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Overview of lectures

These lectures survey recent results on the ‘semi-classical’
asymptotics as λj →∞ of eigenfunctions of the Laplacian

∆ ϕj = −λ2
j ϕj

on a Riemannian manifold (M, g) of dimension m.

The main point is to relate nodal sets, Lp norms, or matrix
elements 〈Aϕj , ϕj〉 to dynamics of the geodesic flow.

This line of research is basic in quantum mechanics and its relation
to classical mechanics. Let us recall the early history.



Visualizing an atom

Quantum mechanics resolves a puzzle about stability of atoms.
Just before quantum mechanics, a hydrogen atom was roughly
pictured as a 2-body planetary system, i.e. in terms of the classical
Hamiltonian H(x , ξ) = 1

2 |ξ|
2 + V (x) with V = − 1

|x | .



Visualizing an atom

But that can’t be right: the electron would radiate energy and
spiral into the nucleus.

So Bohr proposed that the electron can only occupy special stable
orbits whose ‘actions’ were integral.



Bohr-Sommerfeld quantizable orbits

The ‘energy levels’ are a discrete set of periodic orbits γ whose
actions

∫
γ pdq satisfy the Bohr-Sommerfeld quantization condition.



Bohr-Sommerfeld quantizable orbits

The Bohr theory is semi-classical: the energy levels are determined
by classical orbits satisfying a quantization condition.

But this cannot be used for Helium, much less more complex
atoms: bound orbits of Hydrogen are all periodic but very few
Helium orbits are periodic and it is next to impossible to find them.

A completely different approach was developed by Heisenberg,
Schrödinger, Dirac etc.



Schrödinger equation

Schrödinger (Zurich, 1926) proposed the accepted theory:

Quantisierung als Eigenwertproblem, Annalen der Physik
(1926)

The energy states of the electron are modelled as eigenfunctions of
the Schrödinger operator:

Ĥϕj := (−~2

2
∆ + V )ϕj = Ej(~)ϕj ,

where ∆ =
∑

j
∂2

∂x2
j

is the Laplacian and V is the potential, a

multiplication operator on L2. Here ~ is Planck’s constant. We let
{ϕj} denote an orthonormal basis (ONB) of eigenfunctions.



Stationary states

Quantum mechanics replaces classical mechanics with linear
algebra (an eigenvalue problem). The time evolution of an energy
state is given by

U~(t)ϕj = e−i
t
~ (− ~2

2
∆+V )ϕj = e−i

tEj (~)

~ ϕj .

The only observable quantities are the the modulus square
|ϕj(x)|2dx (the probability density of finding the particle at x) and
matrix elements

〈Aϕj , ϕj〉

of observables (A is a self adjoint operator). The factors of

e−i
tEj (~)

~ cancel and so the particle evolves as if “stationary”.



How do eigenstates relate to classical mechanics?
Quantum mechanics resolved the puzzle of how the electron can
be moving and stationary at the same time. But it also replaced
the geometric (classical mecahnical) Bohr model of classical orbits
with eigenfunctions

Ĥϕj := (−~2

2
∆ + V )ϕj = Ej(~)ϕj .

How does the semi-classical Bohr theory connect to the
Schrödinger theory? How do we relate eigenfunctions to classical
mechanics?



Intensity plots and excursion sets

The goal is to understand the size and shapes of eigenfunctions of
Schrödinger operators and how they relate to classical mechanics.
The modulus square |ϕj(x)|2dx = the probability density of finding
the particle at x . Below are graphed the intensity plots which
darken in the regions where |ϕj(x)|2 is large (most probable
locations).



Nodal plots
At the opposite are plots of the nodal hypersurfaces: the zero set
Nj = {x : ϕj(x , ~) = 0}.

These are the (windowpane) points where the probability (density)
of the particle’s position vanishes.



Experimental view of nodal sets of hydrogen: Stodoina



Vibrating string

Nodal sets were originally studied for vibrating strings, drums,
membranes...the nodal set consists of the points where a vibrating
membrane is stationary. In dimension 1 we are dealing with
eigenfunctions ϕ′′ = −λϕ with ϕ(0) = ϕ(L) = 0, i.e.
ϕ(x) = sin nπx

L . The zeros are called nodes. Anti-nodes are the
local maxima and minima. The nth eigenfunction has n − 1 nodes.



Sturm Liouville

More generally, one may study the real or complex zeros of
one-dimensional Sturm-Liouville equations

(−~2 d2

dx2
+ V (x))ψ(x) = E (~)ψ(x), x ∈ R,

on all of R or on a finite interval. Below are graphics of Harmonic
oscillator eigenfunctions, V = x2. The nth eigenfunction has n
nodes.



