Lattès Maps and Combinatorial Expansion

Qian Yin

June 2, 2011

Lattès Maps

A Lattès map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a rational map that is obtained from a finite quotient of a conformal torus endomorphism,

Lattès Maps

A Lattès map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a rational map that is obtained from a finite quotient of a conformal torus endomorphism, i.e.,

\[

\]

Lattès Maps

A Lattès map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a rational map that is obtained from a finite quotient of a conformal torus endomorphism, i.e.,

$$
\begin{aligned}
& \mathcal{T} \xrightarrow{\bar{A}} \mathcal{T} \\
& \theta \downarrow \text { • } \\
& \widehat{\mathbb{C}} \xrightarrow{f} \widehat{\mathbb{C}}
\end{aligned}
$$

where \bar{A} is a map of a torus \mathcal{T} that is a quotient of an affine map of the complex plane,

Lattès Maps

A Lattès map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a rational map that is obtained from a finite quotient of a conformal torus endomorphism, i.e.,

$$
\begin{aligned}
\mathcal{T} \xrightarrow{\bar{A}} & \mathcal{T} \\
\Theta \mid & \\
& \\
\widehat{\mathbb{C}} \xrightarrow{f} & \stackrel{\ominus}{\mathbb{C}}
\end{aligned}
$$

where \bar{A} is a map of a torus \mathcal{T} that is a quotient of an affine map of the complex plane, and Θ is a finite-to-one holomorphic map.

Some Properties of Lattès Maps

- Julia set is the whole sphere

Some Properties of Lattès Maps

- Julia set is the whole sphere
- postcritical set is finite

$$
\operatorname{post}(f)=\bigcup_{n \geq 1}\left\{f^{n}(c): c \in \operatorname{crit}(f)\right\}
$$

Some Properties of Lattès Maps

- Julia set is the whole sphere
- postcritical set is finite

$$
\operatorname{post}(f)=\bigcup_{n \geq 1}\left\{f^{n}(c): c \in \operatorname{crit}(f)\right\}
$$

- correspond to parabolic orbifolds (Thurston, Douady-Hubbard '93)

Some Properties of Lattès Maps

- Julia set is the whole sphere
- postcritical set is finite

$$
\operatorname{post}(f)=\bigcup_{n \geq 1}\left\{f^{n}(c): c \in \operatorname{crit}(f)\right\}
$$

- correspond to parabolic orbifolds (Thurston, Douady-Hubbard '93)
- measure of maximal entropy is absolutely continuous w.r.t. Lebesgue measure (Zdunik '90)

Some Properties of Lattès Maps

- Julia set is the whole sphere
- postcritical set is finite

$$
\operatorname{post}(f)=\bigcup_{n \geq 1}\left\{f^{n}(c): c \in \operatorname{crit}(f)\right\}
$$

- correspond to parabolic orbifolds (Thurston, Douady-Hubbard '93)
- measure of maximal entropy is absolutely continuous w.r.t. Lebesgue measure (Zdunik '90)
- only rational maps that admit an "invariant line field" on their Julia set (Conjecture)

Review: Expanding Thurston maps

A Thurston map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is a branched covering map with $\# \operatorname{post}(f)<\infty$.

A Thurston map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is a branched covering map with $\# \operatorname{post}(f)<\infty$. It is expanding if there exists a Jordan curve $\mathcal{C} \subseteq \mathbb{S}^{2}$ with $\mathcal{C} \supseteq \operatorname{post}(f)$ and

$$
\lim _{n \rightarrow \infty} \operatorname{mesh}(f, n, \mathcal{C})=0
$$

Review: Expanding Thurston maps

A Thurston map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is a branched covering map with \# post $(f)<\infty$. It is expanding if there exists a Jordan curve $\mathcal{C} \subseteq \mathbb{S}^{2}$ with $\mathcal{C} \supseteq \operatorname{post}(f)$ and

$$
\lim _{n \rightarrow \infty} \operatorname{mesh}(f, n, \mathcal{C})=0,
$$

where $\operatorname{mesh}(f, n, \mathcal{C})$ denotes the supremum of the diameters of all connected components of the set $f^{-n}\left(\mathbb{S}^{2} \backslash \mathcal{C}\right)$.

Review: Expanding Thurston maps

A Thurston map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is a branched covering map with \# post $(f)<\infty$. It is expanding if there exists a Jordan curve $\mathcal{C} \subseteq \mathbb{S}^{2}$ with $\mathcal{C} \supseteq \operatorname{post}(f)$ and

$$
\lim _{n \rightarrow \infty} \operatorname{mesh}(f, n, \mathcal{C})=0,
$$

where $\operatorname{mesh}(f, n, \mathcal{C})$ denotes the supremum of the diameters of all connected components of the set $f^{-n}\left(\mathbb{S}^{2} \backslash \mathcal{C}\right)$.
Example: Lattès maps are expanding Thurston maps.

