Episode 28. Limit of a sequence

Definition. A real number L is called *limit* of a sequence $\{a_n\}_{n=1}^{\infty}$ if for any positive number ε there exists a number N such that $|a_n - L| < \varepsilon$ whenever n > N.

$$\lim_{n \to \infty} r^{n} = \begin{cases} 1, & r = 1 \\ 0, & -1 < r < 1 \\ DNE, & r \leq -1 \text{ or } r > 1 \end{cases}$$

2. loh of +, -, x, -, power of himits

(if exist) is equal to the +, -, ×, -, power of $\begin{pmatrix} hh_n (a_n + b_n) = h_n a_n + h_n b_n \\ h \to \infty & h \to \infty \end{pmatrix}$ 3. sgheeze th $b_h \leq G^n \leq C_h$ $h \rightarrow \infty$ $h \rightarrow \infty$ A seq. converges if its extension f. a converges 4. 5. Bounded monotohic sequences converge M _____ iner. + bounded above decr. + bound let Comparative asymptotic lehavior of sequelus atoo factorial power e×p_ log h!=1.2.3....h 2 h h² (has no estation f-n) Inn e^h h 13 100, h n! h^a (a> 0) $a^{h}(9>1)$ logah (a>i) l hoo h-76 h-)5 h->00 \sim ∞ \sim ∞

Which sequence dois grow faster? logan < na < an < n! Log power exp factoriat Har to compare the growth at w? $= \int_{M_{Y}} \frac{1}{2x^{-\frac{1}{2}}} = \int_{M_{Y}} \frac{2}{\sqrt{x}} = 0 = \int_{M_{Y}} \int_{grows} \int_{$ In general, his hogan = 0 hogy a>1 have h = 0 hogy a>1 b>0 logan < h as h > 6 (2) $\int_{hh}^{2} \frac{h^{2}}{2^{h}} power = \left[\frac{\infty}{\infty}\right] = \int_{x \to \infty}^{2} \frac{x^{2}}{2^{x}} = \int_{x \to \infty}^{2} \frac{2x}{h^{2} \cdot 2^{x}} = \int_{x \to \infty}^{2} \frac{2x}{h^{2} \cdot 2^{x}}$ $\begin{bmatrix} \infty \\ -\infty \end{bmatrix} = hh \frac{2}{(h_2)^2 2^{\times}} = 0 =)$ pover group faster at ∞ L'H $\times \rightarrow \infty$ $(h_2)^2 2^{\times} = 0$ = han loop for any 9>0 In general, ha $\frac{h^{a}}{b^{n}} \xrightarrow{n \to 0} 0$ b > 1

2h) exp h! factorial $< 2 \cdot | \cdot | \cdot | \dots + | \cdot \frac{2}{h} = \frac{4}{h}$ $0 < \frac{2^{h}}{h!} < \frac{4}{h}$ how $h \to \omega$ by k squeezeth the factor ice grows faster than the log $S_0 = \frac{2^n}{h'_i} \xrightarrow{h \to \infty} 0$ $\frac{a^{h}}{n!} \xrightarrow{h \to \infty} b \quad h = ay \quad a > l$ In general,