly non-differentiable methods.

6.

In fact, he classified all possible closed simply-connected topological 4-manifolds, using just two invariants:

• the quadratic form $x \mapsto x \cup x$, where

 $x \in H^2(M^4) \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}, \qquad x \cup x \in H^4(M^4) \cong \mathbb{Z},$

• and an invariant in $\mathbb{Z}/2$ which is zero when M^4 is smooth.

(Note: *I will always use homology or cohomology with* integer coefficients.)

The hardest case: n = 3

Bill Thurston's **Geometrization Conjecture** suggested an effective description of all possible closed 3-manifolds.

Richard Hamilton introduced the **Ricci flow** method in an attempt to prove the Geometrization Conjecture.

Grisha Perelman managed to overcome all of the many difficulties with this method !

QED for Theorem GPH.

7.

Smooth Spheres

Suppose we translate Poincaré's question somewhat differently:

Consider a **smooth** manifold M^n , and ask whether it is **diffeomorphic** to the standard sphere \mathbb{S}^n .

We might try to use the following:

Lemma. Any homeomorphism $f: M^n \to \mathbb{S}^n$ can be uniformly approximated by a smooth map $M^n \to \mathbb{S}^n$.

Question: Can a homeomorphism between smooth manifolds always be approximated by a diffeomorphism?

The answer is No !

Sphere Bundles over Spheres

In the middle 1950s, I was completely stunned by an apparent contradiction in mathematics.

Consider 3-sphere bundles over the 4-sphere:

I found examples where M^7 was a sphere by a topological argument; but couldn't be by a differentiable argument.

The only way out of this apparent contradiction was to assume that M^7 was homeomorphic to \mathbb{S}^7 , but not diffeomorphic to \mathbb{S}^7 . To understand such examples, we need methods for **proving homeomorphism**, and for **disproving diffeomorphism**.

Proving Homeomorphism: George Reeb's Criterion 10.

Theorem: Let M^n be a smooth closed manifold. If there is a Morse function $M^n \to \mathbb{R}$ with only two critical points, then M is a topological *n*-sphere.

Disproving Diffeomorphism: The Signature Formula 11.

We want to prove that certain S^3 -bundles over S^4 are not diffeomorphic to S^7 . The proof will be based on a linear equation

$$45 \sigma(M^8) = 7 p_2 \langle M^8 \rangle - p_1^2 \langle M^8 \rangle.$$

relating three different integer invariants for a **smooth** closed oriented 8-manifold.

I Must Answer Three Questions:

- What are these invariants?
- How does one prove such a relation between them?
- What does this have to do with 7-dimensional manifolds?

Signature and Pontrjagin Numbers

• For any closed oriented 4k-dimensional manifold we can form the **signature** $\sigma(M^{4k})$ of the quadratic form

$$x \mapsto x^2 = x \cup x$$
 from $H^{2k}(M^{4k}; \mathbb{Z})$ to $H^{4k}(M^{4k}; \mathbb{Z}) \cong \mathbb{Z}$.

Simply diagonalize this form over the real numbers, and count the number of positive diagonal entries minus the number of negative ones.

This is an integer valued topological invariant.

• The two numbers $p_2 \langle M^8 \rangle$ and $p_1^2 \langle M^8 \rangle$ are integer invariants called **Pontrjagin numbers**.

Their description will require several steps.

Some Classical Constructions

Hassler Whitney showed that any smooth M^n has an essentially unique embedding $M^n \xrightarrow{\subset} \mathbb{R}^L$ provided that the dimension *L* is large enough (L > 2n + 1).

Hermann Grassmann studied the manifold $G_n(\mathbb{R}^L)$ consisting of all *n*-dimensional planes through the origin in \mathbb{R}^L .

Let \mathbf{G}_n be the limit as $L \to \infty$,

 $G_n(\mathbb{R}^{n+1}) \subset G_n(\mathbb{R}^{n+2}) \subset \cdots \subset \mathbf{G}_n.$

The (Generalized) Gauss Map

For a smooth manifold $M^n \subset \mathbb{R}^L$, the "Gauss map"

$$\mathbf{g} = \mathbf{g}_{\scriptscriptstyle M^n} : M^n o G_n(\mathbb{R}^L) \ \subset \mathbf{G}_n$$

sends each $x \in M^n$ to the tangent *n*-plane $T_x M^n$, translated to the origin.

