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QQuasiconformal homeomorphisms and DENNIS SULLIVAN
dynamics
I. Solution of the Fatou-Julia problem on
wandering domains

These Poincaré deformations (1883) have been t

By DENNis SuLLivan

Introduction
R
If one perturbs the analytic dynamical system z — z% on the Riemann

- R”
sphere C to z = z2 + az for small a, the following happens: Before perturbation

the round unit circle C is invariant under iteration of R and R is expanding on C
(JR(z)] > 1), R has dense orbits, and is even ergodic on C relative to linear
measure. After perturbation R, now preserves a unique Jordan curve C, close to
C and again R is expanding and has dense orbits on C,. Now C, is not a
rectifiable curve. It is a fractal curve with Hausdorff dimension > 1 which
increases with |a|. (Figure 1). The intricacies of C are of a self-similar nature
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The Dictionary Sullivan, 1970/80s

We close with a sample of the dictionary between analytic iteration and
crete subgroups of PSL(2, C) which lies behind this series of papers.

Complex analytic Discrete subgroups
iteration of PSL(2, C)
entire mapping arbitrary Kleinian group
Blaschke product arbitrary Fuchsian group
rational mapping, R finitely generated Kleinian group, I
degree of mapping, d number of generators, n
(2d — 2) analytic parameters (3n — 3) analytic parameters
(2d — 2) critical points (?) ends of hyperbolic 3 manifolds

Fatou-Julia limit set ([8], [11]) Poincare limit set (1880)




Carpets

Renormalization

Figure 6. Sierpinski curves.




HYPERBOLIC MANIFOLDS

INTERVAL MAPS

SIEGEL DISKS/

Parallels

CIRCLE MAPS

Infinitely renormalizable map

f(z)=224¢c, ceR

Siegel linearizable r
f(z) =¥z 422, 0

Discrete surface group

R-quadratic polynomial

Tuning invariant

Continued fractic

Nonlinear rotation

C=81 %8y %83 "

0= [al»a%"']

Y > (T ») — 52 2 — A=~ .2 .
I'c PSLa(C) f@=2"te F(&) = Azt 2% or Bounded combinatorics Bounded type
M =H*/T Az%(z - 3) /(1 - 3z) P(f) = quasi-Cantor set P(f) = quasi-circ
Representation Quadratic-like map Holomorphic commutin, Quadratic-like map Holomorphic pai
. . . . Feigenbaum polynomial Golden mean polync
p:m(S)—1 f:U =V pair (f, g)

Ending lamination

e(M) € GL(S)

Tuning invariant

7(f) = (e(R"(/))}

(Zp,z +1)

(8',z+6)

Continued fraction

frn=1,2,4,8,16,...

" n=123581

0 = [a1,az2, -], A = ?7

(F(f), J(f)) is uniformly twisting

Inj. radius(M) >r >0

Bounded combinatorics

Bounded type

The critical point of f is a deep point of K(f)

Cut points in A

= JT® (Cantor sets)

Postcritical set P(f)

= (Cantor set)

Conjugacies are C1*® on P(f)

— U@ @ -0

= (circle or quasi-circle

(R-tree of e(M), 71 (S))

(lim Z/p;,x v x4 1)

(R/Z,z v x4 0)

A(I) is locally connected

J(f) is locally connected

J(f) is locally connected

areaA(I') =0

area(J(f)) = 07

Inj. radius € [r, R] in core(M)

(F(f), J(f)) is uniformly twisting

Mapping class ¥» € Mod(S)

Kneading permutation

Automorphism (¢ 'l) of 7?2

Renormalization Operators

R(p) = potp™!

R(f) = f"(2)

R(f.9) = (f*g" f°g")

Stable Manifold of Renormalization

M = asymptotic fiber

f = limit of doublings

6 = golden ratio

Elliptic points deep in A(I")

Critical point ¢o(f) deep in J(f) or K(f)

pod~™" , n=1,23...

ffon=1,2,4,8,16,...

fmon=1,23,58,...

