Any two consearitue term have opposite sign: $a_{n} \cdot a_{n+1}<0$
for ar $n=1,2,3, \ldots$

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}
$$

Any alt. series can be written as

$$
\left.\begin{array}{l}
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-\ldots \\
\text { or } \\
\sum_{n=1}^{\infty}(-1)^{n} a_{n}=-a_{1}+a_{2}-a_{3}+\ldots
\end{array}\right\} \begin{gathered}
\text { where } a_{n}>0 \\
\text { for all } h
\end{gathered}
$$

Alternating series text

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

1) $a_{n}>0$ pos.
2) $a_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0$

Ex. $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ $\left\{a_{n}\right\}$ pos. dear. do O sequence a bternatily harmonic series Apply alt. series test:

1) $a_{n}=\frac{1}{h}>$
2) $a_{n+1}=\frac{1}{n+1}<\frac{1}{n}=a_{n}$ (dec.)
3) $a_{n}=\frac{1}{n} \underset{n \rightarrow \infty}{ } 0$
$\Rightarrow \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{h}$ con.
I alt. series tet t

$$
\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\ln 2\right. \text {-prove later) }
$$

Def. $\sum_{1}^{\infty} a_{n}$ conv. absolutely if $\sum_{1}^{\infty}\left|a_{n}\right|$ con. $\sum_{1}^{\infty} a_{n}$ conv, conditionally if it sonv., but not abs. $\left(\sum_{1}^{\infty} a_{n}\right.$ conv., but $\sum_{1}^{\infty}\left(a_{n}\right)$ div. $)$

- If a series cons abs. then it conk.

Ex 1) $\sum_{1}^{\infty} \frac{(-1)^{h+1}}{h} \operatorname{con} v$.

$$
\sum_{1}^{\infty}\left|\frac{(-1)^{n+1}}{n}\right|=\sum_{1}^{\infty} \frac{1}{n} \text { div. (harmseries) } \mid \Rightarrow
$$

$\sum \frac{(-1)^{n+1}}{n}$ con. conditionally
2) $\sum_{1}^{\infty} \frac{(-1)^{h}}{h^{2}}$ cons. abs. since
$\sum_{1}^{\infty}\left|\frac{(-1)^{h}}{h^{2}}\right|=\sum_{1}^{\infty} \frac{1}{h^{2}}$ conn. as ϕ-series with $p=2>1$

$$
\Rightarrow \sum_{1}^{\infty} \frac{(-1)^{h}}{h^{2}} \operatorname{con} v
$$

Ex. $\sum_{n=2}^{\infty} \frac{\cos (n \pi)}{\ln n}$ conc.? conc. abs.? div?

$$
\cos (n \pi)=\left\{\begin{array}{rl}
1, & h \text { is even } \\
-1, & h \text { is odd }
\end{array}=(-1)^{n}\right.
$$

$$
\rightarrow \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln h}=\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{1}{\ln n} a_{n}\right.
$$

Apply aft. series test

1) $a_{n}=\frac{1}{\ln n}>0 \quad(n \geqslant 2)$
2) $a_{n+1}=\frac{1}{\ln (n+1)}<\frac{1}{\ln n}=a_{s}$
3) $h(n+1)>h h_{n}$ since $h x$ is decn.f-s
$\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln h}$ conc. y alt. series test
Dos it comr abs?

$$
\begin{aligned}
& \left|\frac{(-1)^{n}}{\ln n}\right|=\frac{1}{\ln n} \\
& \sum_{n=2}^{\infty} \frac{1}{\ln h} \text { compasenem } \frac{1}{n} \\
& \ln n<h \operatorname{lin}_{y=x} \text { all } n=1,2,3 \quad \frac{1}{\ln h}>\frac{1}{n} \\
& \xrightarrow[y]{4=x}+\sum_{i}^{\infty} \frac{1}{n} \frac{\text { div. }}{=} \\
& \sum_{2}^{\infty} \ln n \quad \text { div. b } \\
& \sum_{i}^{\infty} \frac{(-1)^{n}}{\operatorname{Lin} n}=\sum_{i}^{\infty} \frac{\cos (h \pi)}{\ln h} \quad \operatorname{con} v_{1} \text {, but ant comarisor } \\
& \text { (cons. conditionally) }
\end{aligned}
$$