The Characteristic Homology Class 15.

Every closed oriented *Mⁿ* has a **fundamental homology class**

 $\mu \in H_n(M^n).$

For any smooth $M^n \subset \mathbb{R}^{n+L}$, the Gauss map $\mathbf{g}: M^n \to \mathbf{G}_n$ induces a homomorphism

$$\mathbf{g}_*: H_n(M^n) \to H_n(\mathbf{G}_n)$$
.

If M^n is oriented, then the fundamental homology class $\mu \in H_n(M^n)$ maps to a "characteristic homology class"

$$\langle M^n \rangle = \mathbf{g}_*(\mu) \in H_n(\mathbf{G}_n).$$

Pontrjagin Numbers

Lev Pontrjagin introduced what we would now describe as cohomology classes

 $p_i \in H^{4i}(G_n)$.

Modulo elements of finite order, these generate the cohomology ring $H^*(G_n)$.

Ь

Consider sequences

$$1 \leq i_1 \leq i_2 \leq \cdots \leq i_h$$
 with $\sum_{i=1}^n i_i = k$

so that $p_{i_1}p_{i_2}\cdots p_{i_h} \in H^{4k}(\mathbf{G}_n)$. Taking n = 4k, we can evaluate each such product on the characteristic homology class $\langle M^{4k} \rangle \in H_{4k}(\mathbf{G}_{4k})$. This yields an integer $p_{i_1}p_{i_2}\cdots p_{i_h}\langle M^{4k} \rangle$ called a **Pontriagin number**.

René Thom's Cobordism Theory

17.

Two closed oriented *n*-manifolds are **oriented cobordant** if their disjoint union, suitably oriented, is the boundary of a compact oriented (n + 1)-manifold.

Theorem (mostly due to Thom). The characteristic homology class $\langle M^n \rangle \in H_n(\mathbf{G}_n)$ is a complete cobordism invariant:

 M_1 and M_2 are cobordant if and only if $\langle M_1^n \rangle = \langle M_2^n \rangle$.

(Proved by Thom up to elements of finite order. C. T. C. Wall took care of 2-primary elements; Sergei Novikov and I took care of elements of odd order.)

The Cobordism Group Ω_n

18.

The set of all cobordism classes of smooth oriented closed *n*-manifolds forms an **abelian group** Ω_n , with the disjoint union as sum operation.

Corollary. The correspondence (cobordism class of M^n) $\mapsto \langle M^n \rangle \in H_n(\mathbf{G}_n)$ embeds Ω_n as a subgroup of finite index $\Omega_n \xrightarrow{\subset} H_n(\mathbf{G}_n)$.

The Signature Formula

Lemma (Thom). If n = 4k, then the signature of the quadratic form

$$x \mapsto x^2 = x \cup x$$
 from $H^{2k}(M^{4k})$ to $H^{4k}(M^{4k}) \stackrel{\cdot \mu}{\longrightarrow} \mathbb{Z}$

is a cobordism invariant; yielding a homomorphism

 $\sigma: \Omega_{4k} \to \mathbb{Z}$. **Corollary.** The signature of M^{4k} can be expressed as a linear combination of Pontrjagin numbers, with **rational** coefficients.

$$\sigma(M^{4k}) = \sum a(i_1, \ldots, i_h) p_{i_1} \cdots p_{i_h} \langle M^{4k} \rangle,$$

to be summed over all $0 < i_1 \le i_2 \le \cdots \le i_h$ with sum k.

Hirzebruch computed these rational coefficients in terms of

Bernoulli numbers

From 8-Manifolds to Exotic 7-Spheres.

Let E^n be a smooth compact *n*-manifold, bounded by a smooth manifold homeomorphic to $\mathbb{S}^{n-1} = \partial \mathbb{D}^n$. Choosing a homeomorphism $f : \mathbb{S}^{n-1} \to \partial E^n$, we can paste \mathbb{D}^n onto E^n to obtain a closed topological manifold

 $M^n = E^n \cup_f \mathbb{D}^n.$

20.

En Dr Dr

If f is a diffeomorphism, then M^n can be made into a smooth manifold.

The Obstruction to Smoothness.

Now consider the case n = 8.

The signature of $M^8 = E^8 \cup_f \mathbb{D}^8$ can be computed from the cohomology of the pair $(E^8, \partial E^8)$.