Naive higher dimensional generalization

A naive idea is that in dimension 2, the nth eigenfunction might
have n nodal domains, n2 critical points (anti-nodes).

This turns out to be completely wrong in general. Even on the
standard sphere or square, there are sequences of eigenfunctions
with eigenvalue tending to infinity with just two or three nodal
domains and just 10 critical points.



Higher dimensions; separation of variables

The only simple case where the 1D picture generalizes is when one
can separate variables and write eigenfunctions as products,
ψ(x , y) = f (x)g(y) of 1-dimensional functions. The system is then
completely integrable , and the nodal sets form checkerboard
patterns. If one take linear combinations, the checkerboard breaks
up.



The main questions

Relate asymptotics of nodal sets, Lp norms etc. as the ‘energy’ or
eigenvalue λ increases to the dynamics of the geodesic flow.

We survey some recent results on:

I Nodal sets and domains: Numbers of nodal domains when the
geodesic flow of (M, g) is ergodic; Volume of nodal sets in the
real and complex domains; equidistribution of complex nodal
sets in the ergodic case;

I Lp norms: Eigenfunctions which have extremal sup norms, i.e.
which are extremal for ||ϕλ||L

∞
||ϕ||L2

, and the (M, g) which carry

them;



Notation

Let (M, g) be a compact Riemannian manifold and let

∆g =
1
√

g

n∑
i ,j=1

∂

∂xi

(
g ij√g

∂

∂xj

)
.

be its Laplace operator.
Let {ϕj} be an orthonormal basis of eigenfunctions

∆ϕj = −λ2
j ϕj , 〈ϕj , ϕk〉 = δjk

The NODAL SET of ϕj is its zero set:

Nϕj = {x : ϕj(x) = 0}.



Polynomials versus eigenfunctions

Let ∆ϕj = −λ2
j ϕj .

I λj is known as the frequency, 1
λj

as the wave length. ϕj

oscillates on the scale 1
λj

.

I λj is analogous to the degree of a polynomial. For spherical
harmonics on Sd , eigenfunctions of eigenvalue ∼ N2 are
restrictions to Sd of harmonic homogeneous polynomials of
degree N on Rd+1.

I Nodal sets are analogous to real algebraic varieties of degree
λj . But eigenfunctions have more zeros than a typical
polynomial:ϕj has a zero in every ball of radius a

λj
for

a > 0 dependingly only on (M, g).



Elliptic versus hyperbolic

The eigenvalue equation (∆ + λ2
j ) ϕj = 0 appears to be elliptic.

But the correct notion of elliptic takes λ2
j as part of the symbol:

the symbol is |ξ|2g − λ2 on T ∗M where |ξj |2 = g ijξiξj . It vanishes
on the ‘energy surface’ λjS

∗M

The equation should be viewed as

I Elliptic on the scale r = ε
λj

for small ε. I.e. on balls Br (p) of

this radius, mean value inequalities, maximum principle etc
are valid; they are not valid on larger balls containing more
than one wave length.

I Hyperbolic on larger scales, e.g. r independent of λ. Natural
tool on such scales is the wave equation. The relation to
classical mechanics is only visible on this scale.



What is known about nodal sets, nodal domains and Lp

norms

As in complex analysis, we would like to relate growth of
eigenfunctions to growth of zero sets.

Growth is measured by Lp norms of L2-normalized eigenfunctions:

||ϕλ||pLp =

∫
M
ϕp
λdVg .

The NODAL SET of ϕλ is its zero set:

Nϕλ = {x : ϕλ(x) = 0}.

A NODAL DOMAIN is a connected component of M\Nϕλ .



Nodal domains

The nodal domains partition M into disjoint open sets:

M\Nϕλ =

N(ϕλ)⋃
j=1

Ωj .

When 0 is a regular value of ϕλ the level sets are smooth
hypersurfaces. In 2D, if 0 is a singular value, the singular set has
Hausdorff codimension 1 in the nodal set (2 in M).

Courant theorem: N(ϕλn) ≤ n. Improvements: Pleijel, Bourgain.

Not known How N(ϕλ) grows with λ– even if it does.



Nodal domains for <Y `
m spherical harmonics: geodesic flow

integrable: Eigenfunctions coming from separation of
variables



Degree 40 spherical harmonic



Volume of nodal hypersurfaces

∆ϕλ = −λ2ϕλ.

