An Evening with Euler

William Dunham
Research Associate in Mathematics
Bryn Mawr College

Leonhard Euler
 1707-1783

1707 - born in Basel, Switzerland
1720 - studied with Johann Bernoulli
1722 - graduated from U. Basel
1727 - to St. Petersburg Academy
1741 - to Berlin Academy
1766 - back to St. Petersburg
1782 - foreign member, AAAS
1783 - died

Euler's Tomb , St. Petersburg

Leonhard Euler 1707-1783

Benjamin Franklin 1706-1790

Married to Katharina Gsell; 13 children
Phenomenal memory
In the 1730s, he lost vision in one eye
By 1771 , he was essentially blind

In 1775 , he produced a paper a week!

Euler's mathematics is distinguished by its quantity and quality.

Quantity

1783: Euler died
1783 - 1830: published 159 more papers
1844: 61 new papers
1849: 8 more

1910: Gustav Eneström catalogued Euler's works at 866 books and papers.

The catalogue itself ran to 388 pages!
1911: Swiss Academy began publication of Euler's Opera Omnia.

Presently 75 volumes in four series and more than 25,000 pages.

Quality ...

Functions (1748)

In the Introductio in analysin infinitorum, Euler established that the proper focus of analytic geometry, trigonometry, and calculus was not the curve but ...
...the function
and he introduced polynomial functions, logarithmic functions, exponential functions, trigonometric functions, and inverse trig functions

The number e (1748)

Quodsi iam ex hac basi logarithmi construantur, ii vocari solent logarithmi naturales seu hyperbolici, quoniam quadratura hyperbolae per istiusmodi logarithmos exprimi potest. Ponamus autem brevitatis gratia pro numero hoc 2,718281828459 etc. constanter litteram

$$
e
$$

quae ergo denotabit basin logarithmorum naturalium seu hyperbolicorum ${ }^{1}$), cui respondet valor litterae $k=1$; sive haec littera e quoque exprimet summam huius seriei

$$
1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\text { etc. in infinitum. }
$$

Euler's Polyhedral Formula (1752)

$$
V+F=E+2
$$

$$
\begin{array}{lll}
V=\# \text { vertices } & F=\# \text { faces } & E=\# \text { edges } \\
V=8 & F=6 & E=12
\end{array}
$$

"I find it surprising that these general results in solid geometry have not previously been noticed by anyone, so far as I am aware."

The Basel Problem (1734)

In 1689, Jakob Bernoulli challenged the mathematical community to find the exact sum of the infinite series

$$
1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots+\frac{1}{k^{2}}+\ldots=\frac{\pi^{2}}{6}
$$

Geometry

For any triangle, consider:
the intersection of the altitudes (orthocenter)
the intersection of the medians (centroid)
the intersection of the bisectors
(circumcenter)

Interseatiomoff phtidudesctors

SOLVTIO PROBLEMATIS

 ADgeometriam sitvs

- PERTINENTIS.

AVCTORE
Leonh. Eulero.

Bridges of Königsberg (1736)

" ... this solution bears little relationship to mathematics, and I do not understand why to expect a mathematician to produce it, rather than anyone else, for the solution is based on logic alone."

Number Theory

Def: Whole numbers M and N are amicable if each is the sum of the proper divisors of the other.

$$
\text { Ex: } M=220 \text { and } N=284
$$

Proper divisors of 220 :

$$
\begin{gathered}
1+2+4+5+10+11+20+22+ \\
44+55+110=284
\end{gathered}
$$

Proper divisors of 284 :

$$
1+2+4+71+142=220
$$

Brief History of Amicable Numbers:

ca. 300 BCE - Greeks knew 220 and 284

9th C - Thabit ibn Qurra's rule

1636 - Fermat found 17,296 and 18,416
1638 - Descartes found

$$
9,363,584 \text { and } 9,437,056
$$

Euler, in a 1750 paper, ...

4 娄 4
 De Numeris Amicabilibus.
 Definitio.
 s. I.

B
 m pertium allipooterum entus nequatis fit atreri numero; of
 Pquervi.
 parter allquete fondin fumtre: $1+4+4+5+10+11+10$
 tilquote: $1+2+4+71+141$ producuit priorcm mumeram 110.

Scholion.

6. II. Stifolus, quiprinut bofomedi memeroranmentle: nem freit, cufu hos duos gumorot 4 oso 494 contemphinus ad hane fpeculationten deduflus videtor: balylin enlm ineptam ex-
 Cartefoi wero noulyfin at hoe negorium mecommodare th conscuip regulthique tradifit, qua tria taliam numerorem parla efo cult, neque preter en Schotchius, qui multum fin he inveftiga-
 memo fore ficomurrirum ad thenc guaftionem magis evolvendan operum Impuadion reperleur. .Cumiutem nullum fit dublum quin inilylit quaque et her parte fincrementi nan contemnendi fitconCourafi, O methedus apertatur, qui multo plara huphemodi numemorum puria invettigire licet, had abs refore arbitror, f methoder quendem her fpethotes, in guse forte factil, communics. Tern.

In bout finem wutem fequentia premittere nevefle th.

Hy -

Euler, in a 1750 paper, ...