Similarly, the Pontrjagin number $p_1^2 \langle M^8 \rangle$ can be computed from knowledge of E^8 as a smooth manifold.

We can then solve for

$$p_2 \langle M^8 \rangle = \frac{45 \sigma (M^8) + p_1^2 \langle M^8 \rangle}{7}.$$

Whenever this quotient is not an integer, we have proved that ∂E^8 cannot be diffeomorphic to \mathbb{S}^7 .

The Connected Sum Operation

If M_1 and M_2 are smooth, oriented, connected *n*-manifolds, then the **connected sum** $M_1 \# M_2$ is a new smooth, oriented, connected *n*-manifold.

22.

This operation is well defined up to orientation preserving diffeomorphism. Thus we obtain a commutative, associative semigroup \mathcal{M}_n of oriented diffeomorphism classes; with the class of \mathbb{S}^n as identity element, $M^n \# \mathbb{S}^n \cong M^n$.

A Test for Invertibility

23.

Lemma (Barry Mazur).

(1) M^n is invertible $(M^n \# N^n \cong \mathbb{S}^n)$

$$\Leftrightarrow (\mathbf{2}) \ M^n \smallsetminus \{\text{point}\} \stackrel{\subset}{\longrightarrow} \mathbb{S}^n$$

 $\Leftrightarrow (\mathbf{3}) \ M^n \smallsetminus \{\text{point}\} \cong \mathbb{R}^n$

 \Rightarrow (4) M^n is a topological sphere.

Proof that (1) \implies (3), using "infinite connected sums".

First consider the sum $\mathbb{S}^n \# \mathbb{S}^n \# \mathbb{S}^n \# \cdots \cong \mathbb{R}^n$...

 $(M\#N)\#(M\#N)\#\cdots \cong \mathbb{S}^n\#\mathbb{S}^n\#\cdots \cong \mathbb{R}^n$ $\cong M\#(N\#M)\#(N\#M)\#\cdots \cong M\#\mathbb{R}^n \cong M\smallsetminus\{\text{point}\}.$

Thus (1) \implies (3). The proof that (3) \implies (2) \implies (1) is not difficult, so this proves the Lemma.

Work with Michel Kervaire

Let $\mathscr{S}_n \subset \mathscr{M}_n$ be the sub-semigroup of smooth oriented manifolds homeomorphic to \mathbb{S}^n . For example

$$\mathscr{S}_1 = \mathscr{S}_2 = \mathscr{S}_3 = 0.$$

Theorem. This semigroup \mathscr{S}_n is a finite abelian group for n > 4, with

$$\mathscr{S}_5 = \mathscr{S}_6 = \mathbf{0},$$

but:

Three Necessary Ingredients for our Work 25.

Witold Hurewicz introduced higher homotopy groups.

Jean-Pierre Serre developed the algebraic machinery needed to compute these groups

Raoul Bott computed the homotopy groups of the infinite rotation group **SO**.

Further Developments by Many People.

Frank Adams Greg Brumfiel Bill Browder Mark Mahowald and for the latest news:

Mike Hill, Doug Ravenel and Mike Hopkins The group \mathcal{S}_n is now completely known for $n \le 64$, EXCEPT FOR THE CASE n = 4 !

Dimensional Four: The Big Mystery.

Theorem (Simon Donaldson). If M^4 is smooth, simply-connected, with positive definite quadratic form, then the quadratic form can be diagonalized $\implies M^4$ is homeomorphic to a connected sum

27.

 $\mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2.$

But there are many unimodular quadratic forms which cannot be diagonalized; hence there are many **topological** manifolds which cannot be given any differentiable structure.

The combination of Donaldson's methods and Freedman's methods had amazing consequences:

Manifolds Homeomorphic to \mathbb{R}^4 .

Theorem (Cliff Taubes). There are uncountably many distinct diffeomorphism classes of smooth manifolds homeomorphic to \mathbb{R}^4 .

28.

By way of contrast:

Theorem (Stallings + Munkres + Hirsch). If $n \neq 4$, then any smooth manifold homeomorphic to \mathbb{R}^n must actually be diffeomorphic to \mathbb{R}^n . $\implies \mathscr{S}_n$ is a group for $n \neq 4$.

But the semigroup \mathscr{S}_4 is completely unknown: Is it trivial?

> Is it finite? Is it a group?