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Cookie Monster Plays Games

The Cookie Monster Problem Origins

First appeared in the book The inquisitive Problem Solver by Paul
Vaderlind, Richard Guy, Loren Larson.
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Cookie Monster Plays Games

The Cookie Monster Problem

Set-up: The Cookie Monster is presented with a set of cookie
jars

One move: Choose a subset of the jars and take the same
number of cookies from each
Goal: Minimize the number of moves
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Cookie Monster Plays Games

An Example

Start with (1,2,3)

After the first move (2,2)
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Leigh Marie Braswell

PRIMES project with Leigh Marie Braswell
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Trivial bounds

Prior results for n jars.
Assume distinct number of cookies.

≤ n

≥ log2 n.
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Cookie Monster Plays Games

Trivial bounds achieved

The Cookie Monster number is n for sequences that grow at least
as fast as powers of 2:
1, 2, 4, 8, 16, . . .

The Cookie Monster number is about log2 n for arithemtic
progressions:
1, 2, 3, 4, 5, . . .
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Fibonacci numbers

Start with (1, 2, 3, 5)

After the move: (1, 2, 0, 2) = (1, 2)
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Nacci numbers

The best strategy for n jars:

Fibonacci numbers: → n
2

Tribonacci numbers: → 2n
3

Tetranacci numbers: → 3n
4
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Theorem

Theorem

For any 0 ≤ r ≤ 1, we can build a sequence such that the number
of moves tends to rn, when the number of jars, n, tends to ∞.

Main idea of proof:

Start with the sequence of powers of 2:
1, 2, 4, 8, 16, . . .
and add more numbers when needed.
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Leigh Marie Braswell PRIMES 2013

Two joint papers:

Cookie Monster Devours Naccis, in The College Mathematics
Journal, Vol. 45, No. 2 (March 2014), pp. 129-135.

On the Cookie Monster Problem, in The Mathematics of
Various Entertaining Subjects: Research in Recreational Math,
Princeton University Press, 2015, pp. 231-244.
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PRIMES 2014

Not very recreational

Noah Golowich, Resolving a Conjecture on Degree of
Regularity, with some Novel Structural Results. Intel
Competition, First Prize

Brice Huang, Monomization of Power Ideals and Generalized
Parking Functions. Intel Competition, Second Prize

Shashwat Kishore, Multiplicity Space Signatures and
Applications in Tensor Products of sl2 Representations. Intel
Competition, Third Prize

Peter Tian, Extremal Functions of Forbidden Multidimensional
Matrices. Siemens Competition, First Prize

Joseph Zurier, Generalizations of the Joints Problem. Siemens
Competition, Second Prize
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PRIMES 2015

Siemens: 6 finalists and 6 semifianlists

Intel: 11 semifinalist and 2 finalists

Intel finalists:

Meena Jagadeesan, The Exchange Graphs of Weakly
Separated Collections

Rachel Zhang, Statistics of Intersections of Curves on Surfaces
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Joshua Xiong, PRIMES 2014

The rest of the cookie monster is jointly with Joshua Xiong
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Cookie Monster Game

Moves—Game
The last person to move wins.
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Nim

Take at least one cookie from any one pile

The player who takes the last cookie wins
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P-Positions

(3, 3) is a P-position
P-positions: previous player wins
All other positions are N-positions: next player wins

Moves from P-positions can only go to N-positions
At least one move from every N-position goes to a P-position
The zero position (0, . . . , 0) is a P-position

Winning strategy is to move to a P-position
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Winning Strategy for Nim

Theorem (Bouton’s Theorem)

In Nim, P = (a1, . . . , an) ∈ P if and only if
⊕n

i=1 ai = 0.

The operator ⊕ is the bitwise XOR operator, (nim-sum) –
represent each of the numbers in binary and add them
column-wise modulo 2.
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Wythoff’s Game

Take same number of cookies from two piles or any number
from one pile

P-Position (1, 2)

Can only move to (0, 2), (1, 1), (1, 0) and (0, 1):
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Calculating P-positions

P- and N-positions can be calculated from the terminal
position

10

9

8

7

6

5

4

3

2

1

0

0

P
1 2 3 4 5 6 7 8 9 10
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Winning Strategy for Wythoff

Theorem (Wythoff’s Theorem)

In Wythoff’s game, P = (a1, a2) ∈ P if and only if

{a1, a2} = {bnφc, bnφ2c} for some integer n, where φ = 1+
√
5

2 .
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Rectangular Games

The Cookie Monster game is too difficult. We generalized it:

Move consists of taking same number of cookies from
specified subsets of piles

Adjoins rules onto the Nim rule (taking at least one cookie
from exactly one of the piles)
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Odd Cookie Monster Game

We are only allowed to take from an odd number of piles.

Theorem

The P-positions are the same as the ones in Nim.

Main idea of proof:

New moves do not allow to get from a P-position in Nim to
another P-position in Nim.
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Not-from-All Cookie Monster Game

We are allowed to take from any set of piles except from all of
them.

