Episode 25

Second-order differential equations

Objectives	2
Solutions and their linear behavior	3
Proportional solutions.	4
General solution	5
How to find linearly independent solutions	δ
The characteristic equation: real roots	7
The characteristic equation: complex roots	
Summary	9
Examples: real roots	C
Examples: complex roots	1

Objectives

In this episode, we will learn how to solve second-order homogeneous linear differential equation with constant coefficients. What this long name means? A general equation of this type is written as $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$, or ay'' + by' + cy = 0, where a, b, c are given constants (they are called constant coefficients) and y = y(x) is unknown function in variable x. Second-order means that the highest derivative is of the second order. For this reason, $a \neq 0$. Homogeneous means that the right hand side of the equation is zero. Linear means that y, y' and y'' are involved with exponents of one. For example, 3y'' + y' - 2y = 0 and y'' = 0 are second-order homogeneous linear equation with constant coefficients, while $y'' - y^2 = 0$, y'' + 2y' = x + 1, y' + y = 0, y'' - xy' = 0 are not. 2 / 11

A solution of the equation ay'' + by' + cy = 0 is any function satisfying the equation. For example, $y = e^x$ is a solution of the equation y'' - y = 0, because $(e^x)'' - e^x = 0$. This solution is not unique: $y = e^{-x}$ is also a solution since $(e^{-x})'' - e^{-x} = 0$. Actually, the equation y'' - y = 0, as any other second-order linear equation, has infinitely many solutions. How to find them all? **Theorem (linear behavior of solutions).** If y_1 and y_2 are solutions of ay'' + by' + cy = 0, then so $C_1y_1 + C_2y_2$ is for any constants C_1 and C_2 . **Proof.** Let y_1 , y_2 be solutions of ay'' + by' + cy = 0. Then $ay''_1 + by'_1 + cy_1 = 0$ and $ay''_2 + by'_2 + cy_2 = 0$. Let us check that $C_1y_1 + C_2y_2$ satisfies the equation for any choice of constants C_1 , C_2 : $a(C_1y_1 + C_2y_2)'' + b(C_1y_1 + C_2y_2)' + c(C_1y_1 + C_2y_2) \stackrel{?}{=} 0$ $C_1(ay''_1 + aC_2y''_2 + bC_1y'_1 + bC_2y'_2 + cC_1y_1 + cC_2y_2 \stackrel{?}{=} 0$ $C_1 \cdot 0 + C_2 \cdot 0 \stackrel{?}{=} 0$ $0 = 0 \quad \checkmark$

Proportional solutions

Example 1. As we saw, $y_1 = e^x$ and $y_2 = e^{-x}$ are solutions of y'' - y = 0. Therefore, $y = C_1 e^x + C_2 e^{-x}$ is also a solution for any $C_1, C_2 \in \mathbb{R}$. Are there any other solutions besides $y = C_1 e^x + C_2 e^{-x}$? (Spoiler: no!) **Example 2.** The equation y'' + y = 0 has solutions $y_1 = \sin x$ and $y_2 = 5 \sin x$. Indeed, $y_1'' = (\sin x)'' = (\cos x)' = -\sin x$, so $y_1'' + y_1 = -\sin x + \sin x = 0$, and $y_2'' = (5\sin x)'' = (5\cos x)' = -5\sin x$, so $y_2'' + y_2 = -5\sin x + 5\sin x = 0$. Therefore, $y = C_1 \sin x + C_2 \cdot 5 \sin x = (C_1 + 5C_2) \sin x = C \sin x$ is a solution for any constant C. Are here any other solutions besides $y = C \sin x$? (Spoiler: yes! Take, for example, $y = \cos x$.) What is the difference between these two pairs of solutions, $y_1 = e^x$ and $y_2 = e^{-x}$ in Example 1 and $y_1 = \sin x$ and $y_2 = 5 \sin x$ in Example 2? It's easy to observe that $\sin x$ and $5\sin x$ are **proportional**, while e^x and e^{-x} are not. Indeed, $y_1 = \sin x$ and $y_2 = 5 \sin x$ are proportional since $y_2 = 5y_1$. If we assume that e^x and e^{-x} are proportional, then $y_2 = Cy_1$ for some constant C. But $e^{-x} = Ce^x \iff 1 = Ce^{2x}$ for all x, which is impossible. 4 / 11

