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Lattès Maps

A Lattès map f : Ĉ→ Ĉ is a rational map that is obtained from a
finite quotient of a conformal torus endomorphism,

i.e.,

T Ā−−−−→ T

Θ

y yΘ

Ĉ f−−−−→ Ĉ

where Ā is a map of a torus T that is a quotient of an affine map
of the complex plane, and Θ is a finite-to-one holomorphic map.
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where Ā is a map of a torus T that is a quotient of an affine map
of the complex plane, and Θ is a finite-to-one holomorphic map.

Qian Yin



Lattès Maps

A Lattès map f : Ĉ→ Ĉ is a rational map that is obtained from a
finite quotient of a conformal torus endomorphism, i.e.,
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Ĉ f−−−−→ Ĉ
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Some Properties of Lattès Maps

Julia set is the whole sphere

postcritical set is finite

post(f ) =
⋃
n≥1

{f n(c) : c ∈ crit(f )}

correspond to parabolic orbifolds (Thurston,
Douady-Hubbard ’93)
measure of maximal entropy is absolutely continuous w.r.t.
Lebesgue measure (Zdunik ’90)
only rational maps that admit an “invariant line field” on
their Julia set (Conjecture)
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Review: Expanding Thurston maps

A Thurston map f : S2 → S2 is a branched covering map with
# post(f ) <∞.

It is expanding if there exists a Jordan curve
C ⊆ S2 with C ⊇ post(f ) and

lim
n→∞

mesh(f ,n, C) = 0,

where mesh(f ,n, C) denotes the supremum of the diameters of
all connected components of the set f−n(S2 \ C).
Example: Lattès maps are expanding Thurston maps.
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Cell decompositions

Fix Thurston map f : S2 → S2, Jordan curve C ⊇ post(f )

0-level cell decomposition: post(f ) = 0-vertices,
closure of connected components of C \ post(f ) = 0-edges
closure of connected components of S2 \ C = 0-tiles

1-level cell decomposition: f−1(post(f )) = 1-vertices,
f−1(0-edges) = 1-edges, f−1(0-tiles) = 1-tiles

...

n-level cell decomposition: f−n(post(f )) = n-vertices,
f−n(0-edges) = n-edges, f−n(0-tiles) = n-tiles

...
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Dn(f , C)

Let Dn = Dn(f , C) be the minimum number of n-tiles needed to
join two non-adjacent 0-edges.

Proposition (Y ’11)
Let f be a Thurston map without periodic critical points and let
C ⊇ post(f ) be a Jordan curve. Then there exists a constant
C > 0 such that

Dn = Dn(f , C) ≤ C deg(f )n/2

for all n ≥ 0.
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Dn = 2n = (deg g)n/2
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Dn = 2n < 6n/2 = (deg f )n/2
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Main Theorem

Theorem (Y ’11)

A map f : S2 → S2 is topologically conjugate to a Lattès map iff
the following conditions hold:

f is an expanding Thurston map;
f has no periodic critical points;
there exists c > 0 such that Dn ≥ c(deg f )n/2 for all n > 0.
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Sketch of proof

exists visual metric d on S2 with expansion factor (deg f )1/2

(S2,d) is Ahlfors 2-regular (using Bonk-Meyer ’10)
(S2,d) is quasisymmetric to the Riemann sphere (using
Bonk-Kleiner ’02)
f is topologically conjugate to a rational map R (using
Bonk-Meyer ’10)
the Hausdorff measure w.r.t. d is absolutely continuous
with respect to the Lebesgue measure (using
Heinonen-Koskela ’98)
R is a Lattès map (using Zdunik ’90, Meyer ’09)
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Thank you!
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