MAT 132 HW 13-14

1. Problems

- 1. Calculate the volume obtained by revolving the region bounded by the graphs of $f(x) = x^2 + 2x + 1$ and g(x) = 3x + 1 about the x-axis.
- 2. Calculate the volume obtained by revolving the same region as in the previous problem about the *y*-axis.
- 3. Calculate the volume obtained by revolving the region bounded by the graph of $f(x) = \cos x$ and the x- and y-axes about the y-axis.
- 4. Calculate the volume obtained by revolving the same region as in the previous problem about the x-axis.
- 5. Calculate the volume obtained by revolving the same region as in the previous problem about the line x = -1.

	2. Answer Key
1.	4π
2.	5
3 $\pi^2 - 2\pi$	$\frac{\pi}{6}$
4. -2π	π^2
5. π^2	4

MAT 132 HW 13-14

3. Solutions

1. Graphing, we see that g(x) lies above f(x). To solve for the endpoints of our interval of integration, we write $x^2 + 2x + 1 = 3x + 1$. Solving for x yields x = 0 and x = 1. Using the washer method, the volume is given by

$$\pi \int_0^1 (2x+1)^2 - (x^2+2x+1)^2 \, dx = \pi \int_0^1 -x^4 - 4x^3 + 3x^2 + 2x \, dx$$
$$= \pi \left(-\frac{1}{5}x^5 - x^4 + x^3 + x^2 \right) \Big|_0^1 = \frac{4\pi}{5}$$

2. Now we use the shell method. We have

$$2\pi \int_0^1 x(3x+1-x^2-2x-1) \, dx = 2\pi \int_0^1 -x^3 + x^2 \, dx$$
$$= 2\pi \left(-\frac{1}{4}x^4 + \frac{1}{3}x^3\right)\Big|_0^1 = \frac{\pi}{6}$$

3. The region we are considering is the one bounded by the graph of $\cos x$ and which lies in the first quadrant of the plane. The left and rightmost endpoints of this are at x = 0 and $x = \pi/2$ respectively. Using the shell method, we write $2\pi \int_0^{\pi/2} x \cos x \, dx$. To solve this we use integration by parts with u = x and $dv = \cos x \, dx$. This yields

$$2\pi \int_0^{\pi/2} x \cos x \, dx = 2\pi \left(x \sin x \Big|_0^{\pi/2} - \int_0^{\pi/2} \sin x \, dx \right)$$
$$= 2\pi \left(x \sin x + \cos x \right) \Big|_0^{\pi/2} = \pi^2 - 2\pi$$

4. Using the washer method now, the desired volume is

$$\pi \int_0^{\pi/2} \cos^2 x \, dx = \frac{\pi}{2} \int_0^{\pi/2} 1 + \cos 2x \, dx = \frac{\pi}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_0^{\pi/2} = \frac{\pi^2}{4}.$$

5. The setup is much like in problem 3, however this time the radius of our shells is x + 1 instead of x, so the desired volume is

$$2\pi \int_0^{\pi/2} (x+1)\cos x \, dx = 2\pi \int_0^{\pi/2} x\cos x \, dx + 2\pi \int_0^{\pi/2} \cos x \, dx$$
$$= \pi^2 - 2\pi + (2\pi \sin x) \Big|_0^{\pi/2} = \pi^2.$$