$a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$
$a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots$ series $\sum_{n=1}^{\infty} a_{n}$
What is the infinite sum $\sum_{n=1}^{\infty} a_{n}$?
Do summation step by step

$$
\underset{\text { partial }}{\operatorname{sums}}\left\{\begin{array}{l}
s_{1}=a_{1} \\
s_{2}=a_{1}+a_{2} \\
s_{3}=a_{1}+a_{2}+a_{3} \\
\cdots \\
s_{n}=a_{1}+a_{2}+\ldots+a_{n}=\sum_{i=1}^{n} a_{i} \\
\cdots
\end{array}\right.
$$

Consider a sequence $\left\{s_{1}, S_{2}, \ldots, s_{n}, \ldots\right\}=\left\{S_{n}\right\}_{n=1}^{\infty}$ If this sequence of partial sums converges to limit $s\left(\lim _{n \rightarrow \infty} s_{n}=s\right)$ then we say that the series $\sum_{n=1}^{\infty} a_{n}$ converges to s and write

$$
\sum_{n=1}^{\infty} a_{n}=s
$$

If the seq, of partial sums diverges ($\lim _{n \rightarrow \infty} s_{n}$ ONE), Then we say that the series $\sum_{n=1}^{\infty} a_{n}$ diverges
Ex. $\sum_{n=1}^{\infty}(-1)^{n}={\underset{n}{n=1}}_{-1+1-1+1-\ldots \text { conc. or div..? } ? ~}^{n=2}$?
Partial sums

$$
\begin{aligned}
& s_{1}=-1 \\
& s_{2}=-1+1=0 \\
& s_{3}=-1+1-1=-1 \\
& s_{4}=0 \\
&\left\{s_{n}\right\}_{n=1}^{\infty}=\{-1,0,-1,0, \ldots \quad\} \text { diverges } \Rightarrow \sum_{n=1}^{\infty}(-1)^{n} \text { div. }
\end{aligned}
$$

Geom, series

$$
\frac{\text { from, series }}{1+r+r^{2}+r^{3}+\ldots}=\sum_{n=1}^{\infty} r^{n-1} \quad\left(=\sum_{n=0}^{\infty} r^{n}\right) \quad \text { conk. or div? }
$$

case 1 $r=1$

$$
1+1+1+\cdots=\sum_{n=1}^{\infty} 1^{n}
$$

Seq. of pardid sums:

$$
\begin{aligned}
& s_{1}=1 \\
& s_{2}=2 \\
& s_{3}=3 \\
& s_{n}=n
\end{aligned}
$$

$\left\{S_{n}\right\}_{n=1}^{\infty}=\{n\}_{n=1}^{\infty}$ div. to $\infty \Rightarrow$ geom. series with $r=1$ div. to ∞
case 2 $\quad r \neq 1$

$$
\begin{aligned}
s_{n} & =1+r+r^{2}+\ldots+r^{n-1} \\
r s_{n} & =r+r^{2}+r^{3}+\ldots+r^{n} \\
\underbrace{s_{n}-r s_{n}}_{s_{n}(1-r)} & =1-r^{n} \underset{(r \neq 1}{\Rightarrow} s_{n}=\frac{1-r^{n}}{1-r} \underset{n \rightarrow \infty}{\longrightarrow} ?
\end{aligned}
$$

As we know, $\quad \lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{lll}1, r=1 & x \\ 0,-1<r<1 \\ D N E, r \leqslant-1 \text { or } r>1\end{array}\right.$
So $\quad \lim _{h \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{1-r_{n}}{1-r}=\left\{\begin{array}{l}\frac{1}{1-r},-1<r<1 \\ \Delta N E, r \leq-1_{B} r r>1\end{array}\right.$

$$
\begin{aligned}
& \begin{array}{l}
\text { case } 1+\operatorname{cose} 2: \\
\sum_{n=1}^{\infty} r^{n}=\lim _{n \rightarrow \infty} s_{n}= \begin{cases}\frac{1}{1-r}, & -1<r<1 \\
\Delta V_{E}, & (|r|<1)\end{cases}
\end{array} \\
& 1+r+r^{2}+\ldots \underset{|r|<1}{=} \frac{1}{1-r} \begin{cases}1+x+x^{2}+\ldots & =\frac{1}{1-x} \\
& |x|<1\end{cases}
\end{aligned}
$$

$$
\sum_{n=1}^{\infty} a r^{n-1}= \begin{cases}\frac{\text { love }}{1-\theta<}, & |r|<1 \\ \text { diverges, }, & |r| \geqslant 1\end{cases}
$$

Ex.

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} \bar{\eta}_{\bar{\uparrow}}^{\text {geom. Series wit }} \frac{1}{1-\left(\frac{1}{2}\right)_{2}}=2
$$

$r=\frac{1}{2}$
$\left|\frac{1}{2}\right|<1 \Rightarrow$ the series cons.

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots=2
$$

Harmonic series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \\
& Q_{1}+\theta_{\frac{1}{2}}^{\infty}+\sum_{\frac{1}{3}}^{\infty}+\ldots \\
& s_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n} \underset{h \rightarrow \infty}{\longrightarrow} ?
\end{aligned}
$$

$$
\infty
$$

$$
s_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}>\int_{1}^{n+1} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{n+1}=\ln (h+1) \underset{n \rightarrow \infty}{\rightarrow \infty} \infty
$$

So $\left\{S_{n}\right\}_{n=1}^{\infty}$ div. to $\infty \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n}$ div. to ∞

Telescoping series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}+\cdots \\
& s_{n}=\sum_{i=1}^{n} \frac{1}{i(i+1)}=\sum_{i=1}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right)=
\end{aligned}
$$

partial
fractions decor.

$$
\begin{aligned}
& \begin{array}{r}
\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{h}-\frac{1}{h+1}\right) \\
i=1 \\
i=2
\end{array} \\
& l=1 \\
& =\underbrace{1-\frac{1}{n+1}}_{s_{n}} \xrightarrow[n \rightarrow \infty]{ } 1 \\
& S_{n \rightarrow \infty} S_{h \rightarrow \infty} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
\end{aligned}
$$