Conjecture
(Yau, 1978) For any C∞ metric,

c1λ ≤ Hn−1(Nϕλ) ≤ C2λ.

Lower bound proved in dimension 2: Brüning (’78).
Best upper bound to date inC∞ case: (Hardt-Simon (1987)):
Hn−1(Nϕλ) ≤ C2λ

λ.

Theorem
(Donnelly-Fefferman, 1988) Suppose that (M, g) is real analytic
and ∆ϕλ = λ2ϕλ. Then

c1λ ≤ Hn−1(Nϕλ) ≤ C2λ.



Some known results and conjectures

(1) Length in dimension 2 (Brüning, Yau, Donelly-Fefferman,
Dong, 80’s):

Cg

√
λ ≤ |Nϕλ | ≤ Cbλ

3/4.

I There exist (M, g) and sequences ϕλjk , λjk →∞, with a
uniformly bounded number of nodal domains: N(ϕλjk ) ≤ 3 on
the standard sphere (Hans Lewy), and ≤ 10 for some metrics
on the 2-torus ( Jakobson-Nadirashvili). Hence, N(ϕλjk ) does
not have to grow to infinity.

I Conjecture: for any g there exists some sequence of
eigenfunctions such that N(ϕλjk )→∞.



Recent lower bounds on volumes of nodal hypersurfaces:
C∞ case

Recently (2012) (by very different methods):

I (Colding-Minicozzi; Sogge-Z) Hn−1(Nϕλ) ≥ λ
3−n

2 ;

I (Hezari-Sogge) Hn−1(Nϕλ) ≥ λ ||ϕλ||2L1 , which would prove
Yau conjecture for sequences with ||ϕλ||L1 ≥ C > 0.



Distribution of nodal hypersurfaces

How do nodal hypersurfaces wind around on M.?
We put the natural Riemannian hyper-surface measure dHn−1 to
consider the nodal set as a current of integration Nϕj ]: for
f ∈ C (M) we put

〈[Nϕj ], f 〉 =

∫
Nϕj

f (x)dHn−1.

Problems:

I How does 〈[Nϕj ], f 〉 behave as λj →∞.

I If U ⊂ M is a nice open set, find the total hypersurface
volume Hn−1(Nϕj ∩ U) as λj →∞.

I How does it reflect dynamics of the geodesic flow?



Physics conjecture on real nodal hypersurface: ergodic case

Conjecture
Let (M, g) be a real analytic Riemannian manifold with ergodic
geodesic flow, and let {ϕj} be the density one sequence of ergodic
eigenfunctions. Then,

1

λj
〈[Nϕj ], f 〉 ∼

1

Vol(M, g)

∫
M

fdVolg .

Evidence: it follows from the “random wave model”, i.e. the
conjecture that eigenfunctions in the ergodic case resemble
Gaussian random waves of fixed frequency.



Ergodic billiards
We expect the dynamics of the geodesic flow to have an important
impact on the number of nodal domains. In the case of chaotic
geodesic flow, we expect nodal domains to be random.



Classical and Quantum ergodicity

I Classical ergodicity: G t preserves the unit cosphere bundle
S∗gM. Ergodic = almost all geodesics are uniformly dense in
S∗gM.

I Quantum ergodicity: eigenfunctions become uniformly
distributed in phase space (Shnirelman; Z, Colin de Verdière,
Zworski-Z) . E.g. in configuration space M,∫

E
ϕ2
j dVg →

Vol(E )

Vol(M)
, ∀E ⊂ M : Vol(∂E ) = 0.

I Ergodicity forces eigenfunctions to oscillation maximally in all
directions, causing many zeros.



Over-view of new results
I (i) Counting nodal domains: on a surface of negative

curvature (hence with ergodic geodesic flow) and with a
concave boundary, the number of nodal domains tends to
infinity (2014, J. Jung-Z). This is based on:

I (ii) Counting intersections of nodal lines and geodesics: upper
and lower bounds (Jung-Z, Z, Toth-Z 2013). This is based on

I Improving L∞ estimates of eigenfunctions and on “quantum
ergodic restriction theorems”. Real analytic surfaces (M, g)
carrying eigenfunctions ϕjk of maximal L∞ growth must have
points p so that all geodesics through p are closed (Sogge-Z,
2014).

I Phase space distribution of nodal hypersurfaces: If (M, g) is
real analytic, then the zero sets {ϕC

j = 0} in MC ' T ∗M =
complexification of M become equidistributed in MC and on
complex geodesics (Z, 2007, 2012).



