Episode 30: Divergence test and other theorems about series

A series
$$\sum_{h=1}^{\infty} q_h$$
 (ohv. / div. if
the sequence of its partial suns $\left\{ S_h \right\}_{h=1}^{\infty}$ conv. / div.
 $S_h = q_1 + \dots + q_h$
The (heassery colorizion for cohv.)
 $\sum_{h=1}^{\infty} q_h$ conv. $\Rightarrow q_h \xrightarrow{h \to \infty} 0$
Proof Let $\sum_{h=1}^{\infty} q_h = S$. This means that
 $S_h \xrightarrow{h \to \infty} S$
 $S_h = q_1 + \dots + q_{h-1} + q_h$
 $S_{h-1} = q_1 + \dots + q_{h-1} + q_h$
 $S_{h-1} = q_1 + \dots + q_{h-1} + q_h$
 $S_{h-1} = q_1 + \dots + q_{h-1} + q_h$
 $S_{h-1} = q_1 + \dots + q_{h-1} + q_h$
 $S_{h-2} = S$ as required
 $h \to \infty$
 $h \to$

$$a_{h} = \sqrt[h]{2} = 2^{\binom{h}{h}} \xrightarrow{a_{0}} 2^{\circ} = 1 \neq 0 =)$$

$$\xrightarrow{\sum_{h=1}^{m} \sqrt{2}} \frac{1}{2} \frac{d_{1}v}{d_{1}} \frac{d_{1}v}{d_{1}v} \frac{$$

~

 $S_{10} \geq \frac{1+2^{h+1}}{3^{\frac{h}{2}}} \quad cohv. \quad f_{1} = \frac{4}{2}$ $\frac{E_{X,Z}}{\sum_{h=1}^{\infty} \left(\frac{1}{h} - \frac{1}{2^{h}}\right) \quad cohv. /dv. ?$ Assume that $\sum_{n=1}^{\infty} (f_n - f_n) \frac{conv}{n}$. Then $\sum_{l=1}^{n} \left(\frac{1}{h} - \frac{1}{2^{h}} \right) + \sum_{l=1}^{n} \frac{1}{2^{h}} = \sum_{l=1}^{n} \left(\frac{1}{h} - \frac{1}{2^{h}} + \frac{1}{2^{h}} \right) =$ CONV. (as geoch) $=\sum_{h=1}^{\infty} \frac{1}{h} harm.$ con. by assumption contre diction diverges Thz) Conv. 15 So the assungtion was worker and $= \left(\frac{1}{h} - \frac{1}{2^n}\right) = \frac{1}{2^n}$ Remark $\sum_{j=1}^{\infty} \left(\frac{j}{h} - \frac{j}{2^{h}}\right) = \sum_{j=1}^{\infty} \frac{j}{h} - \sum_{j=1}^{\infty} \frac{j}{2^{h}}$ wrong 1 div. wroy Silmilary, $= \sum_{l=1}^{\infty} \left(\frac{1}{h} - \frac{1}{h+l} \right) \stackrel{\circ}{=} \sum_{l=1}^{n} \frac{1}{h} - \sum_{l=1}^{n} \frac{1}{h+l}$ $\sum_{h(h+l)}^{l}$ (felescopi) & with 8m