Review: Expanding Thurston maps

Cell decompositions

Fix Thurston map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$, Jordan curve $\mathcal{C} \supseteq \operatorname{post}(f)$

Cell decompositions

Fix Thurston map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$, Jordan curve $\mathcal{C} \supseteq \operatorname{post}(f)$
0 -level cell decomposition: $\operatorname{post}(f)=0$-vertices, closure of connected components of $\mathcal{C} \backslash \operatorname{post}(f)=0$-edges closure of connected components of $\mathbb{S}^{2} \backslash \mathcal{C}=0$-tiles

Cell decompositions

Fix Thurston map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$, Jordan curve $\mathcal{C} \supseteq \operatorname{post}(f)$
0 -level cell decomposition: $\operatorname{post}(f)=0$-vertices, closure of connected components of $\mathcal{C} \backslash \operatorname{post}(f)=0$-edges closure of connected components of $\mathbb{S}^{2} \backslash \mathcal{C}=0$-tiles
1-level cell decomposition: $f^{-1}(\operatorname{post}(f))=1$-vertices, $f^{-1}(0$-edges $)=1$-edges, $f^{-1}(0$-tiles $)=1$-tiles

Cell decompositions

Fix Thurston map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$, Jordan curve $\mathcal{C} \supseteq \operatorname{post}(f)$
0 -level cell decomposition: $\operatorname{post}(f)=0$-vertices, closure of connected components of $\mathcal{C} \backslash \operatorname{post}(f)=0$-edges closure of connected components of $\mathbb{S}^{2} \backslash \mathcal{C}=0$-tiles

1-level cell decomposition: $f^{-1}(\operatorname{post}(f))=1$-vertices,
$f^{-1}(0$-edges $)=1$-edges, $f^{-1}(0$-tiles $)=1$-tiles
n-level cell decomposition: $f^{-n}(\operatorname{post}(f))=n$-vertices, $f^{-n}(0$-edges $)=n$-edges, $f^{-n}(0$-tiles $)=n$-tiles

$D_{n}(f, \mathcal{C})$

Let $D_{n}=D_{n}(f, \mathcal{C})$ be the minimum number of n-tiles needed to join two non-adjacent 0-edges.

$D_{n}(f, \mathcal{C})$

Let $D_{n}=D_{n}(f, \mathcal{C})$ be the minimum number of n-tiles needed to join two non-adjacent 0-edges.

Proposition ($Y^{\prime} 11$)

Let f be a Thurston map without periodic critical points and let $\mathcal{C} \supseteq \operatorname{post}(f)$ be a Jordan curve. Then there exists a constant
$C>0$ such that

$$
D_{n}=D_{n}(f, \mathcal{C}) \leq C \operatorname{deg}(f)^{n / 2}
$$

for all $n \geq 0$.

$$
D_{n}=2^{n}=(\operatorname{deg} g)^{n / 2}
$$

$D_{n}=2^{n}<6^{n / 2}=(\operatorname{deg} f)^{n / 2}$

Main Theorem

Theorem ($\mathrm{Y}^{\prime} 11$)

A map $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is topologically conjugate to a Lattès map iff the following conditions hold:

- f is an expanding Thurston map;
- f has no periodic critical points;
- there exists $c>0$ such that $D_{n} \geq c(\operatorname{deg} f)^{n / 2}$ for all $n>0$.

Sketch of proof

- exists visual metric d on \mathbb{S}^{2} with expansion factor $(\operatorname{deg} f)^{1 / 2}$

Sketch of proof

- exists visual metric d on \mathbb{S}^{2} with expansion factor $(\operatorname{deg} f)^{1 / 2}$
- $\left(\mathbb{S}^{2}, d\right)$ is Ahlfors 2-regular (using Bonk-Meyer '10)
- exists visual metric d on \mathbb{S}^{2} with expansion factor $(\operatorname{deg} f)^{1 / 2}$
- $\left(\mathbb{S}^{2}, d\right)$ is Ahlfors 2-regular (using Bonk-Meyer '10)
- $\left(\mathbb{S}^{2}, d\right)$ is quasisymmetric to the Riemann sphere (using Bonk-Kleiner '02)
- exists visual metric d on \mathbb{S}^{2} with expansion factor $(\operatorname{deg} f)^{1 / 2}$
- $\left(\mathbb{S}^{2}, d\right)$ is Ahlfors 2-regular (using Bonk-Meyer '10)
- $\left(\mathbb{S}^{2}, d\right)$ is quasisymmetric to the Riemann sphere (using Bonk-Kleiner '02)
- f is topologically conjugate to a rational map R (using Bonk-Meyer '10)
- exists visual metric d on \mathbb{S}^{2} with expansion factor $(\operatorname{deg} f)^{1 / 2}$
- $\left(\mathbb{S}^{2}, d\right)$ is Ahlfors 2-regular (using Bonk-Meyer '10)
- $\left(\mathbb{S}^{2}, d\right)$ is quasisymmetric to the Riemann sphere (using Bonk-Kleiner '02)
- f is topologically conjugate to a rational map R (using Bonk-Meyer '10)
- the Hausdorff measure w.r.t. d is absolutely continuous with respect to the Lebesgue measure (using Heinonen-Koskela '98)
- exists visual metric d on \mathbb{S}^{2} with expansion factor $(\operatorname{deg} f)^{1 / 2}$
- $\left(\mathbb{S}^{2}, d\right)$ is Ahlfors 2-regular (using Bonk-Meyer '10)
- $\left(\mathbb{S}^{2}, d\right)$ is quasisymmetric to the Riemann sphere (using Bonk-Kleiner '02)
- f is topologically conjugate to a rational map R (using Bonk-Meyer '10)
- the Hausdorff measure w.r.t. d is absolutely continuous with respect to the Lebesgue measure (using Heinonen-Koskela '98)
- R is a Lattès map (using Zdunik '90, Meyer '09)

Thank you!

