Homework

1. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+5=0$.
2. Solve for the general solution to the differential equation $y^{\prime \prime}+4 y=0$
3. Solve for the general solution to the differential equation $16 y^{\prime \prime}+8 y^{\prime}+1=0$.
4. Solve for the general solution to the differential equation $2 y^{\prime \prime}+7 y^{\prime}-4=0$ and also for the particular solution the same differential equation with initial conditions $y(0)=8, y^{\prime}(0)=1$.
5. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=-2, y^{\prime}(0)=1$.
6. Solve for the general solution to the differential equation $y^{\prime \prime}-y^{\prime}+y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=2, y^{\prime}(0)=0$.

Solutions

1. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+5=0$.

Solution: Since this is a second order linear differential equation with constant coefficients, we may solve it by using the characteristic equation: $r^{2}-6 r+5=0$. The general solution to this equation has the form $y=$ $C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}$ where C_{1}, C_{2} are arbitrary constants and r_{1}, r_{2} are roots of the characteristic equation, satisfying $r_{1} \neq r_{2}$. Factoring the characteristic equation, we get $(r-5)(r-1)=0$. Hence, the roots are $r_{1}=5, r_{2}=1$. Hence, the general solution is the function $y=C_{1} e^{5 x}+C_{2} e^{x}$.
2. Solve for the general solution to the differential equation $y^{\prime \prime}+4 y=0$

Solution: Since this is a second order linear differential equation with constant coefficients, we may solve it by using the characteristic equation: $r^{2}+4=0$. The roots of this equation are $r= \pm 2 i$. For complex roots of the form $a \pm b i$, the general solution to this equation is of the form $y=e^{a x}(A \cos (b x)+B \sin (b x))$ where A, B are arbitrary constants. Since our roots are purely imaginary, $a=0$. Following the same notation, we have that $b=2$. Hence, the general solution is $y=A \cos (2 x)+B \sin (2 x)$.
3. Solve for the general solution to the differential equation $16 y^{\prime \prime}+8 y^{\prime}+1=0$.

Solution: Since this is a second order linear differential equation with constant coefficients, we may solve it by using the characteristic equation: $16 r^{2}+8 r+1=0$. However, this may be rewritten as $(4 r+1)^{2}=0$. Since $r=-1 / 4$ is a double root (and the only root) to this equation, the general solution to this equation has the form $y=C_{1} e^{r x}+C_{2} x e^{r x}$. Plugging in our value for r, we get that the general solution is $y=C_{1} e^{-x / 4}+C_{2} x e^{-x / 4}$.
4. Solve for the general solution to the differential equation $2 y^{\prime \prime}+7 y^{\prime}-4=0$ and also for the particular solution the same differential equation with initial conditions $y(0)=8, y^{\prime}(0)=1$.
Solution: Since this is a second order linear differential equation with constant coefficients, we may solve it by using the characteristic equation: $2 r^{2}+7 r-4=0$. The general solution to this equation has the form $y=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x}$ where C_{1}, C_{2} are arbitrary constants and r_{1}, r_{2} are roots of the characteristic equation, satisfying $r_{1} \neq r_{2}$. Factoring the characteristic equation, we get $(2 r-1)(r+4)=0$. Hence, the roots are $r_{1}=1 / 2, r_{2}=-4$. Hence, the general solution is the function $y=$ $C_{1} e^{x / 2}+C_{2} e^{-4 x}$. Plugging in the initial condition $y(0)=8$, we see that $8=C_{1} e^{0}+C_{2} e^{0}=C_{1}+C_{2}$. In order to utilize the second initial condition, we must first compute $y^{\prime} . y^{\prime}=C_{1} / 2 e^{x / 2}-4 C_{2} e^{-4 x}$. Plugging in the initial condition $y^{\prime}(0)=1$, we see that $1=\left(C_{1} / 2\right) e^{0}-4 C_{2} e^{0}=C_{1} / 2-4 C_{2}$. Solving this system of equations, we get $C_{1}=22 / 3, C_{2}=2 / 3$. Hence, the particular solution is $y=(22 / 3) e^{x / 2}+2 / 3 e^{-4 x}$.
5. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=-2, y^{\prime}(0)=1$.
Solution: The characteristic equation is $r^{2}-6 r+9=0$. Factoring, we get $(r-3)(r-3)=0$. Since both roots are at $r=3$, the general solution is $y=C_{1} e^{3 x}+C_{2} x e^{3 x}$. Plugging in the initial condition $y(0)=-2$, we have $-2=C_{1} e^{0}+C_{2}(0) e^{0}=C_{1}$. Hence, $C_{1}=-2$. To utilize the other initial condition, $y^{\prime}(0)=0$, we must first compute y^{\prime}. $y^{\prime}=3 C_{1} e^{3 x}+\left(C_{2} e^{3 x}+\right.$ $\left.3 C_{2} x e^{3 x}\right)$. Plugging in the point $(0,1)$ and $C_{1}=-2$, we have

