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1. Lecture 1: Overview

Fix a prime number p for the series.

Introduction

1.1. What are the p-adic numbers?

Construction 1.1 (Analytic construction). There is a natural p-adic metric on Q determined by the norm

|a
b
| = (1/p)val(a)−val(b),

i.e., |ab | is small if the numerator is highly divisible by p. The completion of Q for this metric is the field Qp

of p-adic numbers. Thus, a typical α ∈ Qp is given by a series

α :=
∑
i≥−N

aip
i where 0 ≤ ai ≤ p− 1.

By construction, Qp is a complete valued field.

Remark 1.2. The p-adic metric is nonarchimedean, i.e. |a+ b| ≤ max(|a|, |b|),  

Zp := {a ∈ Qp||a| ≤ 1}

is a subring of Qp. Note that p ∈ Zp but 1/p /∈ Zp, so Zp is not a field. In fact, we have Zp[1/p] = Qp.

Construction 1.3 (Algebraic construction). One can show that

Zp = lim←−
n

Z/pnZ := {(an)n≥1 | an ∈ Z/pnZ, an+1 ≡ an mod pn}.

We obtain the following picture:

Qp
invert p←−−−−− Zp

kill p−−−→ Z/p = Fp.

Thus, Zp relates the characteristic 0 field Qp to the characteristic p field Fp.

Variant 1.4 (The p-adic complex numbers). One has a complete and algebraically closed extension Cp/Qp

defined via

Cp = Q̂p.

As before, we obtain the following picture:

Cp
invert p←−−−−− OCp

:= {a ∈ Cp | |a| ≤ 1} kill p1/n ∀n−−−−−−−−→ Fp.

Thus, OCp
relates algebraically closed fields of characteristic 0 and characteristic p.

Remark 1.5. (1) One has Cp ' C as abstract fields.

(2) The group GQp
:= Gal(Cp/Qp) is enormous, unlike Aut(C/R).
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1.2. How do the p-adic numbers arise in mathematics?

(1) Extrinsically. The algebraic definition of completion makes sense with Z replaced by other abelian
groups or fancier objects, e.g.,

• (Sullivan, Bousfeld-Kan) A topological space X admits a p-adic completion X̂ with each πi(X)

being a Zp-module (and πi(X̂) = πi(X)∧ under finiteness hypotheses).

• A complex M of abelian groups admits a p-adic completion M̂ with each Hi(M̂) being a Zp-

module (and Hi(M̂) = Hi(M)∧ under finiteness hypotheses).

(2) Intrinsically. There is a good notion of “analytic functions” over Qp or Cp,
 to a rich theory of p-adic analytic spaces, p-adic Hodge theory, etc.

Example 1.6. Tate showed (late 50s) that for any q ∈ Cp with 0 < |q| < 1, the space

Eq := C∗p/q
Z

is naturally an elliptic curve over Cp.

(3) As the glue between characteristic 0 and p. A nice algebraic variety object X/OCp
(e.g., an

algebraic variety) gives a very close relationship between the characteristic p variety XFp
and the

(p-adic) complex variety XCp

1.3. What are some of the new techniques?

(1) Perfectoid spaces.

These are “infinite sheeted covers of p-adic analytic spaces that are “infinitely ramified in charac-
teristic p””

Example 1.7. • Let D = {z ∈ Cp | |z| ≤ 1} be the closed unit disc. Then the inverse limit of

....D
z 7→zp−−−−→ D

z 7→zp−−−−→ D
z 7→zp−−−−→ D

is naturally a perfectoid space.
• Let E be an elliptic curve over Cp. Then the inverse limit of

....E
p−→ E

p−→ E
p−→ E

is naturally a perfectoid space.

Surprisingly, perfectoid spaces are simpler than p-adic analytic spaces in some important ways:
they are completely controlled by certain objects that live in characteristic p and are thus easier to
study (e.g., using the Frobenius endomorphism that acts on everything in characteristic p).

(2) Prismatic cohomology.

This is a new integral cohomology theory for geometric objects over Zp that interpolates between
all previous known p-adic cohomology theories available in this setting (e.g., de Rham, Hodge,
crystalline, étale), leading to new relations between these theories.

