Episode 28. Limit of a sequence
Definition. A real number L is called limit of a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ if for any positive number ε there exists a number N such that $\left|a_{n}-L\right|<\varepsilon$ whenever $n>N$.
Notation: $\lim _{n \rightarrow \infty} a_{n}=L \quad$ or $\quad a_{n} \underset{n \rightarrow \infty}{\longrightarrow} L$.

$\lim _{n \rightarrow \infty} a_{n}=L$ if a_{n} becomes arbitrary close to L for supt. large h.

$$
\begin{aligned}
& \text { for snuff. large } n \text {. } \\
& \left\{a_{n}\right\}_{n=1}^{\infty} \xrightarrow[\text { diverges }]{\text { converges }} \text { if there exist } \lim _{n \rightarrow \infty} a_{n}=L<\infty \\
& \lim _{n \rightarrow \infty} a_{n} D N E
\end{aligned}
$$

Ex. 1 Harmonic seq. $\left\{\frac{1}{h}\right\}_{h=1}^{\infty}$ conv. to 0
means $\quad a_{n}=\frac{1}{h} \xrightarrow[h \rightarrow \infty]{ } 0$
Ex. 2 Geometric seq. $\left\{r, r^{2}, r^{3}, \ldots\right\}=\left\{r^{n}\right\}_{n=1}^{\infty}$

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}1, & r=1 \\ 0, & -1<r<1 \\ D N E, & r \leqslant-1 \text { or } r>1\end{cases}
$$

Properdies of the hinit

1. \lim is unique (iof exists)
2. lin of $t,-, x, \div$, power of Rimits
cs equal to the $t,-, x, \div$, parer of limits (if exist)

$$
\left(\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}\right)
$$

3. squeeze th

$$
b_{n} \leq\left(\begin{array}{l}
a_{n} \\
n \rightarrow \infty \\
n \rightarrow \infty \\
l_{n}
\end{array}\right) \leqslant c_{n}
$$

4. A seq. converges if its extension f-" converges
5. Bounded monotonic sequenus converge

$\frac{\text { Comparative asymptotic behavior of seguenus }}{\text { at } \infty}$

$\log _{2}$	solver
$\lim _{2}$	h^{2}
$\log _{2} h$	$h^{1 / 3}$
\vdots	\vdots
$\log _{a} h \quad(a>1)$	$h^{a}(a>0)$
$\downarrow_{n \rightarrow \infty}$	$d^{n \rightarrow \infty}$
∞	∞

exp
2^{h}
e^{h}
\vdots
factorial

$$
n!=1 \cdot 2 \cdot 3 \ldots \cdot n
$$

(hes no extension fan)

$$
\begin{aligned}
& a^{h}(9>1) \\
& \downarrow_{h \rightarrow \infty}
\end{aligned}
$$

∞
∞

Which sequence dos grow faster?

$$
\log _{a} n<n^{a}<a_{e x b}^{a}<n!
$$

l_{0} power exp factorial
Haw to compare the growth at so?
Ex.

In genera, $\lim _{h \rightarrow \infty} \frac{\log _{a} h}{h^{b}}=0$ for $a y \quad \begin{aligned} & a>1 \\ & b>0\end{aligned}$

$$
\log _{a} n<h^{b} \text { as } h \rightarrow \infty
$$

(2)

$$
\lim _{h \rightarrow \infty} \frac{h^{2} \text { power }}{2^{n} \text { exp. }}=\left[\frac{\infty}{\infty}\right]=\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}=\lim _{\substack{ \\\text { 'Hop } \\ \text { ex }}} \frac{2 x}{h_{2} \cdot 2^{x}}=
$$

$\left[\frac{\infty}{\infty}\right]_{L^{\prime} H}=\lim _{x \rightarrow \infty} \frac{2}{\left(h_{1}\right)^{2} 2^{x}}=\underline{0} \Rightarrow$ porer grows faster ats
In general, $\frac{h^{a}}{b^{n}} \xrightarrow[n \rightarrow \infty]{\longrightarrow 0}$ fo ag $\begin{aligned} & a>0 \\ & b>1\end{aligned}$
(3) 2^{n} exp
$\lim _{n \rightarrow \infty} n!$ factorial

$$
\left\langle 2 \cdot 1 \cdot 1 \cdot 1 \ldots \quad 1 \cdot \frac{2}{h}=\frac{4}{h}\right.
$$

S the squerzeth

So $\frac{2^{n}}{n!} \xrightarrow[n \rightarrow \infty]{ } 0 \quad$ the facelow ind grows faster than the exp
In genera, $\frac{a^{n}}{n!} \underset{h \rightarrow \infty}{ } 0$ fo by $a>1$

