Episode 25

Second-order differential equations

Objectives 2
Solutions and their linear behavior 3
Proportional solutions 4
General solution 5
How to find linearly independent solutions 6
The characteristic equation: real roots 7
The characteristic equation: complex roots 8
Summary 9
Examples: real roots 10
Examples: complex roots 11

Objectives

In this episode, we will learn how to solve
second-order homogeneous linear differential equation with constant coefficients.
What this long name means? A general equation of this type is written as

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad \text { or } \quad a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where a, b, c are given constants (they are called constant coefficients)
and $y=y(x)$ is unknown function in variable x.
Second-order means that the highest derivative is of the second order.
For this reason, $a \neq 0$.
Homogeneous means that the right hand side of the equation is zero.
Linear means that y, y^{\prime} and $y^{\prime \prime}$ are involved with exponents of one.
For example, $3 y^{\prime \prime}+y^{\prime}-2 y=0$ and $y^{\prime \prime}=0$ are
second-order homogeneous linear equation with constant coefficients,
while $y^{\prime \prime}-y^{2}=0, \quad y^{\prime \prime}+2 y^{\prime}=x+1, \quad y^{\prime}+y=0, \quad y^{\prime \prime}-x y^{\prime}=0$ are not.

Solutions and their linear behavior

A solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ is any function satisfying the equation.
For example, $y=e^{x}$ is a solution of the equation $y^{\prime \prime}-y=0$, because $\left(e^{x}\right)^{\prime \prime}-e^{x}=0$.
This solution is not unique: $y=e^{-x}$ is also a solution since $\left(e^{-x}\right)^{\prime \prime}-e^{-x}=0$.
Actually, the equation $y^{\prime \prime}-y=0$, as any other second-order linear equation, has infinitely many solutions. How to find them all?
Theorem (linear behavior of solutions). If y_{1} and y_{2} are solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$, then so $C_{1} y_{1}+C_{2} y_{2}$ is for any constants C_{1} and C_{2}.
Proof. Let y_{1}, y_{2} be solutions of $a y^{\prime \prime}+b y^{\prime}+c y=0$. Then $a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}=0$ and $a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}=0$.
Let us check that $C_{1} y_{1}+C_{2} y_{2}$ satisfies the equation for any choice of constants C_{1}, C_{2} :

$$
\begin{aligned}
& a\left(C_{1} y_{1}+C_{2} y_{2}\right)^{\prime \prime}+b\left(C_{1} y_{1}+C_{2} y_{2}\right)^{\prime}+c\left(C_{1} y_{1}+C_{2} y_{2}\right) \stackrel{?}{=} 0 \\
& a C_{1} y_{1}^{\prime \prime}+a C_{2} y_{2}^{\prime \prime}+b C_{1} y_{1}^{\prime}+b C_{2} y_{2}^{\prime}+c C_{1} y_{1}+c C_{2} y_{2} \stackrel{?}{=} 0 \\
& C_{1}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+C_{2}\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right) \stackrel{?}{=} 0 \\
& C_{1} \cdot 0+C_{2} \cdot 0 \stackrel{?}{=} 0 \\
& 0=0 \quad \checkmark
\end{aligned}
$$

Proportional solutions

Example 1. As we saw, $y_{1}=e^{x}$ and $y_{2}=e^{-x}$ are solutions of $y^{\prime \prime}-y=0$.
Therefore, $y=C_{1} e^{x}+C_{2} e^{-x}$ is also a solution for any $C_{1}, C_{2} \in \mathbb{R}$.
Are there any other solutions besides $y=C_{1} e^{x}+C_{2} e^{-x}$? (Spoiler: no!)
Example 2. The equation $y^{\prime \prime}+y=0$ has solutions $y_{1}=\sin x$ and $y_{2}=5 \sin x$. Indeed,
$y_{1}^{\prime \prime}=(\sin x)^{\prime \prime}=(\cos x)^{\prime}=-\sin x$, so $y_{1}^{\prime \prime}+y_{1}=-\sin x+\sin x=0$,
and $y_{2}^{\prime \prime}=(5 \sin x)^{\prime \prime}=(5 \cos x)^{\prime}=-5 \sin x$, so $y_{2}^{\prime \prime}+y_{2}=-5 \sin x+5 \sin x=0$.
Therefore, $y=C_{1} \sin x+C_{2} \cdot 5 \sin x=\left(C_{1}+5 C_{2}\right) \sin x=C \sin x$ is a solution for any constant C.
Are here any other solutions besides $y=C \sin x$?
(Spoiler: yes! Take, for example, $y=\cos x$.)
What is the difference between these two pairs of solutions,
$y_{1}=e^{x}$ and $y_{2}=e^{-x}$ in Example 1 and $y_{1}=\sin x$ and $y_{2}=5 \sin x$ in Example 2?
It's easy to observe that
$\sin x$ and $5 \sin x$ are proportional, while e^{x} and e^{-x} are not.
Indeed, $y_{1}=\sin x$ and $y_{2}=5 \sin x$ are proportional since $y_{2}=5 y_{1}$.
If we assume that e^{x} and e^{-x} are proportional, then $y_{2}=C y_{1}$ for some constant C.
But $e^{-x}=C e^{x} \Longleftrightarrow 1=C e^{2 x}$ for all x, which is impossible.

