
Episode 38. Taylor series

As we know (see Episodes 35-36),
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Each of these equalities

f(x) =
∞∑

n=0
cnx

n, |x| < R

has a dual nature. It represents

• a function expanded in a power series

• a power series converging to a function
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Given a function, how to find its expansion into a power series, that is,
to find a power series converging to this function?

Theorem 1 (from the power series to a function).

Let a power series
∞∑

n=0
cn(x−a)n converges to a function f(x) for |x−a| < R.

Then f has derivatives of all orders and

cn =
f (n)(a)

n!
, so f(x) =

∞∑
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n!
(x− a)n for |x− a| < R.

Proof. Take a = 0 for simplicity of calculations. The case of an arbitrary a is
handled similarly.

Since the power series
∞∑

n=0
cnx

n converges to the function f(x), we have

f(x) =
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n=0
cnx

n = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + · · ·+ cnx

n + . . . .

Substitute x = 0: f(0) = c0.

Differentiate the power series for f(x):

f ′(x) = c1 + 2c2x+ 3c3x2 + 4c4x3 + · · ·+ ncnx
n−1 + . . .

Substitute x = 0: f ′(0) = c1.

Calculate the second derivative:

f ′′(x) = 2c2 + 3 · 2c3 x+ 4 · 3c4 x2 + · · ·+ n · (n− 1)cnxn−2 + . . .

Substitute x = 0: f ′′(0) = 2c2.

Calculate the third derivative:

f ′′′(x) = 3 · 2c3 + 4 · 3 · 2c4 x+ · · ·+ n · (n− 1)(n− 2)cnxn−3 + . . .

Substitute x = 0: f ′′′(0) = 3 · 2c3.

And so on. After n differentiations and substituting x = 0, we get

f (n)(0) = n · (n− 1) · (n− 2) · · · · 2 · 1 · cn = n! cn.

Therefore, cn =
f (n)(0)

n!
, and f(x) =
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n=0
cnx

n =
∞∑

n=0

f (n)(0)

n!
xn, as required.
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Definition.

If a function f(x) has derivatives of all orders, then the power series

∞∑

n=0

f (n)(a)

n!
(x− a)n is called the Taylor series for f(x) centered at a.

Taylor series centered at 0, that is the series
∞∑

n=0

f (n)(0)

n!
xn,

is called the Maclaurin series.

Given an infinitely differentiable function, we may construct its Taylor series.
Does this series converge? If yes, then to which function?

Theorem 2 (from the function to a power series).

If all derivatives of a function f are bounded near a,

then the Taylor series of f converges to f :

f(x) =
∞∑

n=0

f (n)(a)

n!
(x− a)n for |x− a| < R.

Remark.

There are functions which Taylor series converge, but not to the function itself.
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