New result of Z with Junehyuk Jung

There are two cases where we can prove that the number of nodal
domains must tend to infinity along (almost the) entire sequence
of eigenfunctions of an orthonormal basis {ϕj}:

I When (M, g) is a non-positively curved surface with concave
boundary (“Sinai billiard”);

I When (M, J, σ, g) is a Riemann surface surface with
anti-holomorphic involution σ and with Fix(σ) a separating
set = complexification of a real algebraic curve that divides its
complexification. g is any negatively curved metric on M.



Number of nodal domains of Dirichlet/Neumann
eigenfunctions of Sinai billiards tends to infinity

N(ϕλ) = #nodaldomainsof ϕλ

∆ϕj = −λ2
j ϕj , 〈ϕj , ϕk〉 = δjk .

Theorem
Let (X , g) be a surface with curvature k ≤ 0 and let D be a small
disc in X . Remove one (or more non-overlapping) disc(s) to obtain
a Sinai-Lorentz billiard M = X\D. Then for any orthonormal
eigenbasis {ϕj} of eigenfunctions, one can find a density 1 subset
A of N such that

lim
j→∞
j∈A

N(ϕj) =∞,



Sinai billiard: Ergodic, in fact hyperbolic



Number of domains tends to infinity for almost all
even/odd eigenfunctions of a real Riemann surface of
negative curvature

Theorem
Let (M, g) be a compact negatively curved C∞ surface with an
orientation-reversing isometric involution σ : M → M with Fix(σ)
separating. Then for any orthonormal eigenbasis {ϕj} of L2

even(Y ),
resp. {ψj} of L2

odd(M), one can find a density 1 subset A of N
such that

lim
j→∞
j∈A

N(ϕj) =∞,

resp.
lim
j→∞
j∈A

N(ψj) =∞,

For odd eigenfunctions, the conclusion holds as long as Fix(σ) 6= ∅.



Remarks

For a generic σ-invariant metric, the eigenvalues have multiplicity
1. Hence all eigenfunctions are either even or odd, and the parity
restriction is not actually a restriction.

A density one subset A ⊂ N is one for which

1

N
#{j ∈ A, j ≤ N} → 1, N →∞.



Hyperelliptic Riemann surface g = 2: Involution:
top-bottom

As this picture indicates, the surfaces in question are
complexifications of real algebraic curves. Fix(σ) is the underlying
real curve.



Hyperelliptic Riemann surface g = 3 top-bottom



Ghosh-Reznikov-Sarnak (2013)

They give a power law lower bound for special eigenfunctions on a
special (M, g) assuming the Lindelof hypothesis. The argument is
the inspiration for our work:

Theorem
(GRS)
Let ϕ be an even Maass-Hecke L2 eigenfunction on
X = SL(2,Z)\H. Denote the nodal domains which intersect a
compact geodesic segment β ⊂ δ = {iy | y > 0} by Nβ(ϕ).
Assume β is sufficiently long and assume the Lindelof Hypothesis
for the Maass-Hecke L-functions. Then

Nβ(ϕ)�ε λ
1

24
−ε

ϕ .



Modular surface and vertical geodesic



Equidistribution of nodal sets

The second result concerns the conjecture:

Conjecture
Let (M, g) be a real analytic Riemannian manifold with ergodic
geodesic flow, and let {ϕj} be the density one sequence of ergodic
eigenfunctions. Then,

1

λj
〈[Nϕj ], f 〉 ∼

1

Vol(M, g)

∫
M

fdVolg .

We cannot prove or disprove it. But we can prove a positive result
for

ANALYTIC CONTINUATIONS of EIGENFUNCTIONS ϕC
j to the

complexification MC ' T ∗M when the geodesic flow is ergodic.



Equi-distribution of complex nodal sets in the ergodic case

Theorem
(Z, 2007) Assume (M, g) is real analytic and that the geodesic flow
of (M, g) is ergodic. Then for all but a sparse subsequence of λj ,

1

λj

∫
N
ϕC
λj

f ωm−1
g → i

π

∫
Mε

f ∂∂
√
ρ ∧ ωm−1

g

Moreover (Z, 2013) Let γ be a geodesic satisfying a certain generic
assymetry condition (postponed). Then for all but a sparse
subsequence of λj , the intersection points ζk(λj) = tk + iτk of
γC ∩NϕC

λj

satisfy:

1

λj

∑
k

f (ζk(λj))→
∫
R

f (t)dt.

Thus, the complex zeros condense on the real points of the
geodesic and are uniformly distributed along it.


