Homework

1. Find the orthogonal family to the family of curves $y=C e^{x}$.
2. Find the orthogonal family to the family of curves $y=\frac{-1}{x^{2}+C}$.
3. Find the orthogonal family to the family of curves $y=C x^{3}$.
4. Use Euler's method with step size $h=0.1$ to estimate $y(0.3)$ where $y(x)$ is a solution to the differential equation $y^{\prime}+3 y=x^{2}$ passing through the point $(0,2)$.
5. For the initial value problem with differential equation $y y^{\prime}=x$ and initial condition $y(1)=1$, estimate $y(1.4)$ using Euler's method with step size $h=0.1$.

Solutions

1. Find the orthogonal family to the family of curves $y=C e^{x}$.

Solution:
(a) Isolate C : $C=y e^{-x}$.
(b) Differentiate: Taking derivatives of both sides, we get $0=y^{\prime} e^{-x}-$ $y e^{-x}$.
(c) Solve for y^{\prime} : Solving for y^{\prime}, we get $y^{\prime} e^{-x}=y e^{-x}$ which implies $y^{\prime}=y$.
(d) Compose DE for orthogonal family: We write the DE setting y^{\prime} equal to the negative reciprocal of the original. This gives us $y^{\prime}=-1 / y$ for our orthogonal family.
(e) Solve the new DE: This is a separable equation. Separating, we get $y y^{\prime}=-1$. So we want to take the integrals of $\int y d y=\int-d x$. This gives us $y^{2} / 2=-x+C_{1}$. We can rewrite this as $y= \pm \sqrt{-2 x+C}$. And we are done.
2. Find the orthogonal family to the family of curves $y=\frac{-1}{x^{2}+C}$.

Solution:
(a) Isolate C : To isolate C, we first get $y\left(x^{2}+C\right)=-1$. Thus, $y x^{2}=$ $-1-y C$. So then $y C=-y x^{2}-1$ and so finally, $C=-x^{2}-1 / y$.
(b) Differentiate: Taking derivatives of both sides, we get $0=-2 x+$ $\left(1 / y^{2}\right) y^{\prime}$.
(c) Solve for y^{\prime} : Solving for y^{\prime} we get $y^{\prime}=2 x y^{2}$.
(d) Compose DE for orthogonal family: We write the DE setting y^{\prime} equal to the negative reciprocal of the original. This gives us $y^{\prime}=\frac{-1}{2 x y^{2}}$.
(e) Solve the new DE: This is a separable equation. Separating, we get $y^{2} y^{\prime}=\frac{-1}{2 x}$. So we want to take the integrals of $\int y^{2} d y=\int \frac{-1}{2 x} d x$. This gives us $y^{3} / 3=-\ln |2 x|+C_{1}$. We can rewrite this as $y=$ $(-3 \ln |2 x|+C)^{1 / 3}$. And we are done.
3. Find the orthogonal family to the family of curves $y=C x^{3}$.

Solution:
(a) Isolate C : To isolate C, we get $C=y / x^{3}$.
(b) Differentiate: Taking derivatives of both sides (using the quotient rule), we get $0=\left(x^{3} y^{\prime}-3 y x^{2}\right) / x^{6}$. Multiplying both sides by x^{6}, we get $0=x^{3} y^{\prime}-3 y x^{2}$.
(c) Solve for y^{\prime} : Solving for y^{\prime} we get $y^{\prime}=3 y x^{2} / x^{3}=3 y / x$.
(d) Compose DE for orthogonal family: We write the DE setting y^{\prime} equal to the negative reciprocal of the original. This gives us $y^{\prime}=\frac{-x}{3 y}$.
(e) Solve the new DE: This is a separable equation. Separating, we get $3 y y^{\prime}=-x$. So we want to compute $\int 3 y d y=\int-x d x$. This gives us $3 y^{2} / 2=-x^{2} / 2+C_{1}$. We can rewrite this as $x^{2}+3 y^{2}=C^{2}$. And we are done.
4. Use Euler's method with step size $h=0.1$ to estimate $y(0.3)$ where $y(x)$ is a solution to the differential equation $y^{\prime}+3 y=x^{2}$ passing through the point $(0,2)$.
Solution: To estimate $y(0.3)$ with a step size of $h=0.1$ starting at 0 requires taking 3 steps. We first express y^{\prime} as a function $f(x, y)$. Since $y^{\prime}+3 y=x^{2}$, we have $y^{\prime}=x^{2}-3 y=f(x, y)$. To begin the Euler's method algorithm, we begin with $x_{0}=0, y_{0}=2$.