Geometric limit of R"(p)

Quadratic-like tower

(fi 1 €Z); fis1=fiofi

Tower of commuting pairs

Hyperbolic 3-manifold S x [0,1]/v

fibering over the circle

Fixed-points of

Renormalization

Conformal structure is C

1+ _rigid at deep points ==

Renormalization converges exponentially fast

M is asymptotically rigid

J(f) is self-similar at the critical point ¢ (f)

Table 2.

Riemann surfaces

D

Fuchsian group G C Aut(A)

Blaschke p

Quasifuchsian group T’

Mating F'(z) of

Unit tangent bundle T;(X)

Riemann su

Geodesic flow

Susy

Closed geodesic ~y

Periodi

Length of ~

Log of the 1

Length of a random geodesic

Growth of (f™)

Weil-Petersson metric on 7,

Metric

Dictionary

Table 1.

Kleinian group I'" = m1(S)

Quadratic-like map f : U -

Limit set A(T)

Julia set J(f)

Bers slice By

Mandelbrot set M

Mapping class ¢ : S — S

Kneading permutation

b AH(S) — AH(S)

Renormalization operator

Cusps in 0By

Parabolic bifurcations in

Totally degenerate

group I'

Infinitely renormalizable
polynomial f(2) = 22 +

Ending lamination

Tuning invariant

Fixed point of

Fixed point of R,

Hyperbolic structure on
L3 ol

Solution to Cvitanovi¢-Feigen
£/ N\

PAUSEE P R PSCN
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Algebraic integers

What is the smallest integer X\ > [?

O

@)
@)
Q
@)
7

O

Mahler measure

M(A) = product of conjugates with |Ai| > |




Lehmer’s Number

Aio = 1.176280...

Pio(x) = x!%4x%—x/—xb—x>—x*—x3+x+|




Smallest Salem Numbers, by Degree

Py(z)
Ay | 2.61803398 22— 3z +1
Ay | 1.72208380 gt — 3 -2 -z +1
¢ | 1.40126836 26—t — 23 — 2?2+ 1
Mg | 1.28063815 8 —xd —axt—3 41
Ao | 1.17628081 | #1004+ 22 — 2" — 28 — 25—zt — 3 4+ 2+ 1
Ao | 1.24072642 | 12 — 2 4210 — g9 — 20 — g3 4 22 — x4+ 1
A4 | 1.20002652 gl — gt — 210 4 27—t 23 41

Conjecture (Lehmer) Ao = inf M() over
all algebraic integers with M(x)>0.




Lehmer’s polynomial = det(xl-w) for Eo

QtI'GQQOQ

[Compare |2, 18, 30, ]

Theorem(2002). The spectral radius of any w in any
Coxeter group satisfies r(w) = | or
r(w) = Aio> 1.

Proof: uses Hilbert metric on the Tits cone.




Lehmer’s number for topologists

SISO

P = Ta Ts in the mapping-class
group for genus 5

h(p) = log Ao




Entropy

Entropy of English = h = about log 3 (or less)
Schneier, Applied Cryptography, 1996

Number of possible English books with N characters
is about 3N (not 26N

X compact, f: X — X continuous

h(f) =log A &
[{orbit patterns of length N}| ~ AN,




Torus examples

X = torus R"/Z"
f : X =X linear map induced by A in GLn(Z)

h(f) = log (product of eigenvalues of A with |A| > 1)
= log [spectral radius of f | H'(X) ]

Lehmer’s conjecture <

h(f) = log Aio for torus maps.




Entropy on Complex Surfaces

X = smooth projective surface over C
f: X = X holomorphic

Q. What small values can h(f) assume?




Entropy and Salem numbers

cf. Shub’s
entropy

Theorem (Gromoyv, Yomdin) ot
conjecture

h(f) = log [spectral radius of flH"(X)] .

Corollary. For projective surfaces,

h(f) = log [a Salem number A]
= spectral radius on H?(X)




Flavors of Projective Surfaces

Theorem (Cantat) A surface X admits an automorphism
f : X =X with positive entropy only if X is birational to:

4 o acomplex torus C?/N\, log(A4)
22 e a K3 surface* or (‘or Enriques)
o e the projective plane P~. } log(Aio)

Q. What is the minimum of h(f) for each type?

A. It is the minimum consistent with Lehmer’s conjecture.




Theorem (Sullivan, 1971)

The mapping-class group
of a simply-connected compact manifold X
is an arithmetic group.

