Episode 34: Power series: radius and interval of convergence

$$
y=x^{n} \text { power } f^{n}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { pis. in }(x-a)
\end{array} \sum_{\text {around } a}^{\text {angered ats }} \\
& \text { about a }
\end{aligned} \sum_{n=0}^{\infty} c_{\uparrow} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots
$$

(coefficient of Pis.)
Ex.J

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n}}{h!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty}\left(\frac{1}{h!}\right)(x-0)^{n} \\
& \text { pis. centered at } 0 \text { with coeff. } c_{n}=\frac{1}{n!} \text { coff. center }
\end{aligned}
$$

Ex. $3 \sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty} 1 \cdot(x-0)^{n}=1+x+x^{2}+\ldots$
caff. center
ch
Does a pes. couv. / div.?
depends on a, C_{n}, x
Any pis. cons. for $x=a$:

$$
\sum_{n=0}^{\infty} C_{n}(x-a)^{n} \equiv \sum_{n=0}^{\infty} C_{n} \underbrace{(a-a)^{n}}_{0}=0
$$

At pes. cone. at its center.
Theorem (convergence of pis.)

$$
\text { For a p.s. } \sum_{n=0}^{\infty} C_{n}(x-a)^{n}
$$

one of the following a lternexives holds one:

$$
R=0
$$

1. p.s. comr. only for $x=a$
2. p.s. conv. for all x
3. There exists a number $R>0$ sit.

- prs. Con. for any x s.t. $|x-a|<R$
-p.s. dive for as x sit. $|x-a|>R$
Def. The. number P is called the radius of converge

$$
|x-a|<R \Leftrightarrow-R<x-a<R \Leftrightarrow a-R<x<a+R
$$

$(a-R, a+R)$ is called the interval of comr.
pis. div. for all $x \quad|x-a|>R$
Endpoint $a-R, a+R$ are scudded separately
Proof Apply th ratio test for pis. $\sum_{n=0}^{\infty} \underbrace{C_{n}(x-a)^{n}}_{a_{n}}$

$$
\left.\begin{array}{rl}
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{c_{n+1}(x-a)^{n+1}}{c_{n}(x-a)^{n}}\right|= & \underbrace{}_{\left.\substack{ \\
\downarrow_{n \rightarrow \infty}} \frac{c_{n+1}}{c_{n}} \right\rvert\,}
\end{array}\right)|x-a| \underset{n \rightarrow \infty}{\rightarrow}||x-a|)
$$

By the ratio test,
p.s. con. if $L \cdot|x-a|<1 \Leftrightarrow|x-a|<\frac{1}{L}=R$
pis. div. if $L \cdot|x-a|>|\Leftrightarrow| x-a \left\lvert\,>\frac{1}{L}=R\right.$

$$
\begin{aligned}
& L=0 \Rightarrow R=\infty \\
& L=\infty \Rightarrow R=0
\end{aligned}
$$

How do sud the radius and the cuferval of conv.?

1. Bring pis. to the standard form $\sum_{n=0}^{\infty} C_{b}(x-a)^{n}$
2. Find $\lim _{h \rightarrow \infty}\left|\frac{c_{n+1}}{c_{h}}\right|=L$ (may he 0 or ∞)
3. The radius of coluv. is $R=\frac{1}{L} \quad\binom{L=0 \Rightarrow R=\infty}{\angle=\infty \Rightarrow R=0}$
4. The interval of com. $\mathrm{els}_{\text {at least }}^{\text {is }(a-R, a+R)}$

5. Study endpts of the interval of comr.

$$
\begin{aligned}
& x=a-R \\
& x=a+R
\end{aligned}
$$

(inchode/not inched info the interval)
Ex. 1 For p.s. $\sum_{n=1}^{\infty} \frac{(4 x+2)^{n}}{n}$ find the center, the radians of cow., the interval of cont.
Sol.

1) Bring pis. to ste form

$$
\begin{aligned}
& \frac{\text { Bring pis. }}{\frac{(4 x+2)^{h}}{n} \text { should look hike } C_{n}(x-a)^{n}} \\
& \frac{(4 x+2)^{h}}{n}=\frac{\left(4\left(x+\frac{1}{2}\right)\right)^{n}}{n}=\frac{4^{h}}{n}\left(x+\frac{1}{2}\right)^{n}
\end{aligned}
$$

the center is $x=\left(-\frac{1}{2}\right)$
the coif, are $c_{n}=\frac{4^{n}}{h}$
23) Find the rachis

$$
\begin{aligned}
& \text { Find the rachius } \\
& \left.\left|\frac{c_{n+1}}{c_{n}}\right|=\frac{4^{n+1} \cdot n}{(h+1) \cdot 4^{n}}=\frac{4 n}{n+1}=\frac{4}{1+\left(\frac{n}{n}\right) \xrightarrow[h \rightarrow \infty]{\longrightarrow 0}} \longrightarrow 4\right)=L
\end{aligned}
$$

the radius is $R=\frac{1}{2}=\frac{1}{4}$
4) Find the interval of comr.

$$
\begin{aligned}
& -\frac{1}{2}+\frac{1}{4}=-\frac{1}{4} \\
& -\frac{1}{2}-\frac{1}{4}=-\frac{3}{4}
\end{aligned}
$$

(center)
the interval of conve is, at least, $\left(-\frac{3}{4},-\frac{1}{4}\right)$
5) Study endpts $x=-\frac{3}{4}, x=-\frac{1}{4}$

Plugin $x=-\frac{3}{4}$ into original oS: $\sum_{n=1}^{\infty} \frac{\left(4 \cdot\left(-\frac{3}{4}\right)+2\right)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ att. harm. series

Pho in $x=-\frac{1}{4}$:
$\sum_{n=1}^{\infty} \frac{\left(4\left(-\frac{1}{4}\right)+2\right)^{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n} \quad \begin{aligned} & \text { harm. series } \\ & \text { diverges }\end{aligned}$
So the interval of comm is $\left[-\frac{3}{4},-\frac{1}{4}\right)$

Ex. 2

$$
\begin{aligned}
\text { Ex.2 } & \sum_{n=0}^{\infty} \frac{x^{n}}{h!} \quad \text { int. of conk.? } \\
& =\sum_{n=0}^{\infty}\left(\frac{\bigcap_{n}}{h!}\right) \begin{array}{c}
(x-0)^{n} \\
\text { custer }
\end{array} \\
\left|\frac{c_{n+1}}{c_{n}}\right| & =\frac{1}{(n+1)!} \div \frac{1}{n!}=\frac{n!}{(n+1)!}=\frac{1}{h+1} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0=L
\end{aligned}
$$

The radius is $R=\frac{1}{L}=\infty$
the interval of conv. is $(-\infty, \infty)$
P-3. conc. for $a l l x$
Ex. $3 \sum_{n=0}^{\infty} h!x^{n} \quad$ int. $f \cos v$??
center: $x=0$

$$
\begin{aligned}
& \text { coff. : } c_{n}=h! \\
& \left|\frac{c_{n+1}}{c_{n}}\right|=\left|\frac{(h+1)!}{h!}\right|=h+1 \xrightarrow[n \rightarrow \infty]{\longrightarrow} \infty=L
\end{aligned}
$$

the radius is $R=\frac{1}{L}=0$
Pis. Conc. at $\begin{gathered}x=0 \\ \text { (center) only }\end{gathered}$

