Episode 27: Model sequences
(1) Harmonic sequenu

$$
\left\{\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}
$$

Extension $f-n$ is $f(x)=\frac{1}{x}$

(2) Geometric sequence

Given mushers
a (first term)
r (common ratio)

$$
\left\{a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1}, \ldots\right\}=\{\underbrace{a r^{n-1}}_{\text {general ter }}\}_{n=1}^{\infty}
$$

General term $a_{n}=a \cdot r^{n-1}$ general term

Recursive formica $\left\{\begin{array}{l}a_{1}=a \\ a_{n+1}=a_{n} \cdot r \quad n=1,2, \ldots\end{array}\right.$

$$
r=\frac{a_{n+1}}{a_{n}}=\frac{a_{n}}{a_{n-1}}=\ldots=\frac{a_{2}}{a_{1}}
$$

Ex.

1) $a=1, r=1$

$$
\{1,1,1, \ldots\} \quad a_{n}=1 \text { for all } h
$$

2) $a=1, r=-1 \quad\{1,-1,1,-1, \ldots\}$

$$
a_{n}=(-1)^{n+1}
$$

3) $\left\{2^{n}\right\}_{n=1}^{\infty}=\{2,4,8,16, \ldots\}$

$$
a=2
$$

$$
r=\frac{4}{2}=2
$$

$$
\begin{aligned}
& a=1 \\
& r=-\frac{1}{3}
\end{aligned}
$$

Terminology
A sen. $\left\{a_{n}\right\}_{h=1}^{\infty}$ is called
increasing if $a_{n}<a_{n+1}$ for $a_{l l} n$ decreany if $a_{n}>a_{n+1}-\cdots-$ monotomic if it's either ihre. or decr.
positive if $a_{n}>0$ for all n
hegadive if $a_{n}<0 \quad=\cdots$
alternating if $a_{n} a_{n+1}<0$ for all h
bounded above of $a_{n} \leq M$ for some cont $\underbrace{M}_{\text {all } h}$
bounded below if $a_{n} \geqslant L$ for some court $\sum_{\text {lower bound }}^{L}$ for all n

EX

1) $\left\{\left(-\frac{1}{2}\right)^{n}\right\}_{n=1}^{\infty}=\left\{-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \cdots\right\}$ geom. sep.

- hither cimon hov deer.
(so not monotonic)
- alternediy
- bounded above $\frac{1}{4} \quad\left(=a_{2}\right)$
-bounded below $y-\frac{1}{2} \quad\left(=a_{1}\right)$

$$
y=-\frac{1^{\prime}}{2^{x}}
$$

2) $\left\{3^{h}\right\}_{h=1}^{\infty}$
increany positive
bounced below $y 3$
3) $\left\{a_{n}\right\}_{n=1}^{\infty} \quad a_{n}=\frac{h}{n+1}$
positive
Exewsioh $f-n \quad f(x)=\frac{x}{x+1}=\frac{(x+1)-1}{x+1}=1-\frac{1}{x+1}$

$\{a b\}^{\infty} \quad$ incr.
rounded above bI I
OR $f^{\prime}(x)=\frac{x+1-x}{(x+1)^{2}}=\frac{1}{(x+1)^{2}}>0$ $\Rightarrow f$ is inc r.

Alt ernative sol.

$$
\begin{aligned}
& a_{n}=\frac{n}{n+1}=\frac{(n+1)-1}{n+1}=1-(\frac{1}{n+1}>0<\underbrace{1}_{\text {npper boond }} \quad \text { for allh } \\
& a_{n+1}=\frac{n+1}{n+2}=1-\frac{1}{n+2}>1-\frac{1}{n+1}=a_{n} \text { for }\left\{a_{n}\right\}_{n=1}^{\infty} \text { ho allh }
\end{aligned}
$$

so $a_{n+1}>a_{n} \Rightarrow\left\{a_{n}\right\}$ is incr.

