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The Euler equation of ideal hydrodynamics on a Riemannian
manifold is

ut +∇uu = −∇p, div u = 0

where u is the velocity field and p is the pressure. The pressure is
determined implicitly by ∆p = − div (∇uu).

Fluid particles move according to the flow equation

ηt = u ◦ η.

Hence the Euler equation for particles is

ηtt = −∇p ◦ η.

We view this as an ordinary differential equation on an
infinite-dimensional space. The right side is as smooth as η and u.

The goal is to use finite-dimensional techniques for ODEs to gain a
deeper understanding of the equation (well-posedness, stability,
etc.)



Arnold discovered that the Euler equation for particles is the
geodesic equation on the group Dµ(M) of volume-preserving
diffeomorphisms, where the Riemannian metric is

〈〈u ◦ η, v ◦ η〉〉 =

∫
M
〈u, v〉 dµ,

for divergence-free vector fields u and v . He computed curvature
and drew conclusions about Lagrangian stability.

This metric is right-invariant under the group operation of
composition. This is why the geodesic equation splits into two
first-order equations.

Many other first-order partial differential equations can be
expressed as geodesic equations on groups with right-invariant
metrics: Camassa-Holm, Korteweg-de Vries, etc. Thus we can try
to understand local existence in terms of a Riemannian exponential
map, global existence in terms of the Hopf-Rinow theorem,
stability in terms of Riemannian curvature, etc.



General geodesic equation on a Lie group with right-invariant
metric:

du

dt
+ ad?u u= 0

dη

dt
= DRη(u)

where 〈〈ad?u u, v〉〉 = 〈〈u, adu v〉〉 for all v ∈ g.

The first equation implies conservation of vorticity:

d

dt
(Ad?η u) = 0

which reduces to

I curl u ◦ η = curl u0 for 2D fluids,

I curl u ◦ η = Dη(curl u0) for 3D fluids.

The geodesic equation can thus be written as

dη

dt
= DL?η−1u0.



Caution!
Although many PDEs can be formally derived as geodesic
equations, this is only really useful if the equation actually becomes
an ODE.
For example, although the Euler equation is rigorously an ODE in a
Hilbert space, the KdV equation

ut + uux + uxxx = 0

is not. Thus solutions do not depend smoothly on initial
conditions, the sectional curvature is unbounded, etc.

The difficulties arise since the group of volume-preserving maps is
only a smooth manifold if we consider diffeomorphisms that are at
least C 1 (e.g., of Sobolev class Hs for s > 1

2 dim(M) + 1). But the
Riemannian metric is only L2, and the volume-preserving maps in
the L2 metric do not form a manifold. The same thing happens
with other physically relevant PDEs.
So you get nothing for free.



Infinite dimensions complicate things even in the simplest cases
(where the Riemannian distance generates the topology).
Example:
Ellipsoid in Hilbert space:

`2 = {(x1, x2, . . .)
∣∣∣ ∑

k

x2k <∞}

M = {(x1, x2, . . .) ∈ `2
∣∣∣ ∑

k

akx
2
k = 1}.

Depending on how we choose the positive constants ak , there are
examples where [Grossman]:

1. there is no minimizing geodesic joining the poles

2. there is an convergent sequence of conjugate point locations
(i.e., the derivative of the exponential map is not
injective—monoconjugate)

3. there is a limiting point for which the exponential map
derivative is injective but not surjective—epiconjugate



The Hopf-Rinow theorem generally fails in infinite dimensions.
Even if the manifold is metrically complete, there may not be a
geodesic joining two points [Atkin], and geodesics may not extend
for all time.
The Morse index theorem also generally fails in infinite dimensions.
Exception:
The free loop space ΩM with metric

〈〈u, v〉〉 =

∫
S1

〈u(s), v(s)〉+
〈Du
ds
,
Dv

ds

〉
ds

satisfies the Hopf-Rinow theorem, i.e., it is metrically complete,
and there are minimizing geodesics between any two loops.
In addition, the Riemannian exponential map is Fredholm
[Misio lek]. That is, its differential is of the form “invertible plus
compact” which implies that its kernel and cokernel are both
finite-dimensional. Hence conjugate points cannot cluster, and
“monoconjugate” is the same thing as “epiconjugate.” This works
because the curvature operator is compact.



