MAT 132 HW 9-12

1. PROBLEMS

. Find the area of the bounded region contained between the curves f(z) = 23 and

g(x) = V.

. Find the area of the bounded region contained between the curves f(z) = sin(3z)
and g(z) = (22 — 1) and between the lines z = 7/2 and z = .

. Find the area of the region contained in the first quadrant and bounded by the
polar curve () = sinf + cos 6.

. Find the area of the region bounded by the y-axis and the parametric curve given
by z(t) = t3 — 9t and y(t) = ¢2.

. Find the length of the curve y = 2(z? + 1)3/2 over the interval [1,4].
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The area is 5/12
The area is

The area is (7 + 2)/4
The area is 324/5
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3. SOLUTIONS

1. The curves meet at x = 0 and = = 1, with the graph of \/z lying above that of 3.
So the area we are searching for is
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2. Graphing the functions on a plane, one sees that f(x) lies above g(x) on the specified
interval [7/2, 7], so the area we are searching for is
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3. The first quadrant is described by 0 < 6 < 7/2 so we apply this to the formula for
area bounded by a polar curve and we get
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Now we use the identities sin? + cos? = 1 and 2sin @ cos@ = sin(26) to get that
this equals
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4. Graphing the curve, we see that it x(t) is negative and y(t) seems to start at the
origin and goes up until the curve intersects the y-axis. The point at which this
happens is found by setting x(t) = 0, and we find that t = 0 and ¢ = 3. Indeed we
can check that z is negative for all ¢ between 0 and 3, and dy/dt = 2t is positive
for all such t. Hence we can say that the area is equal to
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5. Differentiating gives
d
d—y =2zvV22+ 1.
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It follows that 1+ (dy/dx)? = 1+ 42?(2? + 1) = 4o* + 422 +1 = (222 + 1)2. Hence
the arclength is
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