MAT 132 HW 38-40

1. Problems

1. Find the Taylor polynomials of degree two approximating the given function centered at the given point.

$$
f(x)=\sin (3 x), \quad a=1
$$

2. Find the Taylor polynomials of degree two approximating the given function centered at the given point.

$$
f(x)=x^{\frac{1}{3}}, \quad a=4
$$

3. Find the Taylor polynomials of degree two approximating the given function centered at the given point.

$$
f(x)=\ln (x), \quad a=2
$$

4. Find the Maclaurin series of

$$
f(x)=e^{2 x} .
$$

5. Find the Maclaurin series of

$$
f(x)=x \cos (x) .
$$

2. Answer Key

1. $\sin (3)+3 \cos (3)(x-1)+\frac{-9 \sin (3)}{2}(x-1)^{2}$.
2. $4^{\frac{1}{3}}+\frac{1}{3} 4^{\frac{-2}{3}}(x-4)+\frac{-1}{9} 4^{\frac{-5}{3}}(x-4)^{2}$.
3. $\ln (2)+\frac{1}{2}(x-2)+\frac{-1}{8}(x-2)^{2}$.
4. $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}$.
5. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n)!}$

3. Solutions

1. $f(x)=\sin (3 x), a=1$

$$
f(1)=\sin (3), f^{\prime}(1)=3 \cos (3), f^{\prime \prime}(1)=-9 \sin (3) .
$$

Thus, the taylor polynomical of degree two is

$$
T_{2}(x)=\sin (3)+3 \cos (3)(x-1)+\frac{-9 \sin (3)}{2}(x-1)^{2} .
$$

2. $f(x)=x^{\frac{1}{3}}, a=4$

$$
f(4)=4^{\frac{1}{3}}, f^{\prime}(4)=\frac{1}{3} 4^{\frac{-2}{3}}, f^{\prime \prime}(4)=\frac{-2}{9} 4^{\frac{-5}{3}} .
$$

Thus, the taylor polynomical of degree two is

$$
T_{2}(x)=4^{\frac{1}{3}}+\frac{1}{3} 4^{\frac{-2}{3}}(x-4)+\frac{-1}{9} 4^{\frac{-5}{3}}(x-4)^{2}
$$

3. $f(x)=\ln (x), a=2$

$$
f(2)=\ln (2), f^{\prime}(2)=\frac{1}{2}, f^{\prime \prime}(2)=\frac{-1}{4} .
$$

Thus, the taylor polynomial of degree two is

$$
T_{2}(x)=\ln (2)+\frac{1}{2}(x-2)+\frac{-1}{8}(x-2)^{2} .
$$

4. We know that the Maclaurin series of e^{x} is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Thus, as $f(x)=e^{2 x}$ we just substitute $2 x$ in for x and get

$$
\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}
$$

5. We know that the Maclaurin series of $\cos (x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$. Thus, as $f(x)=$ $x \cos (x)$ we just multiply this series by x to get

$$
x \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n)!} .
$$