A sampling of applications

1.4. Number theory.

Theorem 1.8 (Scholze’s torsion Langlands theorem, 2013). For many number fields F , any Fp-automorphic

form on for GLn,F has an attached Galois representation Gal(F/F )→ GLn(Fp).

Remark 1.9. (1) The key technical theorem above was:

Theorem 1.10. Let Ag[p∞] be the space parametrizing abelian varieties A/Cp with a trivialization
of H1(A,Zp). Then Ag[p∞] is a perfectoid space.



p-adic algebraic geometry

(2) In 2018, the ten author1 paper used the above to prove the Sato-Tate conjecture for elliptic curves
over CM number fields.

1.5. Algebraic geometry.

Theorem 1.11 (Bhatt, 2020). Kodaira vanishing holds true, up to passage to finite covers, in mixed char-
acteristic algebraic geometry.

Remark 1.12. (1) The theorem has a very concrete consequence:

(∗) Let R = Z[x1, ..., xn] and let R+ be the integral closure of R in Frac(R). Then (p, x1, ..., xn) is
a regular sequence on R+, i.e., xi acts injectively on R+/(p, x1, ..., xi−1) for i ≥ 1.

(∗) is highly non-trivial even for n = 2.

(2) The proof of the theorem relies on prismatic cohomology as well as a p-adic Riemann-Hilbert corre-
spondence for perverse Fp-sheaves (Bhatt-Lurie) .

(3) (∗) implies the “direct summand conjecture” and the “weakly functorial big Cohen-Macaulay module
conjecture” of Hochster. These were recently shown by Y. André, and are known to imply most of
the “homological conjectures” in commutative algebra.

(4) Theorem forms an essential ingredient of the following:

Theorem 1.13 (BMPSTWW and Yoshikawa-Takkamatsu, 2020). The minimal model program holds
true in dimension ≤ 3 over Zp for p ≥ 5.

1.6. Homotopy theory. Write K(X) for the complex K-theory of a topological space X. Recall the
following basic result:

Theorem 1.14 (Bott, Atiyah-Hirzeburch). Given a nice topological space X, we can filter the K-theory
K(X) by singular cohomology, i.e., there exists a spectral sequence

Ei,j2 : Hi(X,Z(
−j
2

))⇒ Ki+j(X)

that degenerates modulo torsion, where Z(−j2 ) vanishes if j is odd, and is (2πi)−
j
2Z for j even.

Theorem 1.15 (Bhatt-Morrow-Scholze and Clausen-Mathew-Morrow, 2018). Let R be a p-adically complete
ring. Then we can filter the p-adic étale K-theory space Ket(R)∧ of R in terms of syntomic cohomology

H∗(R,Zp(
−j
2 )).

Remark 1.16. (1) The complementary case where p ∈ R∗ was conjectured by Beilinson (mid 80s), and
is classical (Thomason, Gabber, and Suslin (also 80s)).

(2) Syntomic cohomology is defined in terms of prismatic cohomology. In fact, the relevant cases of both
were discovered in [BMS] in a quest to prove the above theorem.

(3) Theorem has led to new calculations in algebraic K-theory.

1Allen, Calegari, Caraiani, Gee, Helm, Le Hung, Newton, Scholze, Taylor, Thorne
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2. Lecture 2: Prismatic cohomology

Unattributed results are joint with Morrow and Scholze

2.1. Understanding Fp-cohomology geometrically.

Question 2.1. Let M be a compact Kähler manifold. Hodge theory describes Hi(M,C) via differential
forms. How to see Hi(M,Z)tors or Hi(M,Fp) geometrically?

Notation 2.2. We set C := Cp = Q̂p, giving rise to

C
invert p←−−−−− OC := {a ∈ C | |a| ≤ 1} kill p1/n ∀n−−−−−−−−→ Fp =: k

as in the first talk.
Let X/OC be a smooth projective variety,

 smooth projective varieties XC/C and Xk/k in characteristics 0 and p respectively.