$$
1=3(-2) e^{0}+C_{2} e^{0}+3 C_{2}(0) e^{0} \quad=-6+C_{2}
$$

Hence, $C_{2}=7$. So the particular solution is $y=-2 e^{3 x}+7 x e^{3 x}$.
6. Solve for the general solution to the differential equation $y^{\prime \prime}-y^{\prime}+y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=2, y^{\prime}(0)=0$.
Solution: The characteristic equation is $r^{2}-r+1=0$. Using the quadratic formula to find the roots, we have $r=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1}{2} \pm \frac{\sqrt{3} i}{2}$. Since these are complex roots and we only care about a real solution, the general solution is of the form $y=e^{x / 2}(A \cos (\sqrt{3} x)+B \sin (\sqrt{3} x))$.
Utilizing the initial conditions, we solve for the particular solution. Since $y(0)=2$, we have $2=e^{0}(A \cos (0)+B \sin (0))=A$. So $A=2$. To find B, we must first compute y^{\prime}. Using product rule, we have
$y^{\prime}=\frac{1}{2} e^{x / 2}(A \cos (\sqrt{3} x)+B \sin (\sqrt{3} x))+e^{x / 2}(-\sqrt{3} A \sin (\sqrt{3} x)+\sqrt{3} B \cos (\sqrt{3} x))$
Plugging in the initial condition $y^{\prime}(0)=0$ gives us
$0=\frac{1}{2} e^{0}(A \cos (0)+B \sin (0))+e^{0}(-\sqrt{3} A \sin (0)+\sqrt{3} B \cos (0))=\frac{1}{2}(A)+1(\sqrt{3} B)$.
Hence, $B=\left(-\frac{1}{2} A\right) / \sqrt{3}=-1 / \sqrt{3}$. Plugging A, B into the general solution gives us the particular solution $y=e^{x / 2}\left(2 \cos (\sqrt{3} x)-\frac{1}{\sqrt{3}} \sin (\sqrt{3} x)\right)$.

Answer Key

1. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+5=0$. $y=C_{1} e^{5 x}+C_{2} e^{x}$
2. Solve for the general solution to the differential equation $y^{\prime \prime}+4 y=0$

$$
y=A \cos (2 x)+B \sin (2 x)
$$

3. Solve for the general solution to the differential equation $16 y^{\prime \prime}+8 y^{\prime}+1=0$. $y=C_{1} e^{-x / 4}+C_{2} x e^{-x / 4}$.
4. Solve for the general solution to the differential equation $2 y^{\prime \prime}+7 y^{\prime}-4=0$ and also for the particular solution the same differential equation with initial conditions $y(0)=8, y^{\prime}(0)=1$.
General solution: $y=C_{1} e^{x / 2}+C_{2} e^{-4 x}$.
Particular solution: $y=(22 / 3) e^{x / 2}+2 / 3 e^{-4 x}$.
5. Solve for the general solution to the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=-2, y^{\prime}(0)=1$.
General solution: $y=C_{1} e^{3 x}+C_{2} x e^{3 x}$.
Particular solution: $y=-2 e^{3 x}+7 x e^{3 x}$.
6. Solve for the general solution to the differential equation $y^{\prime \prime}-y^{\prime}+y=0$ and also for the particular solution to the same differential equation with initial conditions $y(0)=2, y^{\prime}(0)=0$.
General solution: $y=e^{x / 2}(A \cos (\sqrt{3} x)+B \sin (\sqrt{3} x))$.
Particular solution: $y=e^{x / 2}\left(2 \cos (\sqrt{3} x)-\frac{1}{\sqrt{3}} \sin (\sqrt{3} x)\right)$.