For other Riemannian manifolds (e.g., diffeomorphism groups with
right-invariant metrics), proving Hopf-Rinow is a lot harder. For
example, on the volumorphism group with weak L2 metric (giving
the equations of fluid mechanics) we know

I The manifold is not metrically complete. In three dimensions,
the metric completion is the space of all measurable
volume-preserving maps [Shnirelman], which is not known to
be a manifold. In two dimensions, the metric completion is
unknown.

I Existence of minimizing geodesics between is unknown,
although work of Brenier and Shnirelman gives answers
among generalized flows (where particles may split).

I Extension of geodesics for all time is known to work in two
dimensions, but is famously unknown in three dimensions.
Constantin has shown that global existence for the 3D Euler
equation would imply global existence for 3D Navier-Stokes
(for small viscosity), solving a Millennium problem.



So global questions are hard, because we lack compactness.

Local questions are easier. For diffeomorphism groups with weak
right-invariant metrics, there is a simple criterion for the
exponential map to be Fredholm (which implies conjugate points
are discrete along a geodesic and of finite order). This is now
well-understood for fluids [Ebin-Misio lek-P] and for other geodesic
continuum equations like Camassa-Holm [Misio lek-P].

In particular, Fredholmness is true for fluids in two dimensions and
false for fluids in three dimensions.



Example:
On S2, rigid rotation is a (steady) solution of the Euler equations.
A small (Lagrangian) perturbation is introduced at every point,
which grows but then shrinks again; at the end we have a
conjugate point.



In general for the unit-speed rotation geodesic on S2 the conjugate
points happen at times{

kn(n + 1)π

m

∣∣∣m, n, k ∈ N,m ≤ n

}
which is a discrete subset of [π,∞).

For the unit-speed left-invariant field geodesic on S3, the
conjugate points happen at time{nπ

m

∣∣∣m, n ∈ N,m ≥ n
}

which is dense in [π,∞).



This is proved by analyzing the Jacobi equation, the linearized
geodesic equation. In general the Jacobi equation is

D2J

dt2
+ R(J, η̇)η̇ = 0

along a geodesic η, and the differential of the exponential map is
given by

(d expid)(tv)(tw) = J(t),

where J is the Jacobi field with J(0) = 0 and J̇(0) = w0 along the
geodesic η with η(0) = id and η̇(0) = v .

If the curvature operator were compact, we could use this directly.
This rarely happens however.



It is much easier to incorporate right-invariance, which splits the
Jacobi equation in the same way that it splits the geodesic
equation.
Linearize: δη = y ◦ η and δu = z , so that

dη

dt
= DRηu =⇒ dy

dt
− adu y= z

du

dt
+ ad?u u = 0 =⇒ dz

dt
+ ad?u z + ad?z u= 0.

Rewrite as

d

dt
(Adη−1 y) = Adη−1 z

d

dt
(Ad?η z) + Ad?η ad?z u = 0.



Then let y = Adη v and z = Adη w , so that

dv

dt
= w

d

dt
(Ad?η Adη w) + Ad?η ad?Adη w u = 0.

Finally conservation of vorticity is Ad?η u = u0, which implies
Ad?η ad?Adη w u = ad?w u0, so the Jacobi equation for the Jacobi field
J = δy = DLη(v) is

d

dt

(
Ad?η Adη

dv

dt

)
+

d

dt
ad?v u0 = 0.

So if for an initial velocity u0 the operator v 7→ ad?v u0 is compact,
then we can deduce the solution operator is Fredholm. This comes
from expressing it as the integral of the positive-definite operator
Ad?η Adη plus a compact perturbation.



For volumorphisms in the L2 metric:

I In two dimensions we compute (assuming H1(M) = 0, but it
works in general) that

ad?w u0 = sgrad ∆−1〈w ,∇ curl u0〉,

so the operator is compact.