Theorem 2.3. Fp-cohomology classes on XC are obstructions to integration of forms on Xk. More precisely,
we have

(∗) dimFp
Hi(XC ,Fp) ≤ dimkH

i
dR(Xk).

Example 2.4. Say p = 2 and XC is an Enriques surface, so π1(XC) = F2, whence H1(XC ,F2) 6= 0. Then
(∗) implies that H1

dR(Xk) 6= 0 (W. Lang, Illusie).

Remark 2.5. (1) The inequality (∗) can be strict: there can be (topologically) distinct XC ’s for the
same Xk.

(2) (∗) was previously known in some special cases where it is an equality (Faltings, Caruso).

(3) (∗) has been extended to the “semistable” case (Cesnavicius-Koshikawa).

2.2. Fontaine’s deformation (aka the prismatic cohomology of a point).

Observation 2.6. If R is a commutative ring of characteristic p, then there is a natural “Frobenius”
endomorphism

φ : R→ R, φ(f) = fp.

By naturality, this acts on characteristic p algebraic geometry.

Can we do something similar in mixed characteristic?

Exercise 2.7. Show that there is no endomorphism φ : OC → OC such that φ(f) = fp mod p.

Nevertheless, Fontaine found a beautiful fix:

Construction 2.8 (Fontaine).

Ainf := W
(

lim←−(...→ OC/p
φ−→ OC/p

φ−→ OC/p)
)
.

So what does this really mean??

• By functoriality of W (−), the Frobenius on OC/p gives an automorphism φ : Ainf → Ainf such that

φ(f) = fp mod pAinf

for all f ∈ Ainf .
• There is an element u ∈ Ainf such that φ(u) = up and Ainf/(u− p) ' OC .

The triple (Ainf , φ, (u− p)) is an example of a perfect prism.

2.3. Prismatic cohomology in general.

Theorem 2.9. There exists a cohomology theory H∗�(X) valued in finitely generated Ainf-modules and

equipped with a (non-bijective!) Frobenius action φX : H∗�(X)→ H∗�(X) with the following properties:

(1) Extending scalars along Ainf → Ainf/(u− p) gives H∗dR(X).

(2) Extending scalars along Ainf → Ainf [1/(u− p)]∧ gives H∗(XC ,Zp)⊗Zp
Ainf [1/(u− p)]∧.

In particular, we obtain (∗) by semicontinuity.
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2.4. Where did prismatic cohomology come from? Two rather distinct inspirations:

(1) Abstract p-adic Hodge theory: Say X is defined over Zp, so GQp acts on L := Hi(XC ,Zp). Kisin
had attached (in 2006) certain Ainf -modules T (L) equipped with Frobenius actions to the GQp -
representation L/torsion with the property that T (L)/(u−p)T (L) is closely related toH∗dR(X)/torsion.

Question 2.10. Can one construct T (L) geometrically via X in a fashion that sees torsion?

(2) Hesselholt’s Bott periodicity: An important object in K-theory is the following spectrum attached
to a ring R:

TP (R) = THH(R)tS
1

:= (R⊗R⊗SR R)tS
1

Motivated by the Lichtenbaum-Quillen conjecture, Hesselholt had proved a periodicity theorem

π∗TP (OC) = Ainf [u, u
−1] with deg(u) = 2

and moreover observed that π∗TP (OC) has a natural Frobenius action.
( get purely p-adic proof of Bott periodicity (Hesselholt-Nikolaus).)

Question 2.11. Is there a version of this calculation for TP (X)?

Remark 2.12. By now, there are 3 constructions of prismatic cohomology, in increasing order of generality:

(1) p-adic Hodge theory — relies crucially on the Faltings almost purity theorem.

(2) Topological Hochschild homology — relies on quasi-syntomic descent.

(3) The prismatic site.

2.5. Other applications and followups.

(1) Prismatic cohomology is computed in local co-ordinates by q-deformations of de Rham complexes
 co-ordinate independence of q-de Rham cohomology (conjectured by Scholze).

(2) Syntomic cohomology and K-theory calculations (Liu-Wang, Bhatt-Clausen-Mathew,....).

