MAT 132 HW 13-14

1. Problems

1. Calculate the volume obtained by revolving the region bounded by the graphs of $f(x)=x^{2}+2 x+1$ and $g(x)=3 x+1$ about the x-axis.
2. Calculate the volume obtained by revolving the same region as in the previous problem about the y-axis.
3. Calculate the volume obtained by revolving the region bounded by the graph of $f(x)=\cos x$ and the x - and y-axes about the y-axis.
4. Calculate the volume obtained by revolving the same region as in the previous problem about the x-axis.
5. Calculate the volume obtained by revolving the same region as in the previous problem about the line $x=-1$.

2. Answer Key

1.

$$
\frac{4 \pi}{5}
$$

2.

$\frac{\pi}{6}$
3. $\pi^{2}-2 \pi$
4.

$$
\frac{\pi^{2}}{4}
$$

5. π^{2}

3. Solutions

1. Graphing, we see that $g(x)$ lies above $f(x)$. To solve for the endpoints of our interval of integration, we write $x^{2}+2 x+1=3 x+1$. Solving for x yields $x=0$ and $x=1$. Using the washer method, the volume is given by

$$
\begin{aligned}
\pi \int_{0}^{1}(2 x+1)^{2}-\left(x^{2}+2 x+1\right)^{2} d x & =\pi \int_{0}^{1}-x^{4}-4 x^{3}+3 x^{2}+2 x d x \\
& =\left.\pi\left(-\frac{1}{5} x^{5}-x^{4}+x^{3}+x^{2}\right)\right|_{0} ^{1}=\frac{4 \pi}{5}
\end{aligned}
$$

2. Now we use the shell method. We have

$$
\begin{aligned}
2 \pi \int_{0}^{1} x\left(3 x+1-x^{2}-2 x-1\right) d x & =2 \pi \int_{0}^{1}-x^{3}+x^{2} d x \\
& =\left.2 \pi\left(-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}\right)\right|_{0} ^{1}=\frac{\pi}{6}
\end{aligned}
$$

3. The region we are considering is the one bounded by the graph of $\cos x$ and which lies in the first quadrant of the plane. The left and rightmost endpoints of this are at $x=0$ and $x=\pi / 2$ respectively. Using the shell method, we write $2 \pi \int_{0}^{\pi / 2} x \cos x d x$. To solve this we use integration by parts with $u=x$ and $d v=\cos x d x$. This yields

$$
\begin{aligned}
2 \pi \int_{0}^{\pi / 2} x \cos x d x & =2 \pi\left(\left.x \sin x\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2} \sin x d x\right) \\
& =\left.2 \pi(x \sin x+\cos x)\right|_{0} ^{\pi / 2}=\pi^{2}-2 \pi
\end{aligned}
$$

4. Using the washer method now, the desired volume is

$$
\pi \int_{0}^{\pi / 2} \cos ^{2} x d x=\frac{\pi}{2} \int_{0}^{\pi / 2} 1+\cos 2 x d x=\left.\frac{\pi}{2}\left(x+\frac{1}{2} \sin 2 x\right)\right|_{0} ^{\pi / 2}=\frac{\pi^{2}}{4}
$$

5. The setup is much like in problem 3 , however this time the radius of our shells is $x+1$ instead of x, so the desired volume is

$$
\begin{aligned}
2 \pi \int_{0}^{\pi / 2}(x+1) \cos x d x & =2 \pi \int_{0}^{\pi / 2} x \cos x d x+2 \pi \int_{0}^{\pi / 2} \cos x d x \\
& =\pi^{2}-2 \pi+\left.(2 \pi \sin x)\right|_{0} ^{\pi / 2}=\pi^{2}
\end{aligned}
$$