I In three dimensions we compute that

ad?w u0 = curl ∆−1[w , curl u0],

so the operator is not compact.

The only possible drawback is needing to actually establish
Fredholmness in the Hs space, which involves checking for
compactness in ad-star and then using commutator estimates. This
almost always works, except in one case: surfaces with boundary.
There, weak Fredholmness (of the differential in L2) is known but
strong Fredholmness (of the differential in Hs) is unknown.



Generalizations:
I Shnirelman has shown that the exponential map on Dµ(T2) is

quasiruled, which means it is close enough to a linear map
that a degree can be defined for it. The conjecture is that this
leads to surjectivity of the Riemannian exponential map (i.e.,
that any area-preserving map in two dimensions can be
reached from the identity by a geodesic). This is known not
to be true in three dimensions [Shnirelman].

I The paper [Misio lek, P] shows that the exponential map of
the Camassa-Holm and EPDiff equations, and more generally
any Sobolev H r metric on a diffeomorphism group for r large
enough, is Fredholm. Relation to global existence is not clear:
the Camassa-Holm equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0

is known to have solutions which blow up, although the
Lagrangian version has global solutions. This is related to the
fact that composition for diffeomorphisms is not a smooth
map in Sobolev spaces: reducing to the Euler equation
sometimes results in loss of smoothness.



Example:
The periodic Hunter-Saxton equation

utxx + uuxxx + 2uxuxx = 0

corresponds to geodesics on the round sphere.

The coadjoint operator is

w 7→ ad?w u0 = (∂2x )−1(u′′′0 w + 2u′′0w
′ − µ(u′′0w

′))

which is compact.

So the exponential map should be Fredholm. Yet the exponential
map on the round sphere is not Fredholm: conjugate point of
infinite order.

However solutions of the Hunter-Saxton equation always blow up
before they reach any conjugate point.



For the three-dimensional Euler equation, the failure of
Fredholmness means it is very easy to find conjugate points. We
just need to solve a finite-dimensional ODE along a Lagrangian
path γ,

D2J

dt2
+∇2p(J) + R(J, γ̇)γ̇ = 0,

where ∇2p is the Hessian of the pressure function evaluated along
the path.
Alternatively we can solve the left-translated version

d

dt

(
Dη†Dη

dj

dt

)
+ ω0 ×

dj

dt
= 0;

Here ω0 is the initial vorticity.
Solving one of these equations at any point will give a conjugate
point on the volumorphism group [P, 2006]. (This doesn’t work in
two dimensions since it would contradict Fredholmness, which
makes conjugate points harder to find.)



This can be used to give geometric insight into blowup because of
the Beale-Kato-Majda criterion, which says that a solution of the
3D Euler equation blows up at time T if and only if∫ T

0
sup
x∈M
|Dη(t, x)(ω0(x))| dt =∞.

If we assume the order can be interchanged, then this is a
condition on blowup of vorticity along a single Lagrangian path,
which means it should be expressible in terms of conjugate points.

In fact we can prove [P, 2010] that if there is such a path along
which vorticity blows up, then typically we will have a sequence of
conjugate point locations approaching the blowup time, i.e., times
tn such that tn ↗ T with η(tn) conjugate to η(tn+1) for every n.
The exceptions can be characterized concretely in terms of
eigenvalues of the stretching matrix.



The consequence is that we get some real geometric information
about blowup just by studying conjugate points. The existence of
a conjugate point means that the geodesic fails to locally minimize
between the endpoints, which is a geometric condition that makes
sense even in the L2 topology on volume-preserving maps.

To understand this, we need to have a better way of understanding
fluids in L2. Approximations may be helpful: for example, we could
consider particles moving with the constraint of preserving volumes
of cubes, a finite-dimensional geometric model. Alternatively we
can consider flows which preserve volumes of finitely many sets or
integrals of finitely many functions. Unfortunately we lose the
group structure in such models. There are also group
approximations which do not have a Riemannian geometric
structure, but we probably need both.
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