Two proportional solutions are called *linearly dependent*. Non-proportional solutions are called *linearly independent*. $y_1 = e^x$ and $y_2 = e^{-x}$ are *linearly independent* solutions of y'' - y = 0. $y_1 = \sin x$ and $y_2 = 5 \sin x$ are *linearly dependent* solutions of y'' + y = 0. **Definition**. A general solution of the equation ay'' + by' + cy = 0 is $y(x) = C_1y_1(x) + C_2y_2(x)$, where $y_1(x)$, $y_2(x)$ are linearly independent solutions of the equation and C_1 , C_2 are arbitrary constants. The expression $C_1y_1(x) + C_2y_2(x)$, is called a *linear combination* of y_1 and y_2 . As it will be proven in the course of differential equations, **any** solution of the equation ay'' + by' + cy = 0 can be obtained from the general solution by an appropriate choice of the constants C_1 , C_2 . Therefore, to find a general solution, we need to find two linearly independent solutions y_1, y_2 and set up their linear combination $C_1y_1 + C_2y_2$ with arbitrary constants C_1 , C_2 .

5 / 11

How to find linearly independent solutions We know that the first-order equation ay' + by = 0 has an exponential solution (it can be found by separation of variables). Let us try to find a solution of ay'' + by' + cy = 0 in the exponential form $y = e^{\lambda x}$, where λ is unknown constant (to be determined). Substitute $y = e^{\lambda x}$, $y' = \lambda e^{\lambda x}$, and $y'' = \lambda^2 e^{\lambda x}$ into the equation: $a \frac{\lambda^2 e^{\lambda x}}{y'} + b \frac{\lambda e^{\lambda x}}{y'} + c \frac{e^{\lambda x}}{y} = 0$. Factor out $e^{\lambda x}$: $a \lambda^2 e^{\lambda x} + b \lambda e^{\lambda x} + c e^{\lambda x} = 0 \iff e^{\lambda x} (a\lambda^2 + b\lambda + c) = 0$ We may cancel $e^{\lambda x}$ out since it's never zero: $e^{\lambda x} (a\lambda^2 + b\lambda + c) = 0 \iff a\lambda^2 + b\lambda + c = 0$. If $y = e^{\lambda x}$ is a solution of the equation ay'' + by' + cy = 0, then λ is a root of the quadratic equation $a\lambda^2 + b\lambda + c = 0$. The quadratic equation $a\lambda^2 + b\lambda + c = 0$ is called the *characteristic equation* of the differential equation ay'' + by' + cy = 0.

The characteristic equation: real roots The solutions of the characteristic equation are $\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. • If λ_1 , λ_2 are real and distinct, then two linearly independent solutions are $y_1(x) = e^{\lambda_1 x}$ and $y_2(x) = e^{\lambda_2 x}$. • If $\lambda_1 = \lambda_2 (= \lambda = -b/2a)$ is a double root, then two linearly independent solutions are $y_1(x) = e^{\lambda x}$ and $y_2(x) = xe^{\lambda x}$. Let us check that $y_2(x) = xe^{\lambda x}$ is a solution of ay'' + by' + cy = 0. Substitute $y'_2(x) = (1 + \lambda x)e^{\lambda x}$ and $y''_2(x) = (2\lambda + \lambda^2 x)e^{\lambda x}$ into the left hand side of the equation: $a(2\lambda + \lambda^2 x)e^{\lambda x} + b(1 + \lambda x)e^{\lambda x} + cxe^{\lambda x} = (a\lambda^2 + b\lambda + c)xe^{\lambda x} + (2a\lambda + b)e^{\lambda x} = 0$, since λ is a root of $a\lambda^2 + b\lambda + c$, and $2a\lambda + b = 2a(-b/2a) + b = 0$. Therefore, $y_2(x) = xe^{\lambda x}$ is indeed a solution of the differential equation. The solutions $y_1(x) = e^{\lambda x}$ and $y_2(x) = xe^{\lambda x}$ are linearly independent since they are not proportional.