Theorem

The position where all jars have the same number of cookies,
(n, n, . . . , n) is a P-position for any n. If the number of cookies
have two distinct values, then it is an N-position.
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Three piles

All possible games with three piles

1 Nim: no additional sets.

2 Wythoff plus Nim: {1, 2}.
3 One-or-All game = Odd: {1, 2, 3}.
4 One-or-Two jars = Not-from-All: {1, 2}, {1, 3}, {2, 3}.
5 Consecutive: {1, 2}, {2, 3}, {1, 2, 3}.
6 Consecutive One-or-Two: {1, 2}, {2, 3}.
7 Always include the first jar: {1, 2}, {1, 2, 3}.
8 Cookie Monster game: {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.
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Degrees of Freedom of P-positions

Theorem

For a position with n − 1 numbers known, and one number
unknown: P = (a1, . . . , an−1, x), there is a unique value of x such
that P ∈ P.

For Nim, this function is fNIM(a1, . . . an−1) =
⊕n−1

i=1 ai .
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Bounds on P-Positions

General bound that holds for all rectangular games

Theorem

If P = (a1, . . . , an) ∈ P then 2(
∑n

i=1 ai − aj) ≥ aj .

Tanya Khovanova Stony Brook Math Club, February 17, 2016 27 / 51



Cookie Monster Plays Games

Enumeration of P-positions

The number of P-positions in Nim with three piles as a function of
the number of tokens n:

Theorem

The number of P-positions is 3wt(n) if n is even, 0 otherwise, where
wt(n) is the number of ones in the binary representation of n.

1, 0, 3, 0, 3, 0, 9, 0, 3, 0, 9, 0, 9, 0, 27, 0, . . .

SURPRISE!
The same sequence in my other project.
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Eric Nie and Alok Puranik
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Ulam-Warburton Automaton

Figure: First generations of the Ulam-Warburton automaton
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Enumeration of Cells

The number of cells born at time n:
1, 4, 4, 12, 4, 12, 12, 36, . . .

Nim P-positions: 1, 0, 3, 0, 3, 0, 9, 0, 3, 0, 9, 0, 9, 0, 27, . . .
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Automaton as a tree

Figure: Picture by Dave Richeson
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Automaton corresponding to Nim
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P-positions as an automaton
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Games as automatons

Definition

Two P-position are connected if they are two consecutive
P-positions in a longest optimal game.
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2d-Nim as an automaton
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Wythoff as an automaton
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Other games as automatons
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Back to Alok and Eric

A project was suggested by Richard Stanley.
Prior research: a lot was known about the square grid.
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Growth on Square Grid (continued)

Figure: Generations 13 and 15 of the Ulam-Warburton automaton
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Square Grid Known Results

Two major questions:

Which cells are born?

Theorem

A point (x , y) is born if and only if the highest power of 2 dividing
x is not equal to the highest power of 2 dividing y.

In what generation are they born?
Ugly recursive formula.
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Hexagonal Grid Rules

New results.
Rule: A cell is born if it is adjacent to exactly one live cell. A live
cell never dies.
Initial conditions: A single live cell at the origin.
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Growth on Hexagonal Grid

Figure: First generations of Ulam-Warburton-Hex Automaton
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Growth on Hexagonal Grid

Figure: Generations 13 and 15 of the Hex-UW automaton
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Lineage

Definition

Parent: the live cell which caused another cell to be born by being
adjacent to it.

Definition

Lineage: the sequence of live cells from the origin to any live cell
such that each cell is the parent of the next one.

Definition

Pioneer: a point (x , y) which is born in generation x + y .
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Sierpinski Sieve in Hex Grid

Lemma

The set of all pioneers is equal to the Sierpinski sieve
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Sierpinski Sieve in Square Grid

Figure: The Sierpinski gasket in the Hex-UW automaton
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Sierpinski
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Sierpinski

Theorem

The cells that correspond to the Sierpinki gasket are the ones
where you never turn back.

Tanya Khovanova Stony Brook Math Club, February 17, 2016 49 / 51



Cookie Monster Plays Games

Sierpinski in Nim

Googled Sierpinski and Nim and found two papers:

Aviezri Fraenkel and Alex Kontorovich, The Sierpinski Sieve of
Nim-varieties and Binomial Coefficients, 2006. Implies: The
Sierpinski triangles are P-positions such that one of the
coordinates is the sum of the others.

Kevin Gibbons, The Geometry of Nim, 2011. Claim: The set
of P-positions in d-pile Nim is the full discrete Sierpinski
d-demihypercube.
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Joshua Xiong PRIMES 2014

Two joint papers:

Nim Fractals, in the Journal of Integer Sequences, Vol. 17
(2014), Article 14.7.8.

Cookie Monster Plays Games, in The College Mathametics
Journal, v.46(4) pp.283–293 (2015).
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Eric Nie and Alok Puranik PRIMES 2014

One joint paper:

The Pioneering Role of the Sierpinski Gasket, in Math
Horizons, Sep 2015, pp. 5–9.
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