Def. A sequence is an infinite ordered list of members havij the 1 st alt but no last ell.
Notation $\left\{\begin{array}{c}a_{1}, a_{2}, a_{3}, \ldots, \\ \uparrow \\ \uparrow\end{array} a_{n}, \ldots\right\}=\left\{\begin{array}{c}a_{n} \\ q_{n}=(1)\end{array}\right.$ 1 st term $2^{\text {nd }}$ term

$$
\left\{\begin{array}{ll}
1, & \left.\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\right\} \\
a_{0}^{\prime \prime} & a_{1}^{\prime \prime}
\end{array}\right\}=\left\{\frac{1}{2^{n}}\right\}_{n=0}^{\infty}
$$

$$
\uparrow
$$ general term

Compare a sequence and a f-s

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto f(x) \\
& \text { variable }
\end{aligned}
$$

A segneme is \sum_{t-n} whose
domain is $\mathbb{2}_{+}$.
Compare seq. $\left\{\frac{1}{2^{n}}\right\}_{h=0}^{\infty}$ and $f-n \quad f(x)=\frac{1}{2^{x}}$

$$
f(n)=\frac{1}{2^{n}}=a_{n}
$$

A f-n $f(x)$ where $f(n)=a s$ for $a l l h \in Z^{+}$is called a_{n} extension of $\left\{a_{n}\right\}_{n=1}^{\infty}$
How to describe a equine?

1) By a formula for a general term

Ex. $\{\underbrace{\left.(-1)^{n} h^{2}\right\}_{n=1}^{\infty}=\{-1,4, \quad-9,16, \ldots\}}_{\text {gen.ferm }}$
2) By a recursive formula

Ex. 1

$$
\left\{\begin{array}{l}
a_{1}=1 \\
a_{n+1}=a_{n}+3, n=1,2,3 .
\end{array}\right.
$$

$\{1,4,7,10, \ldots\}$ arithmetic sequence

$$
\begin{aligned}
& a_{2}=a_{1}+3 \\
& a_{3}=a_{2}+3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex.2 }\left\{\begin{array}{l}
a_{1}=1 \\
a_{2}=1 \\
a_{n+1}=a_{n}+a_{n-1}, n=2,3, . .
\end{array}\right. \\
& \{1,1,2,3,5,8,13,21, \ldots\} \quad \text { Fibonacci sequence } \\
& a_{3}=a_{2}+a_{1} \\
& a_{4}=a_{3}+a_{2}
\end{aligned}
$$