General solution

Two proportional solutions are called linearly dependent.
Non-proportional solutions are called linearly independent.
$y_{1}=e^{x}$ and $y_{2}=e^{-x}$ are linearly independent solutions of $y^{\prime \prime}-y=0$.
$y_{1}=\sin x$ and $y_{2}=5 \sin x$ are linearly dependent solutions of $y^{\prime \prime}+y=0$.
Definition. A general solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)
$$

where $y_{1}(x), y_{2}(x)$ are linearly independent solutions of the equation and C_{1}, C_{2} are arbitrary constants.
The expression $C_{1} y_{1}(x)+C_{2} y_{2}(x)$, is called a linear combination of y_{1} and y_{2}.
As it will be proven in the course of differential equations,
any solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ can be obtained from the general solution by an appropriate choice of the constants C_{1}, C_{2}.

Therefore, to find a general solution, we need to find two linearly independent solutions y_{1}, y_{2} and set up their linear combination $C_{1} y_{1}+C_{2} y_{2}$ with arbitrary constants C_{1}, C_{2}.

How to find linearly independent solutions

We know that the first-order equation $a y^{\prime}+b y=0$ has an exponential solution (it can be found by separation of variables).
Let us try to find a solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ in the exponential form $y=e^{\lambda x}$,
where λ is unknown constant (to be determined).
Substitute $y=e^{\lambda x}, y^{\prime}=\lambda e^{\lambda x}$, and $y^{\prime \prime}=\lambda^{2} e^{\lambda x}$ into the equation:

$$
a \underbrace{\lambda^{2} e^{\lambda x}}_{y^{\prime \prime}}+b \underbrace{\lambda e^{\lambda x}}_{y^{\prime}}+c \underbrace{e^{\lambda x}}_{y}=0 .
$$

Factor out $e^{\lambda x}$:

$$
a \lambda^{2} e^{\lambda x}+b \lambda e^{\lambda x}+c e^{\lambda x}=0 \Longleftrightarrow e^{\lambda x}\left(a \lambda^{2}+b \lambda+c\right)=0
$$

We may cancel $e^{\lambda x}$ out since it's never zero:
$e^{\lambda x}\left(a \lambda^{2}+b \lambda+c\right)=0 \Longleftrightarrow a \lambda^{2}+b \lambda+c=0$.
If $y=e^{\lambda x}$ is a solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$,
then λ is a root of the quadratic equation $a \lambda^{2}+b \lambda+c=0$.
The quadratic equation $a \lambda^{2}+b \lambda+c=0$ is called
the characteristic equation of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

The characteristic equation: real roots

The solutions of the characteristic equation are $\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

- If λ_{1}, λ_{2} are real and distinct, then two linearly independent solutions are $y_{1}(x)=e^{\lambda_{1} x}$ and $y_{2}(x)=e^{\lambda_{2} x}$.
- If $\lambda_{1}=\lambda_{2}(=\lambda=-b / 2 a)$ is a double root, then two linearly independent solutions are
$y_{1}(x)=e^{\lambda x}$ and $y_{2}(x)=x e^{\lambda x}$.
Let us check that $y_{2}(x)=x e^{\lambda x}$ is a solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$.
Substitute $y_{2}^{\prime}(x)=(1+\lambda x) e^{\lambda x}$ and $y_{2}^{\prime \prime}(x)=\left(2 \lambda+\lambda^{2} x\right) e^{\lambda x}$
into the left hand side of the equation:
$a\left(2 \lambda+\lambda^{2} x\right) e^{\lambda x}+b(1+\lambda x) e^{\lambda x}+c x e^{\lambda x}=\left(a \lambda^{2}+b \lambda+c\right) x e^{\lambda x}+(2 a \lambda+b) e^{\lambda x}=0$, since λ is a root of $a \lambda^{2}+b \lambda+c$, and $2 a \lambda+b=2 a(-b / 2 a)+b=0$.
Therefore, $y_{2}(x)=x e^{\lambda x}$ is indeed a solution of the differential equation.
The solutions $y_{1}(x)=e^{\lambda x}$ and $y_{2}(x)=x e^{\lambda x}$ are linearly independent
since they are not proportional.

