MAT 132 HW 9-12

1. Problems

1. Find the area of the bounded region contained between the curves $f(x)=x^{3}$ and $g(x)=\sqrt{x}$.
2. Find the area of the bounded region contained between the curves $f(x)=\sin \left(\frac{1}{2} x\right)$ and $g(x)=\left(\frac{1}{2} x-1\right)^{2}$ and between the lines $x=\pi / 2$ and $x=\pi$.
3. Find the area of the region contained in the first quadrant and bounded by the polar curve $r(\theta)=\sin \theta+\cos \theta$.
4. Find the area of the region bounded by the y-axis and the parametric curve given by $x(t)=t^{3}-9 t$ and $y(t)=t^{2}$.
5. Find the length of the curve $y=\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}$ over the interval $[1,4]$.

2. Answer Key

1. The area is $5 / 12$
2. The area is

$$
-\frac{2}{3}\left(\frac{\pi}{2}-1\right)^{3}+\sqrt{2}+\frac{2}{3}\left(\frac{\pi}{4}-1\right)^{3}
$$

3. The area is $(\pi+2) / 4$
4. The area is $324 / 5$
5. 45

3. Solutions

1. The curves meet at $x=0$ and $x=1$, with the graph of \sqrt{x} lying above that of x^{3}. So the area we are searching for is

$$
\int_{0}^{1} \sqrt{x}-x^{3} d x=\frac{2}{3} x^{3 / 2}-\left.\frac{1}{4} x^{4}\right|_{0} ^{1}=\frac{2}{3}-\frac{1}{4}=\frac{5}{12} .
$$

2. Graphing the functions on a plane, one sees that $f(x)$ lies above $g(x)$ on the specified interval $[\pi / 2, \pi]$, so the area we are searching for is

$$
\begin{aligned}
\int_{\frac{\pi}{2}}^{\pi} \sin \left(\frac{1}{2} x\right)-\left(\frac{1}{2} x-1\right)^{2} d x & =-2 \cos \left(\frac{1}{2} x\right)-\left.\frac{2}{3}\left(\frac{1}{2} x-1\right)^{3}\right|_{\frac{\pi}{2}} ^{\pi} \\
& =-\frac{2}{3}\left(\frac{\pi}{2}-1\right)^{3}+\sqrt{2}+\frac{2}{3}\left(\frac{\pi}{4}-1\right)^{3}
\end{aligned}
$$

3. The first quadrant is described by $0 \leq \theta \leq \pi / 2$ so we apply this to the formula for area bounded by a polar curve and we get

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{\pi / 2} r(\theta)^{2} d \theta & =\frac{1}{2} \int_{0}^{\pi / 2}(\sin \theta+\cos \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 2} \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta d \theta
\end{aligned}
$$

Now we use the identities $\sin ^{2} \theta+\cos ^{\theta}=1$ and $2 \sin \theta \cos \theta=\sin (2 \theta)$ to get that this equals

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{\pi / 2} \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta d \theta & =\frac{1}{2} \int_{0}^{\pi / 2} 1+\sin (2 \theta) d \theta \\
& =\frac{1}{2} \theta-\left.\frac{1}{2} \cos (2 \theta)\right|_{0} ^{\pi / 2}=\frac{\pi+2}{4}
\end{aligned}
$$

4. Graphing the curve, we see that it $x(t)$ is negative and $y(t)$ seems to start at the origin and goes up until the curve intersects the y-axis. The point at which this happens is found by setting $x(t)=0$, and we find that $t=0$ and $t=3$. Indeed we can check that x is negative for all t between 0 and 3 , and $d y / d t=2 t$ is positive for all such t. Hence we can say that the area is equal to
$-\int_{0}^{3} x d y=-\int_{0}^{3}\left(t^{3}-9 t\right)(2 t) d t=-\int_{0}^{3} 2 t^{4}-18 t^{2} d t=-\left.\left(\frac{2}{5} t^{5}-6 t^{3}\right)\right|_{0} ^{3}=\frac{324}{5}$.
5. Differentiating gives

$$
\frac{d y}{d x}=2 x \sqrt{x^{2}+1}
$$

It follows that $1+(d y / d x)^{2}=1+4 x^{2}\left(x^{2}+1\right)=4 x^{4}+4 x^{2}+1=\left(2 x^{2}+1\right)^{2}$. Hence the arclength is

$$
\int_{1}^{4} \sqrt{1+(d y / d x)^{2}} d x=\int_{1}^{4} \sqrt{\left(2 x^{2}+1\right)^{2}} d x=\int_{1}^{4} 2 x^{2}+1 d x=\frac{2 x^{3}}{3}+\left.x\right|_{1} ^{4}=45 .
$$

