MAT 132 HW 32-33

1. Problems

1. Consider the following series and apply the ratio test.

$$
\sum_{n=1}^{\infty} \frac{\left(3^{n} n!\right)^{3}}{\left(3^{n}\right)^{3 n}}
$$

2. Consider the following series and apply the root test.

$$
\sum_{n=1}^{\infty} \frac{n}{3^{n}}
$$

3. Determine if the following series converges absolutely, conditionally, or not at all.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n+2}
$$

4. Determine if the following series converges absolutely, conditionally, or not at all.

$$
\sum_{n=5}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}-2}
$$

5. Determine if the following series converges absolutely, conditionally, or not at all.

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{5}}
$$

2. Answer Key

1. Converges.
2. Does not converge.
3. Does not converge.
4. Conditionally Converges.
5. Converges Absolutely.

3. Solutions

1. Consider

$$
\lim _{n \rightarrow \infty}\left|\frac{\left(3^{n+1}(n+1)!\right)^{3}}{\left(\frac{\left({ }^{(n+1)}\right)^{3(n+1)}}{\left(3^{n} n!\right)^{3}}\right.}\right|=\lim _{n \rightarrow \infty} \frac{(3(n+1))^{3}}{\left.3^{n}\right)^{3 n}}=0 .
$$

So by the Ratio Test this converges.
2. Consider the following limit

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{3^{n}}\right)^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n \bar{n}}{2}=\frac{1}{2} .
$$

Thus, by the root test this series converges.
3. Consider:

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n+2}
$$

We note that

$$
\lim n \rightarrow \infty(-1)^{n+1} \frac{n}{n+2} \neq 0
$$

Thus, the series diverges.
4. Consider:

$$
\sum_{n=5}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}-2}
$$

We see that $\frac{1}{\sqrt{n}-2}$ is decreasing and

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}-2}=0
$$

So by the alternating series test this series converges. Now consider

$$
\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2}
$$

We note that $\frac{1}{\sqrt{n}} \leq \frac{1}{\sqrt{n}-2}$. And by the p-test we have that $\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}}$. diverges so by comparison we that $\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2}$ diverges. Thus,

$$
\sum_{n=5}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}-2}
$$

converges conditionally.
5. Consider:

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{5}} .
$$

Note that $\left|(-1)^{n+1} \sin (n)\right| \leq 1$ so $\frac{\left|(-1)^{n+1} \sin (n)\right|}{n^{5}} \leq \frac{1}{n^{5}}$. And by the p-test we know that $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges so by comparison we have $\sum_{n=1}^{\infty} \frac{\left|(-1)^{n+1} \sin (n)\right|}{n^{5}}$ converges. Thus,

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n)}{n^{5}}
$$

converges absolutely.

