Homework

- 1. Find the orthogonal family to the family of curves $y = Ce^x$.
- 2. Find the orthogonal family to the family of curves $y = \frac{-1}{x^2 + C}$.
- 3. Find the orthogonal family to the family of curves $y = Cx^3$.
- 4. Use Euler's method with step size h = 0.1 to estimate y(0.3) where y(x) is a solution to the differential equation $y' + 3y = x^2$ passing through the point (0, 2).
- 5. For the initial value problem with differential equation yy' = x and initial condition y(1) = 1, estimate y(1.4) using Euler's method with step size h = 0.1.

Solutions

- 1. Find the orthogonal family to the family of curves $y = Ce^x$. Solution:
 - (a) Isolate $C: C = ye^{-x}$.
 - (b) Differentiate: Taking derivatives of both sides, we get $0 = y'e^{-x} ye^{-x}$.
 - (c) Solve for y': Solving for y', we get $y'e^{-x} = ye^{-x}$ which implies y' = y.
 - (d) Compose DE for orthogonal family: We write the DE setting y' equal to the negative reciprocal of the original. This gives us y' = -1/y for our orthogonal family.
 - (e) Solve the new DE: This is a separable equation. Separating, we get yy' = -1. So we want to take the integrals of $\int y dy = \int -dx$. This gives us $y^2/2 = -x + C_1$. We can rewrite this as $y = \pm \sqrt{-2x + C}$. And we are done.

2. Find the orthogonal family to the family of curves $y = \frac{-1}{x^2 + C}$.

Solution:

- (a) Isolate C: To isolate C, we first get $y(x^2 + C) = -1$. Thus, $yx^2 = -1 yC$. So then $yC = -yx^2 1$ and so finally, $C = -x^2 1/y$.
- (b) Differentiate: Taking derivatives of both sides, we get $0 = -2x + (1/y^2)y'$.
- (c) Solve for y': Solving for y' we get $y' = 2xy^2$.
- (d) Compose DE for orthogonal family: We write the DE setting y' equal to the negative reciprocal of the original. This gives us $y' = \frac{-1}{2\pi y^2}$.
- (e) Solve the new DE: This is a separable equation. Separating, we get $y^2y' = \frac{-1}{2x}$. So we want to take the integrals of $\int y^2 dy = \int \frac{-1}{2x} dx$. This gives us $y^3/3 = -\ln|2x| + C_1$. We can rewrite this as $y = (-3\ln|2x| + C)^{1/3}$. And we are done.
- 3. Find the orthogonal family to the family of curves $y = Cx^3$. Solution:
 - (a) Isolate C: To isolate C, we get $C = y/x^3$.
 - (b) Differentiate: Taking derivatives of both sides (using the quotient rule), we get $0 = (x^3y' 3yx^2)/x^6$. Multiplying both sides by x^6 , we get $0 = x^3y' 3yx^2$.
 - (c) Solve for y': Solving for y' we get $y' = 3yx^2/x^3 = 3y/x$.

- (d) Compose DE for orthogonal family: We write the DE setting y' equal to the negative reciprocal of the original. This gives us $y' = \frac{-x}{3y}$.
- (e) Solve the new DE: This is a separable equation. Separating, we get 3yy' = -x. So we want to compute $\int 3ydy = \int -xdx$. This gives us $3y^2/2 = -x^2/2 + C_1$. We can rewrite this as $x^2 + 3y^2 = C^2$. And we are done.
- 4. Use Euler's method with step size h = 0.1 to estimate y(0.3) where y(x) is a solution to the differential equation $y' + 3y = x^2$ passing through the point (0, 2).

Solution: To estimate y(0.3) with a step size of h = 0.1 starting at 0 requires taking 3 steps. We first express y' as a function f(x, y). Since $y' + 3y = x^2$, we have $y' = x^2 - 3y = f(x, y)$. To begin the Euler's method algorithm, we begin with $x_0 = 0, y_0 = 2$.

$$\begin{aligned} x_1 &= X_0 + h = 0 + 0.1 = 0.1 \\ y_1 &= y_0 + h * f(x_0, y_0) = 2 + 0.1 * (0 - 3 * 2) = 1.4 \\ x_2 &= x_1 + h = 0.1 + 0.1 = 0.2 \\ y_2 &= y_1 + h * f(x_1, y_1) = 1.4 + 0.1 * (0.1^2 - 3 * 1.4) = .981 \\ x_3 &= x_2 + h = 0.2 + 0.1 = 0.3 \\ y_3 &= y_2 + h * f(x_2, y_2) = .981 + 0.1 * (0.2^2 - 3 * .981) = .6907 \end{aligned}$$

We have thus found $y(0.3) \simeq y_3 = .6907$ and we are done.

5. For the initial value problem with differential equation yy' = x and initial condition y(1) = 1, estimate y(1.4) using Euler's method with step size h = 0.1.

To estimate y(1.4) with a step size of h = 0.1 starting at 1 requires taking 4 steps. We first express y' as a function f(x, y). Since yy' = x, we have y' = x/y = f(x, y). To begin the Euler's method algorithm, we begin with $x_0 = 1, y_0 = -3$.

$$\begin{aligned} x_1 &= X_0 + h = 1 + 0.1 = 1.1 \\ y_1 &= y_0 + h * f(x_0, y_0) = -3 + 0.1 * (1/-3) \simeq -3.03333 \\ x_2 &= x_1 + h = 1.1 + 0.1 = 1.2 \\ y_2 &= y_1 + h * f(x_1, y_1) \simeq -3.03333 + 0.1 * (1.1/-3.03333) \simeq -3.0696 \\ x_3 &= x_2 + h = 1.2 + 0.1 = 1.3 \\ y_3 &= y_2 + h * f(x_2, y_2) \simeq -3.0696 + 0.1 * (1.2/-3.0696) \simeq -3.1087 \\ x_4 &= x_3 + h = 1.3 + 0.1 = 1.4 \\ y_4 &= y_3 + h * f(x_2, y_2) \simeq -3.1087 + 0.1 * (1.3/-3.1087) \simeq -3.1505 \end{aligned}$$

We have thus found $y(1.4) \simeq y_4 \simeq -3.1505$ and we are done.

Answer Key

- 1. Find the orthogonal family to the family of curves $y = Ce^x$. $y = \pm \sqrt{-2x + C}$
- 2. Find the orthogonal family to the family of curves $y = \frac{-1}{x^2 + C}$.

 $y = (-3\ln|2x| + C)^{1/3}$

- 3. Find the orthogonal family to the family of curves $y = Cx^3$. $x^2 + 3y^2 = C^2$
- 4. Use Euler's method with step size h = 0.1 to estimate y(0.3) where y(x) is a solution to the differential equation $y' + 3y = x^2$ passing through the point (0, 2).

 $y(0.3) \simeq y_3 = .6907$

5. For the initial value problem with differential equation yy' = x and initial condition y(1) = 1, estimate y(1.4) using Euler's method with step size h = 0.1.

 $y(1.4) \simeq -3.1505$