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MAT 132 HW 32-33

1. PROBLEMS

. Consider the following series and apply the ratio test.
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. Consider the following series and apply the root test.
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. Determine if the following series converges absolutely, conditionally, or not at all.
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. Determine if the following series converges absolutely, conditionally, or not at all.
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. Determine if the following series converges absolutely, conditionally, or not at all.

oo

Sy
n=1

2. ANSWER KEY

Converges.

Does not converge.

Does not converge.
Conditionally Converges.
Converges Absolutely.

3. SOLUTIONS

. Consider
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So by the Ratio Test this converges.
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. Consider the following limit

Thus, by the root test this series converges.
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3. Consider:
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We note that
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Thus, the series diverges.

4. Consider:
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We see that \/711_2 is decreasing and
) 1
lim =0.

n—o00 /1 — 2

So by the alternating series test this series converges. Now consider
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We note that ﬁ < \/5172. And by the p-test we have that ) > ﬁ diverges so
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by comparison we that > > .

diverges. Thus,
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converges conditionally.
5. Consider:
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Note that |(—1)"*!sin(n)| < 1 so %zsm(")l < 5. And by the p-test we know
(=1)"*! sin(n)|
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that S°°° . L converges so by comparison we have S . |
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o5 — converges.
Thus,
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converges absolutely.
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