Example 2.13 (Special case of odd vanishing). π∗K(OC/pn) is concentrated in even degrees.

Example 2.14 (Weight 1 syntomic cohomology). For any p-complete ring R, we get a fibre sequence

Zp(1)(R) = Pic(R)∧[−2]→ Fil1�R
φ−1−−−→ �R,

giving a (very weak) p-adic analog of the Lefschetz (1, 1)-theorem.

(3) Perfections in mixed characteristic (discussed next time)

(4) Potential applications to the p-adic Langlands program (e.g., calculation of H∗(Ω,Zp) by Colmez-
Dospinescu-Niziol),

(5) A good candidate for the notion of a “mod p crystalline Galois representation” (Drinfeld)
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Figure 1. The “values” over RΓ�(X) over Spec(Ainf) as provided by Theorem 2.9
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3. Lecture 3: Riemann-Hilbert and applications

3.1. Background over C.

Theorem 3.1 (Kodaira). Let X be a smooth projective variety over C, and let L be an ample line bundle
on X. Then Hi(X,L−1) = 0 for i < d = dim(X).

Proof sketch. For very ample L, if H ∈ |L| is a general section, then Hodge theory shows that Hi(X,L−1)
is a summand of Hi

c(X − H,C). Now X − H is a smooth affine of dimension d, so Artin vanishing gives
Hi
c(X −H,C) = 0 for i < d. For general L, use the cyclic covering trick. �

Remark 3.2. (1) Kodaira vanishing is false in characteristic p (Raynaud) and probably in mixed char-
acteristic (c.f., Totaro).

(2) Theorem KV is often useful in lifting sections, e.g., if H ∈ |L| is a section, then adjunction implies
that ωX(H)|D = ωH , and KV then implies that H0(X,ωX(H))→ H0(H,ωH) is surjective

3.2. Kodaira vanishing in mixed characteristic. Recall that a noetherian local ring (R,m) is called
Cohen-Macaulay (CM) if one of the following equivalent conditions holds true:

(1) Every system of parameters in m is a regular sequence.

(2) We have Hi
m(R) = 0 for i < dim(R).

(3) (If R admits a dualizing complex) The dualizing complex ωR is concentrated in a single degree.

Theorem 3.3 (Theorem CM). (1) Local: Let R be an excellent noetherian domain with p ∈ Rad(R).

Let R+ be an absolute integral closure of R, i.e., the integral closure of R in Frac(R). Then R+ is

CM over R at all points of characteristic p (
BMPSTWW⇒ R̂+ is CM over R).

(2) Global: Let V be a p-adic DVR, X/V a proper flat V -scheme of relative dimension d, and L a
semiample and big line bundle on X. Then there exists a finite cover π : Y → X such that π∗

annihilates the following groups:

(a) H>0(X,O)tors

(b) H>0(X,L)tors .

(c) H<d(X,L−1)tors.

Remark 3.4. (1) Theorem CM (1) is completely false in characteristic 0 if dim(R) ≥ 3.

(2) Characteristic p analog of Theorem CM is an important classical result of Hochster-Huneke (for L
ample, and V a field), very useful in modern F -singularity theory.

(3) Theorem CM (1) gives a new and explicit construction of “weakly functorial big CM algebras”
(André, Gabber)  (most) homological conjectures in commutative algebra.

(4) Theorem CM (2) admits a relative variant which is useful in applications, e.g., it is used to prove
that one can run the MMP in mixed characteristic in dimension ≤ 3 (BMPSTWW, and Takamatsu-
Yoshikawa).

Example 3.5 (Cone over an elliptic curve). Let R = ZpJx, yK/(x3 +y3 +p3), so R is a 2-dimensional normal
local domain with an isolated singularity. Let f : X = Bl0(Spec(R)) → Spec(R) be the resolution, so we
have

P2
Fp
⊃ E = V (x3 + y3 + z3) //

��

X

��
Spec(Fp) // Spec(R).