... found 58 more.
AMICABILIBUS!

Theory of Machines

VennDiagram

Euler Diagram

A Morsel (1781)

Find four different whole numbers, the sum of any two of which is a perfect square.

$$
1,3,6
$$

Euler gave:

$$
18530,38114,45986,65570
$$

How?

Another Morsel

Factoring polynomials into first and second degree factors:

$$
\begin{aligned}
& x^{2}-1=(x+1)(x-1) \\
& x^{4}-1=\left(x^{2}+1\right)\left(x^{2}-1\right)=\left(x^{2}+1\right)(x+1)(x-1)
\end{aligned}
$$

Nicholas Bernoulli asserted that there was no such factorization of the $4^{\text {th }}$ degree polynomial

$$
\begin{gathered}
x^{4}-4 x^{3}+2 x^{2}+4 x+4 \\
=x^{2}-(2+\sqrt{4+2 \sqrt{7}}) x+(1+\sqrt{4+2 \sqrt{7}}+\sqrt{7}) \\
\times \\
x^{2}-(2-\sqrt{4+2 \sqrt{7}}) x+(1-\sqrt{4+2 \sqrt{7}}+\sqrt{7})
\end{gathered}
$$

Euler's Identity

Theorem: $\quad e^{i x}=\cos x+i \sin x$
Proof:

Let $i=\sqrt{-1}$ and integrate:

$$
\int \frac{d z}{\sqrt{1+z^{2}}}=\ln \left(z+\sqrt{1+z^{2}}\right)
$$

$$
\text { Let } z=i y \Rightarrow d z=i d y
$$

Denying the validity of such procedures...
"... shatters the foundation of all analysis, which consists principally in the generality of the rules and operations which are deemed true, whatever the nature which one supposes for the quantities to which they are applied"

- Euler

Euler's Identity

Let $i=\sqrt{-1}$ and integrate:
$\int \frac{d z}{\sqrt{1+z^{2}}}=\ln \left(z+\sqrt{1+z^{2}}\right)$

Let $z=i y \Rightarrow d z=i d y$
Then $\int \frac{i d y}{\sqrt{1+(i y)^{2}}}=\ln \left(i y+\sqrt{1+(i y)^{2}}\right)$

$$
\begin{aligned}
& \int \frac{i d y}{\sqrt{1+(i y)^{2}}}=\ln \left(i y+\sqrt{1+(i y)^{2}}\right) \\
& i \int \frac{d y}{\sqrt{1-y^{2}}}=\ln \left(\sqrt{1-y^{2}}+i y\right)
\end{aligned}
$$

Denying the validity of such procedures...
"... shatters the foundation of all analysis, which consists principally in the generality of the rules and operations which are deemed true, whatever the nature which one supposes for the quantities to which they are applied"

- Euler

$$
\begin{aligned}
& \int \frac{i d y}{\sqrt{1+(i y)^{2}}}=\ln \left(i y+\sqrt{1+(i y)^{2}}\right) \\
& i \int \frac{d y}{\sqrt{1-y^{2}}}=\ln \left(\sqrt{1-y^{2}}+i y\right)
\end{aligned}
$$

Now let $y=\sin x \Rightarrow d y=\cos x d x$
$i \int \frac{\cos x d x}{\sqrt{1-\sin ^{2} x}}=\ln \left(\sqrt{1-\sin ^{2} x}+i \sin x\right)$
$i \int \frac{\cos x d x}{\cos x}=\ln (\cos x+i \sin x)$

$$
\begin{gathered}
i \int \frac{\cos x d x}{\cos s}=\ln (\cos x+i \sin x) \\
i \int d x=\ln (\cos x+i \sin x) \\
e^{i x=} e^{\ln (\cos x+i \sin x)} \\
e^{i x}=\cos x+i \sin x
\end{gathered}
$$

Wow!

AMICABILIBUS !

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \text { Let } x=\pi \text { : } \\
& e^{i \pi}=\cos \pi+i \sin \pi=-1+i \cdot 0=-1
\end{aligned}
$$

$$
\text { So, } \quad e^{i \pi}+1=0
$$

"The most beautiful formula in mathematics"
$e^{i \pi}+1=0$
Made the mathematician Euler a hero.
From the real to complex,
With our brains in great flex
He led us with zest but no fearo.

- W. C. Willig

Evaluate: $\quad \sqrt{-1}^{\sqrt{-1}}=i^{i}$

Let $x=\pi / 2$ in Euler's identity:

$$
\begin{gathered}
e^{i(\pi / 2)}=\cos (\pi / 2)+i \sin (\pi / 2)=0+1 \cdot i=i \\
\text { So } i^{i}=\left(e^{i \pi / 2}\right)^{i}=e^{i^{2} \pi / 2}=e^{-\pi / 2} \\
\text { Hence } i^{i}=1 / \sqrt{e^{\pi}}
\end{gathered}
$$

$$
i^{i}=1 / \sqrt{e^{\pi}}
$$

Benjamin Peirce:

"We have no idea what this equation means, but we may be sure that it means something very important."

Talent is doing easily what others find difficult.

Genius is doing easily what others find impossible.

Way to Go, Uncle Leonhard!

