Homework

1. Compute the general solution to the differential equation $y^{\prime}=x^{2} y-2 y$.
2. Compute the general solution and particular solution to the differential equation $y^{\prime}=x^{3} e^{y}$ with initial condition $y(0)=1$.
3. Compute the general solution to the differential equation $y^{\prime}=2 y\left(\sec ^{2} x-\right.$ 1).
4. Compute the general solution to the differential equation $y x y^{\prime}=\left(x^{2}-1\right)$.
5. Draw a slope field for all integer coordinates (x, y) with $-3 \leq x, y \leq 3$ for the following differential equations:
(a) $y^{\prime}=y-x$
(b) $y^{\prime}=3 y+x y$

Solutions

1. Compute the general solution to the differential equation $y^{\prime}=x^{2} y-2 y$.

Solution: We can factor the right side of the equation to get $y^{\prime}=y\left(x^{2}-2\right)$. Expressing y^{\prime} as $d y / d x$, when we separate variables we get $\int \frac{d y}{y}=\int x^{2}-$ $2 d x$. Integrating this, we obtain $\ln |y|=x^{3} / 3-2 x+C_{1}$. Exponentiating, we get $|y|=e^{x^{3} / 3-2 x+C_{1}}$. We can bring the constant C_{1} as the constant $C=e^{C_{1}}$ and this lets us remove the absolute value bars around y. So we have $y=C e^{x^{3} / 3-2 x}$.
2. Compute the general solution and particular solution to the differential equation $y^{\prime}=x^{3} e^{y}$ with initial condition $y(0)=1$.
Solution: Rewriting this equation with $d y / d x$ notation, we have $d y / d x=$ $x^{3} e^{y}$. Separating variables, we get $\frac{d y}{e^{y}}=x^{3} d x$. To continue, we want to take the integral of both sides, as follows:

$$
\begin{aligned}
& \int e^{-y} d y=\int x^{3} d x \\
& -e^{-y}=x^{4} / 4+C_{1} \\
& e^{-y}=-x^{4} / 4+C_{2} \\
& -y=\ln \left(-x^{4} / 4+C_{2}\right) \\
& y=\ln \left(-x^{4} / 4+C_{2}\right)
\end{aligned}
$$

Plugging in the initial condition $y(0)=1$, we have $1=\ln \left(C_{2}\right)$. Hence, $C_{2}=0$. Thus, the general solution is $y=\ln \left(-x^{4} / 4+C\right)$ and the particular solution is $y=\ln \left(-x^{4} / 4\right)$.
3. Compute the general solution to the differential equation $y^{\prime}=2 y\left(\sec ^{2} x-\right.$ $1)$.

Solution: Rewriting this equation with $d y / d x$ notation, we have $d y / d x=$ $2 y\left(\sec ^{2} x-1\right)$. Separating variables, we get $\frac{d y}{y}=2\left(\sec ^{2} x-1\right) d x$. The computation then follows as:

$$
\begin{aligned}
\int \frac{d y}{y} & =2 \int \sec ^{2} x-1 d x \\
\ln |y| & =2\left(\tan x-x+C_{1}\right) \\
|y| & =e^{2\left(\tan x-x+C_{1}\right)} \\
y & =C e^{2 \tan x-2 x}
\end{aligned}
$$

And we are done.
4. Compute the general solution to the differential equation $y x y^{\prime}=\left(x^{2}-1\right)$.

Solution: Rewriting this equation with $d y / d x$ notation, we have $y x \frac{d y}{d x}=$ $\left(x^{2}-1\right)$. Separating variables, we get $y d y=\frac{x^{2}-1}{x} d x$. The computation then follows as:

$$
\begin{aligned}
& \int y d y=\int x-(1 / x) d x \\
& y^{2} / 2=x^{2} / 2-\ln |x|+C_{1} \\
& y^{2}=x^{2}-2 \ln |x|+C
\end{aligned}
$$

And we are done.
5. Draw a slope field for all integer coordinates (x, y) with $-3 \leq x, y \leq 3$ for the following differential equations:
(a) $y^{\prime}=y-x$
(b) $y^{\prime}=3 y+x y$

Solution: At each point with x, y integers between -3 and 3 , compute the slope according to the function $y^{\prime}=f(x, y)$ and plot it on a graph as seen in the diagrams below.
(a)

Answer Key

1. Compute the general solution to the differential equation $y^{\prime}=x^{2} y-2 y$.

$$
y=C e^{x^{3} / 3-2 x}
$$

2. Compute the general solution and particular solution to the differential equation $y^{\prime}=x^{3} e^{y}$ with initial condition $y(0)=1$.
General solution: $y=\ln \left(-x^{4} / 4+C\right)$ Particular solution: $y=\ln \left(-x^{4} / 4\right)$
3. Compute the general solution to the differential equation $y^{\prime}=2 y\left(\sec ^{2} x-\right.$ 1).
$y=C e^{2 \tan x-2 x}$
4. Compute the general solution to the differential equation $y x y^{\prime}=\left(x^{2}-1\right)$.
$y^{2}=x^{2}-2 \ln |x|+C$
5. Draw a slope field for all integer coordinates (x, y) with $-3 \leq x, y \leq 3$ for the following differential equations:
(a) $y^{\prime}=y-x$
(b) $y^{\prime}=3 y+x y$
(a)