One calculates that H1(X,OX) ' H1(E,OE), which is a copy of Fp. The relative version of Theorem
CM 2a predicts that there exists a finite cover π : Y → X such that π∗ kills H1(X,OX). To construct it
explicitly, one proves, using deformation theory, that the finite flat map [p] : E → E deforms to a finite flat
cover π : Y → X, which one then checks does the job.
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3.3. Strategy of the proof of Theorem CM (1).

(1) (Bhatt-Lurie) Show that Hi
m(R+) is almost zero, i.e., annihilated by p1/pn for all n — uses p-adic

Riemann-Hilbert functor and a slightly surprising perversity statement on R[1/p].

(2) Show that Hi
m(R+) is actually zero — replace R+ with �R+ to exploit the Frobenius.

3.4. The Riemann-Hilbert functor (joint with Lurie).

Notation 3.6. Let C = Cp with residue field k = Fp. Let X/OC be a finitely presented flat scheme. Write
X0 := X ⊗OC

OC/p.

Construction 3.7 (Almost mathematics (Faltings)). The maximal ideal m ⊂ OC satisfies

m⊗LOC
m ' m.

Consequently, restriction of scalars D(OC/m)→ D(OC) is fully faithful, and one can contemplate the Verdier
quotient

D(OC)a := D(OC)/D(OC/m),

called the almost derived category of OC .
More generally, for X as above, one has an analogously defined almost derived category Dqc(X0)a.

Example 3.8. The inclusion m ⊂ OC is an almost isomorphism, but the inclusion (p) ⊂ OC is not.

Theorem 3.9 (The p-adic Riemann-Hilbert functor). There is an exact functor

RH : Db
cons(XC ,Fp)→ Db

qc(X0)a

with the following features:

(1) Normalization: We have RH(Fp) = OX,perfd/p := �X,perf/(p, d).

(2) Proper pushforward: For a proper map f : Y → X, we have a natural identification

RH ◦Rf∗ ' Rf∗ ◦RH.

(3) Almost coherence: For F ∈ Db
cons(X,Fp), the object RH(F ) is almost coherent, i.e., for any ε ∈ m,

there is some Mε ∈ Db
coh(X0) and a map Mε → RH(F ) whose cone is killed by ε.

Example 3.10.
⊕

n≥0OC/p1/pn is almost coherent over OC but not coherent.

(4) Duality: We have a natural isomorphism

RH ◦DV erd ' DGroth ◦RH

(5) Perversity: We have RH(pD≤0(XC ,Fp)) ∈ D≤0.

Remark 3.11. Some comments on the above

(1) (3) and (4) are inspired by work of Zavyalov (and Gabber), whose use such a strategy to prove
Poincare duality for the Fp-cohomology of rigid spaces.

(2) (4) and (5) that if F ∈ Perv(X;Fp), then RH(F )[− dim(XC)] is almost Cohen-Macaulay
 by (2), Theorem CM (1) in the almost category reduces to the following characteristic 0 statement:

Proposition 3.12. Let X/C be an irreducible algebraic variety. Let π : X+ → X be an absolute

integral closure (i.e., normalize X in K(X)). Then π∗Fp[X] is ind-perverse.

(3) There is a version of the theorem with Z/pn-coefficients. Taking the inverse limit over n and inverting
p, we expect to prove the following refinement of the above theorem with Qp-coefficients:

Theorem 3.13 (Expected theorem). Let X/Qp be a smooth algebraic variety. There is a natural tri-
angulated subcategory Db

cons,wHT (X,Qp) ⊂ Db
cons(X,Qp) stable under various geometric operations,
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as well as a natural commutative diagram

Db
cons,wHT (X,Qp)

RHD //

RH

��

DFgood(DX) := {(derived) good filtered D-modules on X}

gr

��
Db
coh,gr(T

∗X) := {(derived) graded Higgs sheaves on X}

0∗(=Koszul duality)

��
Db
coh,gr(⊕iΩiXC/C

[−i]) Db
coh,gr(⊕iΩiX/Qp

[−i]) = {graded Hodge complexes}
⊗C

oo

 may apply RHD to the BBDG decomposition theorem for Db
cons(X,Qp) to obtain the decompsition

theorem for filtered D-modules of geometric origin (Saito).
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