Synthesis Problem:
Salem number

= automorphism of Hodge theory
= projective surface + map




Abelian varieties C2/A\

Theorem. For a projective torus, one can achieve
h(f) = log(A4) and this is optimal. e = 1.722.)

Synthesis:  fIH'(X,Z)= 74 = N\ c C2 = X= C*/\

f = [? “IU] EXE —EXE E = C/Z[w)




Rational Surfaces

X = blowup of P? at n points

H2(X,Z) = Z'™ > Kx* = [En lattice]

Kx =(-3,1,1,...,1) 0—0—I+F0 o

Aut(X) c W(E.) (Nagata)

Theorem. The Coxeter automorphism of E, can be
realized by an automorphism F, : X,— X, of P? blown up

at n suitable points.




Lehmer’s automorphism

Fio : Xi10—Xio

First case where h(F,) > 0

Theorem (2005). The map Fio has minimal positive entropy
among all surface automorphisms, namely

h(Fi0) = log(A0).




Rational Surfaces: Synthesis

X = blowup of n points on a cuspidal cubic C in IP?

[En lattice] = Pic°(X,) — Pic®(C) = C
s 5

Coxeter element w Eigenvalue A of w

A eigenvector of w = positions of n points on C




ints on a cuspidal cubic

10 po

(x,y)= (vy/x) + (a,b)

Bedford-Kim




K3 surfaces/R

X c R3 defined by
(1+x2)(1+y?)(1+z%) + A xyz = 2

f: X=X defined by
f — Ix° Iyo IZ

The map f is area-preserving!

Mazur




K3 surfaces/R




K3 Surfaces: Synthesis
Gross-M, 2002

Input: Degree 22 Salem polynomial with |P(x1)|=1.

P(t) = 1+t-t3-2t4-3t>-3t6-2t"+2t°+4t1045¢1]
+411242t713-2t15-3t16-3t17-2¢18-¢194¢21 4122

Output: K3 surface X and f: X =X,
with det(tl-flH%(X)) = P(t).

X is not projective!




Islands over C

Theorem. There exists a K3 surface automorphism f : X = X with
bositive entropy and an invariant island - a Siegel disk. Any such
example is non-projective.

Theorem (Oguiso, 2003). Blowing up XxX gives a simply-
connected 4-dimensional counterexample to the Kodaira
conjecture.

h(f) = log [a degree 22 Salem number]
Pic(X) =0

cf. Voisin




K3 surfaces and glue

Theorem (2009) There exists a K3 surface automorphism
with h(f) = log(A0), and this is optimal.

(Gross-M - deg(N\)=22)
(Oguiso - Nj4 = 1.2002...)
()\/o = 1.1 76...)




K3 automorphism with h(f) = log Ao

Coxeter automorphism of Fg(a) Positive automorphism of A & Ao
(3,7) IF3 (0,4)

@)

Identity factor Ejg
(0,8)

Es
Pic(X)
X Signature (0,12)

A determinant 9
O f 2 blows down to 3 points




Projective K3 surfaces

Theorem (2009). For projective K3 surfaces, one can achieve

h(f) = log(Ne).

Theorem (201 1). In fact, one can achieve h(f) = log(Ao),
and this is optimal.

Ae=1.401..>> Nj10=1.176)




Projective K3 - entropy log A¢

Salem factor F3 Coxeter automorphism of As(2)
(1,5) (0,2)
S Fs
Coxeter automorphism of Ajs(a) Fi3 Identity factor
(2,10) (0,2)

Pic(X): signature (1,9), determinant 9477 = 36- |3




Projective K3 with h(f) = log(As)

Bedford-Kim, 201 |
f:P3—oP3

(% ¥ 2) = (1,2, (atwy+z)/x)
Preserves a pencil of

quartic = K3 surfaces —
in projective space




Opening the Kahler cone
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