Let $f(x)$ be ∞ diff-able f-4 (has dnivabives of allenders). Then Taylor seines for $f(x)$ around $x=a$ is

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}= \\
= & \underbrace{f(x)}_{\text {Taylor poly_homial fr } f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(h)}(a)}{h!}(x-a)^{n}}+\underbrace{\sum_{k=h+1}^{n!} \frac{f^{(k)}(a)}{k!}(x-a)^{k}}_{\text {fail }}
\end{aligned}
$$

$$
T_{n}(x)
$$

If all derivatives of f are bounded near a,
flan

$$
\underbrace{f(x)}_{f-n}=\underbrace{\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}}_{i+s \text { T.s. }}
$$

and
$f(x) \approx T_{h}(x)$ near a.
Ex_1 tine T. polynomials of dey 1,2 and 3 for $f(x)=e^{x}$ around t $x=0$ (Maclaurin pol.) Calculate app value of \sqrt{e}.

Sol.

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{h!}=\underbrace{1+\frac{x}{1!}}_{T_{1}}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
& T_{1}(x)=1+x \\
& T_{2}(x)=1+x+\frac{x^{2}}{2} e^{x} \approx T_{1}(x) \\
& T_{3}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} \\
& e^{x} \approx T_{2}(x) \\
& e^{x} \approx T_{3}(x)
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{e}=e^{\frac{1}{2}}=\left.\left.e^{x}\right|_{x=\frac{1}{2}} \approx T_{3}(x)\right|_{x=\frac{1}{2}} & =1+\frac{1}{2}+\frac{\left(\frac{1}{2}\right)^{2}}{2}+\frac{\left(\frac{1}{2}\right)^{3}}{6}= \\
& =\frac{79}{48} \approx 1.6458
\end{aligned}
$$

Actual value: $\sqrt{e}=1.64872 \ldots$
Ex.2 Find T.S. for $f(x)=\frac{3 x^{2}-4 x+2}{p+-f \operatorname{deg} 2}$ at $\underbrace{x=1}_{\text {center }}$
T.s. is $\sum_{n=0}^{\infty} \frac{f^{(1)}(1)}{n!}(x-1)^{n}=$

$$
=f(1)+\frac{f^{\prime}(1)}{1!}(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3}+\ldots
$$

$$
\begin{array}{l|l}
& x=1 \\
\hline f(x)=3 x^{2}-4 x+2 & f(1)=3-4+2=1 \\
f^{\prime}(x)=6 x-4 & f^{\prime}(1)=6-4=2 \\
f^{\prime \prime}(x)=6 & f^{\prime \prime}(1)=6 \\
f^{(n)}(x)=0 & f^{(n)}(1)=0 \text { for all } n=3,4,5, \ldots
\end{array}
$$

T.S. for f is

$$
\begin{aligned}
& f(1)+\frac{f^{\prime}(1)}{1!}(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}= \\
& =\frac{1+2(x-1)+\frac{6}{2}(x-1)^{2}}{1+2(x-1)+3(x-1)^{2}}= \\
& \frac{1, \text { T. for } f \text { at } x=1}{}= \\
& \left(=T_{2}(x)\right)
\end{aligned}
$$

