Episode 35: Operations on power series

$$
\sum_{n=0}^{\infty} C_{n}(x-a)^{n}
$$

Operations on p.s.

1. Mulxiplication by a number
(rad. of conv. is the same)
a const
2. Aodition / suboraction

$$
\sum_{n=0}^{\infty} a_{n} x^{n} \pm \sum_{n=0}^{\infty} b_{n} x^{n}=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right) x^{h} \mathrm{rad} \cdot \text { of conv } v_{1}
$$

3. Multiplicatios

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} x^{n} \cdot \sum_{n=0}^{\infty} b_{n} x^{n} & =\sum_{n=0}^{\infty} C_{n} x^{n} \mathrm{rad} \cdot \text { of cav. } \\
C_{n} & =\sum_{i=0}^{n} a_{i} b_{n-i}\left(R_{a}, R_{b}\right)
\end{aligned}
$$

4. Differendiation
5. Integracion

Th (differentiation \& integration of $p . s$)
Let p.s. $\sum_{n=0}^{\infty} a_{k} x^{n}$ conv. to the sum $f(x)$ for $|x|<R$.
Then

1) $f(x)$ is sifferentiable for $|x|<R$ and

$$
f^{\prime}(x)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}\left(a_{n} x^{n}\right)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

term-by derm afferertiation
conv. for $|x|<R$

$$
\frac{d}{d x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots\right)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots
$$

2) $f(x)$ is integrable for $|x|<R$ and

$$
\int f(x) d x=\int\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) d x=\sum_{\substack{n=0 \\ \text { bn }}}^{\infty} \int a_{n} x^{n} d x=
$$ tern-hy-term

integration

$$
\begin{aligned}
&=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}+C \\
&|x|<R \\
& \int\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots\right) d x=a_{0} x+\frac{a_{1}}{2} x^{2}+\frac{a_{2}}{3} x^{3}+\ldots \\
&+C
\end{aligned}
$$

Remark Similar formulas are valid
for a ps.cuttered of by $x=a$.

$$
\text { Ex.J p.s. } \sum_{h=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots \quad \stackrel{\downarrow}{\substack{\text { geom. series } \\ \text { with ratio } x}} \frac{1}{1-x}=f(x)
$$

pes $\sum_{n=0}^{\infty} x^{n}$ conk. to its sum, which is $\frac{1}{1-x}$ for all $(x)<1$

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, \quad|x|<1
$$

$\frac{d}{d x} \frac{1}{6}$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}},|x|<1 \\
& \sum_{n=1}^{\infty} n x^{n-1}=1+2 x+3 x^{2}+4 x^{3}+\cdots=\frac{1}{(1-x)^{2}},|x|<1
\end{aligned}
$$

Extra Find the sum $\sum_{n=1} \frac{n}{3^{n}}$

$$
\begin{aligned}
& \left.\sum_{n=1}^{\infty} \frac{n}{3^{n}}=\sum_{n=1}^{\infty} n \cdot\left(\frac{1}{3}\right)^{n-1}\right) \cdot \frac{1}{3}=\frac{1}{3} \sum_{n=1}^{\infty} n\left(\frac{1}{3}\right)^{n-1}= \\
& =\left.\frac{1}{3}\left(\sum_{n=1}^{\infty} n x^{n-1}\right)\right|_{\substack{\text { series } \\
\text { withing the } \\
\text { instrved of } \\
(-1,1)}} ^{\infty}=\left.\frac{1}{3}\left((1-x)^{p}\right)\right|_{x=\frac{1}{3}}=\frac{1}{3} \frac{1}{\left(1-\frac{1}{3}\right)^{2}}=
\end{aligned}
$$

$$
=\frac{3}{4}
$$

So $\sum_{h=1}^{\infty} \frac{h}{3^{n}}=\frac{3}{4}$
EX. 2 p.s. $\sum_{n=0}^{\infty} \frac{x^{h}}{h!}$ conve for all $x(\sec$ Episode 34) What as its sum?

Let $f(x)$ be its sum:

$$
f(x)=\sum_{h=0}^{\infty} \frac{x^{h}}{h!}
$$

$$
\begin{aligned}
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} & =\sum_{m=0}^{\infty} \frac{x^{m}}{m!}= \\
m=n-1 & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=f(x)
\end{aligned}
$$

So, $f^{\prime}(x)=f(x) \quad($ Find $f(x))$

$$
\begin{aligned}
& y=f(x) \quad \frac{d y}{d x}=y \\
& \frac{d y}{y}=d x \\
& h / y \mid=x+C, \\
& y=C e^{x} \\
& f(x)=C e^{x} \quad C=? \\
& \underbrace{C e^{x}}_{f^{f(x)}}=\sum_{n=0}^{\infty} \frac{x^{h}}{n!}=1+\frac{x}{!!}+\frac{x^{2}}{2!}+\cdots \quad \text { for all } x
\end{aligned}
$$

Substidute $x=0$:

$$
C \underbrace{e}_{1}=1+0+0+\cdots=1 \Rightarrow C=1
$$

Finally, $f(x)=\sum_{h=0}^{\infty} \frac{x^{h}}{h!}=e^{x}$

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \text { for all } x
$$