$$
\begin{aligned}
& x_{1}=X_{0}+h=0+0.1=0.1 \\
& y_{1}=y_{0}+h * f\left(x_{0}, y_{0}\right)=2+0.1 *(0-3 * 2)=1.4 \\
& x_{2}=x_{1}+h=0.1+0.1=0.2 \\
& y_{2}=y_{1}+h * f\left(x_{1}, y_{1}\right)=1.4+0.1 *\left(0.1^{2}-3 * 1.4\right)=.981 \\
& x_{3}=x_{2}+h=0.2+0.1=0.3 \\
& y_{3}=y_{2}+h * f\left(x_{2}, y_{2}\right)=.981+0.1 *\left(0.2^{2}-3 * .981\right)=.6907
\end{aligned}
$$

We have thus found $y(0.3) \simeq y_{3}=.6907$ and we are done.
5. For the initial value problem with differential equation $y y^{\prime}=x$ and initial condition $y(1)=1$, estimate $y(1.4)$ using Euler's method with step size $h=0.1$.
To estimate $y(1.4)$ with a step size of $h=0.1$ starting at 1 requires taking 4 steps. We first express y^{\prime} as a function $f(x, y)$. Since $y y^{\prime}=x$, we have $y^{\prime}=x / y=f(x, y)$. To begin the Euler's method algorithm, we begin with $x_{0}=1, y_{0}=-3$.

$$
\begin{aligned}
& x_{1}=X_{0}+h=1+0.1=1.1 \\
& y_{1}=y_{0}+h * f\left(x_{0}, y_{0}\right)=-3+0.1 *(1 /-3) \simeq-3.03333 \\
& x_{2}=x_{1}+h=1.1+0.1=1.2 \\
& y_{2}=y_{1}+h * f\left(x_{1}, y_{1}\right) \simeq-3.03333+0.1 *(1.1 /-3.03333) \simeq-3.0696 \\
& x_{3}=x_{2}+h=1.2+0.1=1.3 \\
& y_{3}=y_{2}+h * f\left(x_{2}, y_{2}\right) \simeq-3.0696+0.1 *(1.2 /-3.0696) \simeq-3.1087 \\
& x_{4}=x_{3}+h=1.3+0.1=1.4 \\
& y_{4}=y_{3}+h * f\left(x_{2}, y_{2}\right) \simeq-3.1087+0.1 *(1.3 /-3.1087) \simeq-3.1505
\end{aligned}
$$

We have thus found $y(1.4) \simeq y_{4} \simeq-3.1505$ and we are done.

Answer Key

1. Find the orthogonal family to the family of curves $y=C e^{x}$.

$$
y= \pm \sqrt{-2 x+C}
$$

2. Find the orthogonal family to the family of curves $y=\frac{-1}{x^{2}+C}$. $y=(-3 \ln |2 x|+C)^{1 / 3}$
3. Find the orthogonal family to the family of curves $y=C x^{3}$. $x^{2}+3 y^{2}=C^{2}$
4. Use Euler's method with step size $h=0.1$ to estimate $y(0.3)$ where $y(x)$ is a solution to the differential equation $y^{\prime}+3 y=x^{2}$ passing through the point $(0,2)$.
$y(0.3) \simeq y_{3}=.6907$
5. For the initial value problem with differential equation $y y^{\prime}=x$ and initial condition $y(1)=1$, estimate $y(1.4)$ using Euler's method with step size $h=0.1$. $y(1.4) \simeq-3.1505$
