MAT 132 HW 38-40

1. Problems

1. Find the Taylor polynomials of degree two approximating the given function centered at the given point.

$$f(x) = \sin(3x), \qquad a = 1$$

2. Find the Taylor polynomials of degree two approximating the given function centered at the given point.

$$f(x) = x^{\frac{1}{3}}, \qquad a = 4$$

3. Find the Taylor polynomials of degree two approximating the given function centered at the given point.

$$f(x) = \ln(x), \qquad a = 2$$

4. Find the Maclaurin series of

$$f(x) = e^{2x}.$$

5. Find the Maclaurin series of

$$f(x) = x\cos(x).$$

2. ANSWER KEY
$$\frac{1}{2}\sin(3)$$
 (1)2

1.
$$\sin(3) + 3\cos(3)(x-1) + \frac{-9\sin(3)}{2}(x-1)^2$$
.
2. $4^{\frac{1}{3}} + \frac{1}{3}4^{\frac{-2}{3}}(x-4) + \frac{-1}{9}4^{\frac{-5}{3}}(x-4)^2$.
3. $\ln(2) + \frac{1}{2}(x-2) + \frac{-1}{8}(x-2)^2$.
4. $\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$.
5. $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}$

3. Solutions

1. $f(x) = \sin(3x), a = 1$

$$f(1) = \sin(3), f'(1) = 3\cos(3), f''(1) = -9\sin(3).$$

Thus, the taylor polynomical of degree two is

$$T_2(x) = \sin(3) + 3\cos(3)(x-1) + \frac{-9\sin(3)}{2}(x-1)^2.$$

2. $f(x) = x^{\frac{1}{3}}, a = 4$

$$f(4) = 4^{\frac{1}{3}}, f'(4) = \frac{1}{3}4^{\frac{-2}{3}}, f''(4) = \frac{-2}{9}4^{\frac{-5}{3}}$$

Thus, the taylor polynomical of degree two is

$$T_2(x) = 4^{\frac{1}{3}} + \frac{1}{3}4^{\frac{-2}{3}}(x-4) + \frac{-1}{9}4^{\frac{-5}{3}}(x-4)^2.$$

3. $f(x) = \ln(x), a = 2$

$$f(2) = \ln(2), f'(2) = \frac{1}{2}, f''(2) = \frac{-1}{4}.$$

Thus, the taylor polynomial of degree two is

$$T_2(x) = \ln(2) + \frac{1}{2}(x-2) + \frac{-1}{8}(x-2)^2.$$

4. We know that the Maclaurin series of e^x is $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Thus, as $f(x) = e^{2x}$ we just substitute 2x in for x and get

$$\sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}.$$

5. We know that the Maclaurin series of $\cos(x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$. Thus, as $f(x) = x \cos(x)$ we just multiply this series by x to get

$$x \cdot \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}.$$