The characteristic equation: complex roots

- If $\lambda_{1,2}=\alpha \pm i \beta$ are complex conjugate roots $(\alpha, \beta \in \mathbb{R})$,
then two linearly independent solutions are
$y_{1}^{*}(x)=e^{(\alpha+i \beta) x}$ and $y_{2}^{*}(x)=e^{(\alpha-i \beta) x}$. But they are not real-valued.
Since
$y_{1}^{*}(x)=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos (\beta x)+i \sin (\beta x))$ and
$y_{2}^{*}(x)=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos (\beta x)-i \sin (\beta x))$,
we may reconfigure y_{1}^{*}, y_{2}^{*} into real-valued functions:
$y_{1}=\frac{1}{2}\left(y_{1}^{*}+y_{2}^{*}\right)=e^{\alpha x} \cos (\beta x)$,
$y_{2}=\frac{1}{2 i}\left(y_{1}^{*}-y_{2}^{*}\right)=e^{\alpha x} \sin (\beta x)$.
Finally, two real-valued linearly independent solutions are
$y_{1}(x)=e^{\alpha x} \cos (\beta x)$ and $y_{2}(x)=e^{\alpha x} \sin (\beta x)$.

Summary

In order to find the general solution for the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$,

1. Compose the characteristic equation $a \lambda^{2}+b \lambda+c=0$.
2. Find its roots $\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
3. Depending on roots, find linearly independent solutions y_{1}, y_{2} :

- If λ_{1}, λ_{2} are real and distinct, then $y_{1}=e^{\lambda_{1} x}$ and $y_{2}=e^{\lambda_{2} x}$.
- If λ is a double root, then $y_{1}=e^{\lambda x}$ and $y_{2}=x e^{\lambda x}$.
- If $\lambda_{1,2}=\alpha \pm i \beta$ are complex conjugate roots, then $y_{1}=e^{\alpha x} \cos (\beta x)$ and $y_{2}=e^{\alpha x} \sin (\beta x)$.

4. Compose the general solution : $y(x)=C_{1} y_{1}+C_{2} y_{2}$, where $C_{1}, C_{2} \in \mathbb{R}$.

Examples: real roots

Example 1. Find the general solution of the equation $y^{\prime \prime}+y^{\prime}-2 y=0$.
Solution. The characteristic equation is $\lambda^{2}+\lambda-2=0 \Longleftrightarrow(\lambda+2)(\lambda-1)=0$.
The roots are $\lambda_{1}=-2, \quad \lambda_{2}=1$.
The linearly independent solutions are $y_{1}=e^{\lambda_{1} x}=e^{-2 x}, \quad y_{2}=e^{\lambda_{2} x}=e^{x}$.
The general solution is $y(x)=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{-2 x}+C_{2} e^{x}, \quad C_{1}, C_{2} \in \mathbb{R}$.

Example 2. Find the general solution of the equation $y^{\prime \prime}-6 y^{\prime}+9 y=0$.
Solution. The characteristic equation is $\lambda^{2}-6 \lambda+9=0 \Longleftrightarrow(\lambda-3)^{2}=0$.
The double root is $\lambda=3$.
The linearly independent solutions are $y_{1}=e^{\lambda x}=e^{3 x}, \quad y_{2}=x e^{\lambda x}=x e^{3 x}$.
The general solution is $y(x)=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{3 x}+C_{2} x e^{3 x}, \quad C_{1}, C_{2} \in \mathbb{R}$.

Examples: complex roots

Example 3. Find the general solution of the equation $y^{\prime \prime}+2 y^{\prime}+3 y=0$.
Solution. The characteristic equation is
$\lambda^{2}+2 \lambda+3=0$.
The roots are $\lambda_{1,2}=\frac{-2 \pm \sqrt{4-12}}{2}=\frac{-2 \pm \sqrt{-8}}{2}=\frac{-2 \pm 2 i \sqrt{2}}{2}=\underbrace{1}_{\alpha} \pm i \underbrace{\sqrt{2}}_{\beta}$.
The linearly independent solutions are
$y_{1}=e^{\alpha x} \cos (\beta x)=e^{x} \cos (\sqrt{2} x)$ and
$y_{2}=e^{\alpha x} \sin (\beta x)=e^{x} \sin (\sqrt{2} x)$
The general solution is
$y(x)=C_{1} y_{1}+C_{2} y_{2}=C_{1} e^{x} \cos (\sqrt{2} x)+C_{2} e^{x} \sin (\sqrt{2} x)=e^{x}\left(C_{1} \cos (\sqrt{2} x)+C_{2} \sin (\sqrt{2} x)\right)$, $C_{1}, C_{2} \in \mathbb{R}$.

