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Guiding principles in probability

Symmetry
If different outcomes are equivalent (from the perspective of the
mechanism causing them), they should have the same probability.

Universality
In many instances, if a random outcome is a consequence of many
different sources of randomness, the details of its description
should not matter much. (Outcomes of successive coin tosses: de
Moivre 1733, Laplace 1812, ...)
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Einstein-Smoluchowski-Bachelier

Independently in early 1900s give a semi-heuristic description of
Brownian motion.

1. Physics: Effect of water
molecules ⇒ Brownian
motion.

2. Finance: Effect of agents ⇒
evolution of stock prices.

3. Mathematics: Heat equation.

Comes with quantitative predictions, verified experimentally by
Perrin in 1908 (Nobel prize 1926). Lays foundations for the works
of Black & Scholes, 1973 (1997 “Nobel prize” in Economics).
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Mathematical description / universality

Wiener (late 1920’s) provides full
mathematical description of Brownian
motion.

Went on to become an early re-
searcher in robotics and cybernetics.

Donsker (1951) shows that Brownian
motion is “universal” and describes
the large-scale behaviour of a multi-
tude of processes with different mi-
croscopic descriptions.
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What about two dimensions?

Two dimensional analogue of random walk:

Random function h : Grid→ Z such that |h(x)− h(y)| = 1 for
x ∼ y. What does h look like at very large scales?



Free field

Large scale behaviour should be described by “free field”, Gaussian
generalised function with Eh(x)h(y) = − log |x− y|. No proof yet!
(But for similar models, see Borodin, Johansson, Kenyon,
Okounkov, Peled, Toninelli, etc.)

Formally, P(dh) ∝ exp(−
∫
|∇h|2 dx) “dh”.



Beyond “free” systems

Ising model: state space σ : Λ→ {±1}. Probability to see σ
proportional to exp(β

∑
x∼y σxσy).

At critical temperature, one has a non-Gaussian scaling limit
(rigorous proofs only over last few years), conjectured to be
universal for many phase transition models.



Some properties of these objects

In general: Gaussianity not expected when interactions are present.

Scale invariance holds for such scaling limits essentially by
definition. Markov property in space(-time) natural for systems
with local interactions. Translation invariance and Rotation
invariance holds as soon as limit is canonical in some sense. Leap
of faith: conformal invariance.

Two dimensions: conformal invariance gives infinite-dimensional
symmetry group. Consequence: a lot is known explicitly for a
one-parameter family of conformally invariant / covariant objects
called conformal field theories. (From probability perspective, see
SLE, QLE, CLE, ...)
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Crossover regimes

Consider models that converge to a Gaussian fixed point when
“zooming in” and a non-Gaussian FP when “zooming out”.
Described by simple “normal form” equations:

∂th = ∂2xh+ (∂xh)2 + ξ − C , (KPZ; d = 1)

∂tΦ = −∆
(
∆Φ + CΦ− Φ3

)
+∇ξ . (Φ4; d = 2, 3)

Here ξ is space-time white noise (think of independent random
variables at every space-time point).

KPZ: universal model for weakly asymmetric interface growth.

Φ4: universal model for phase coexistence near mean-field.

Problem: red terms ill-posed, requires C =∞!!
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A general theorem

Joint with Y. Bruned, A. Chandra, I. Chevyrev, L. Zambotti.

Consider a system of semilinear stochastic PDEs of the form

∂tui = Liui +Gi(u,∇u, . . .) + Fij(u)ξj , (?)

with elliptic Li and stationary random (generalised) fields ξj that
are scale invariant with exponents for which (?) is subcritical.

Then, there exists a canonical family Φg : (u0, ξ) 7→ u of
“solutions” parametrised by g ∈ R, a finite-dimensional nilpotent
Lie group built from (?). Furthermore, the maps Φg are continuous
in both of their arguments.
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Some clarifications

Canonicity

Family {Φg : g ∈ R} is canonical, but parametrisation only
canonical modulo shifts: action of R on (F,G) such that

Φ
(F,G)
gg̃ = Φg̃(F,G)

g .

For smooth ξ, one has a classical solution map Φ(F,G) and

Φ
(F,G)
g = Φ(g◦ĝ(ξ))(F,G).

Continuity

Measure S of “size” of noise. Take ξn with supn S(ξn) <∞ and
ξn → ξ weakly in probability. Then Φg(·, ξn)→ Φg(·, ξ) in some
Cα, locally uniformly in time and initial condition, in probability.
However, ξ 7→ ĝ(ξ) not continuous, not even defined!
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Construction of Φg

Crucial remark: Locally, near any space-time point z, solution looks
like a linear combination of functions / distributions Πzτ such
that, for each index τ , Πzτ is scale-invariant with exponent deg τ .

Deterministic analogue: solutions to parabolic PDEs are smooth,
so are locally a linear combination of (ΠzX

k)(z̃) = (z̃ − z)k,
scale-invariant with exponent |k|.

Methodology: Work in spaces of distributions locally described by
ΠzH for continuous coefficient-valued functions H and look for a
fixed point problem for H.
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Example / problem

Solution to
∂th = ∂2xh+ f(h)(∂xh)2 + σ(h)ξ ,

locally given by h(z̃) ≈
(
ΠzH(z)

)
(z̃) with

H = h1 + σ(h) + (σσ′)(h) + (fσ2)(h) + h′X

+ 2(fσ2σ′)(h) + 2(f2σ3)(h) + (f ′σ3)(h)

+
1

2
(σ2σ′′)(h) + (σ(σ′)2)(h) + (fσ2σ′)(h)

+ (f ′σ)(h)h′ + 2(fσ)(h)h′ + . . .

Problem: Πz = G ? (∂xG ? ξ)2 is divergent!
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Steps of proof

1. Show that (h, h′) depend continuously on the data
{Πzτ : z, τ} in suitable topology enforcing some natural
algebraic relations.

2. Replace Πzτ by “renormalised version” Πg
zτ such that

algebraic relations between the Πg
zτ ’s remain unchanged.

(Determines the group R.)

3. Choose g such that EΠg
zτ = 0 for deg τ ≤ 0. (Determines the

element g from the law of ξ.)

4. Show stability / continuity of ξ 7→ Π
g(ξ)
z .

5. Show that the substitution Π 7→ Πg is equivalent to replacing
(f, σ) by g(f, σ) for suitable action of R.
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(See you tomorrow...)
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