The characteristic equation: complex roots • If $\lambda_{1,2} = \alpha \pm i\beta$ are complex conjugate roots $(\alpha, \beta \in \mathbb{R})$, then two linearly independent solutions are $y_1^*(x) = e^{(\alpha+i\beta)x}$ and $y_2^*(x) = e^{(\alpha-i\beta)x}$. But they are not real-valued. Since $y_1^*(x) = e^{(\alpha+i\beta)x} = e^{\alpha x}e^{i\beta x} = e^{\alpha x}(\cos(\beta x) + i\sin(\beta x))$ and $y_2^*(x) = e^{(\alpha-i\beta)x} = e^{\alpha x}e^{-i\beta x} = e^{\alpha x}(\cos(\beta x) - i\sin(\beta x))$, we may reconfigure y_1^*, y_2^* into real-valued functions: $y_1 = \frac{1}{2}(y_1^* + y_2^*) = e^{\alpha x}\cos(\beta x)$, $y_2 = \frac{1}{2i}(y_1^* - y_2^*) = e^{\alpha x}\sin(\beta x)$. Finally, two real-valued linearly independent solutions are $y_1(x) = e^{\alpha x}\cos(\beta x)$ and $y_2(x) = e^{\alpha x}\sin(\beta x)$.

8 / 11

Summary

In order to find the general solution for the differential equation ay'' + by' + cy = 0,

1. Compose the *characteristic equation* $a\lambda^2 + b\lambda + c = 0$.

2. Find its roots $\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

3. Depending on roots, find *linearly independent solutions* y_1, y_2 :

• If λ_1 , λ_2 are real and distinct, then $y_1 = e^{\lambda_1 x}$ and $y_2 = e^{\lambda_2 x}$.

• If λ is a double root, then $y_1 = e^{\lambda x}$ and $y_2 = x e^{\lambda x}$.

• If $\lambda_{1,2} = \alpha \pm i\beta$ are complex conjugate roots, then $y_1 = e^{\alpha x} \cos(\beta x)$ and $y_2 = e^{\alpha x} \sin(\beta x)$.

4. Compose the general solution : $y(x) = C_1y_1 + C_2y_2$, where $C_1, C_2 \in \mathbb{R}$.

9 / 11

Examples: real roots

Example 1. Find the general solution of the equation y'' + y' - 2y = 0. **Solution**. The characteristic equation is $\lambda^2 + \lambda - 2 = 0 \iff (\lambda + 2)(\lambda - 1) = 0$. The roots are $\lambda_1 = -2$, $\lambda_2 = 1$. The linearly independent solutions are $y_1 = e^{\lambda_1 x} = e^{-2x}$, $y_2 = e^{\lambda_2 x} = e^x$. The general solution is $y(x) = C_1 y_1 + C_2 y_2 = C_1 e^{-2x} + C_2 e^x$, $C_1, C_2 \in \mathbb{R}$. **Example 2.** Find the general solution of the equation y'' - 6y' + 9y = 0. **Solution**. The characteristic equation is $\lambda^2 - 6\lambda + 9 = 0 \iff (\lambda - 3)^2 = 0$. The double root is $\lambda = 3$. The linearly independent solutions are $y_1 = e^{\lambda x} = e^{3x}$, $y_2 = xe^{\lambda x} = xe^{3x}$. The general solution is $y(x) = C_1 y_1 + C_2 y_2 = C_1 e^{3x} + C_2 xe^{3x}$, $C_1, C_2 \in \mathbb{R}$.

Examples: complex roots Example 3. Find the general solution of the equation y'' + 2y' + 3y = 0. **Solution.** The characteristic equation is $\lambda^2 + 2\lambda + 3 = 0$. The roots are $\lambda_{1,2} = \frac{-2 \pm \sqrt{4-12}}{2} = \frac{-2 \pm \sqrt{-8}}{2} = \frac{-2 \pm 2i\sqrt{2}}{2} = \underbrace{1}_{\alpha} \pm i\underbrace{\sqrt{2}}_{\beta}$. The linearly independent solutions are $y_1 = e^{\alpha x} \cos(\beta x) = e^x \cos(\sqrt{2}x)$ and $y_2 = e^{\alpha x} \sin(\beta x) = e^x \sin(\sqrt{2}x)$ The general solution is $y(x) = C_1y_1 + C_2y_2 = C_1e^x \cos(\sqrt{2}x) + C_2e^x \sin(\sqrt{2}x) = e^x(C_1\cos(\sqrt{2}x) + C_2\sin(\sqrt{2}x)),$ $C_1, C_2 \in \mathbb{R}$. 11 / 11